
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Model Checking for Symbolic-Heap Separation Logic with
Inductive Predicates

James Brotherston
University College London, UK

J.Brotherston@ucl.ac.uk

Nikos Gorogiannis
Middlesex University, UK

nikos.gorogiannis@gmail.com

Max Kanovich
University College London, UK and
National Research University Higher

School of Economics, Russia
M.Kanovich@ucl.ac.uk

Reuben Rowe
University College London, UK

R.Rowe@ucl.ac.uk

Abstract
We investigate the model checking problem for symbolic-heap sep-
aration logic with user-defined inductive predicates, i.e., the prob-
lem of checking that a given stack-heap memory state satisfies a
given formula in this language, as arises e.g. in software testing or
runtime verification.

First, we show that the problem is decidable; specifically, we
present a bottom-up fixed point algorithm that decides the problem
and runs in exponential time in the size of the problem instance.

Second, we show that, while model checking for the full lan-
guage is EXPTIME-complete, the problem becomes NP-complete
or PTIME-solvable when we impose natural syntactic restrictions
on the schemata defining the inductive predicates. We additionally
present NP and PTIME algorithms for these restricted fragments.

Finally, we report on the experimental performance of our pro-
cedures on a variety of specifications extracted from programs, ex-
ercising multiple combinations of syntactic restrictions.

Categories and Subject Descriptors D.2.4 [Software / Program
Verification]: Model checking; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Logics of programs, Assertions

Keywords Separation logic, model checking, inductive defini-
tions, complexity, runtime verification, program testing.

1. Introduction
In modern computer science, model checking is most commonly
considered to be the problem of deciding whether a given Kripke
structure or transition system S — typically representing a program
or system — satisfies, or is a model of, a given formula A of modal
or temporal logic [18]; this property is usually written as S |= A.
More generally, in mathematical logic, S might be a mathematical
structure of virtually any kind andA a formula in some appropriate

logic for such structures (see e.g. [20] for the cases of first-order
and monadic second-order logic).

In this paper, we investigate the model checking problem as it
arises in the setting of separation logic with user-defined inductive
predicates. Separation logic is an established formalism for the ver-
ification of imperative pointer programs, comprising both an asser-
tion language of formulas based on bunched logic and a Hoare-style
system of triples manipulating the pre- and postconditions of pro-
grams [23, 29]. Given a program annotated with separation logic
assertions, one can try to prove statically that each assertion holds
at the appropriate program point; a long line of research in this
area has resulted in a number of tools that are capable of doing
this automatically at least some of the time for industrial code (see
e.g. [7, 8, 14, 16, 19, 24, 28]). Alternatively, one might also try to
test dynamically whether properties hold: simply execute the pro-
gram and check whether each assertion is satisfied by the actual
memory state of the program at that point (this is sometimes known
as run-time verification). Such an approach obviously necessitates a
method for deciding, for any memory state S and separation logic
formula A, whether or not S |= A: a model checking problem.
While this is straightforward for simple formulas, it becomes much
more complicated when arbitrary user-defined inductive predicates,
describing complex shape properties of the memory, are permitted.

Our first contribution is a general model checking procedure
(in the sense above) for the most commonly considered symbolic
heap fragment of separation logic, extended with a general schema
for user-defined inductive predicates. Since our definition schema
allows inductive predicates to denote possibly-empty heap memo-
ries, and any heap trivially decomposes into itself combined with
the empty heap, a naive top-down approach based on backtrack-
ing search will generally fail to terminate. Instead, we employ a
bottom-up approach based on computing the fixed point of all “sub-
models” of the original memory that satisfy one of the defined in-
ductive predicates. The crucial insight is that, for any given model
checking query, the witnesses for the existentially quantified vari-
ables can be chosen from a fixed set of values given in advance.
Our algorithm decides the model checking problem for our logic,
in (worst-case) exponential time in the query size. Indeed, we show
that this problem is EXPTIME-complete.

In practice, however, it is often the case that the inductive pred-
icate definitions encountered in verification practice fall within
much more well-behaved fragments of our general inductive
schemata. Our second main contribution is an analysis of the model

checking problem in cases where the syntactic form of inductive
definitions is restricted in various ways (e.g., when recursion is
forbidden in cases where the heap might be empty). We show that,
for different combinations of these restrictions, the model checking
problem can become NP-complete or even PTIME-solvable; and,
in such cases, we give concrete model checking algorithms that fall
within the appropriate complexity bound.

Finally, we provide an implementation of our general model
checking algorithm, and of our specialised algorithm for the
polynomial-time fragment, within the CYCLIST theorem proving
framework; this implementation is available online [1]. We evaluate
their performance on a range of examples gathered from the sep-
aration logic community, as well as some hand-crafted examples.
Our experimental results seem to bear out that our model checking
methods are practical for runtime verification applications when
suitable syntactic restrictions are present, and for offline testing
(such as in unit test suites) in the general case.

Related work. Runtime verification for separation logic was ad-
dressed first in [26], and then more recently in the Verifast tool [3].
In both cases, model checking works only for classes of recursive
predicates that are restricted in various ways, and comes without
any formal correctness claims or complexity bounds. As far as we
know, the present paper is the first to specifically address model
checking for symbolic-heap separation logic with general induc-
tive predicates from a fully formal perspective. However, the logic
itself has attracted considerable recent interest amongst the veri-
fication community. The aforementioned automated program ver-
ification tools based on separation logic [7, 8, 14, 16, 19, 24, 28]
are all based on symbolic heaps, and increasingly targeted at veri-
fying specifications involving user-defined rather than hard-coded
predicates. Indeed, there are now even tools capable of automati-
cally generating the definitions of inductive predicates needed for
analysis [11, 25]. On the theoretical side, the satisfiability problem
for our logic was recently shown decidable [10] and its entailment
problem undecidable [4], although decidability results have been
obtained for restricted classes of entailments [5, 22]. Alongside
these theoretical developments, there are automated tools geared
towards the proof [13, 17] and disproof [12] of entailments, as
needed to support program verification.

The remainder of this paper is structured as follows. Section 2
introduces our fragment of separation logic, and Section 3 develops
our general model checking procedure for it. This model checking
problem is then shown to be EXPTIME-complete in Section 4. We
present our restricted fragments in Section 5, and establish their
various complexities in Section 6. Section 7 presents details of our
implementation and experiments, and Section 8 concludes.

2. SLSHID : Symbolic-heap separation logic with
inductively defined predicates

In this section we present our fragment SLSHID of separation logic,
which restricts the syntax of formulas to symbolic heaps as intro-
duced in [5, 6], but allows arbitrary user-defined inductive predi-
cates over these, as considered e.g. in [9, 10, 11, 22].

We often write vector notation to abbreviate tuples, e.g. x for
(x1, . . . , xm). We write proji for the ith projection function on
tuples, and we often abuse notation by treating a tuple x as the
set containing exactly the elements occurring in x. If X and Y are
sets, we write X # Y as a shorthand for X ∩ Y = ∅.

2.1 Syntax
A term is either a variable in the infinite set Var, or the constant nil.
We write x, y, z, etc. to range over variables, and t, u, etc. to range
over terms. We assume a finite set P = {P1, . . . , Pn} of predicate
symbols, each with associated arity.

Definition 2.1 (Symbolic heap). Spatial formulas F and pure
formulas π are given by the following grammar:

F ::= emp | x 7→ t | P t | F ∗ F π ::= t = t | t 6= t

where x ranges over variables, t over terms, P over predicate
symbols and t over tuples of terms (matching the arity of P in
P t).

A symbolic heap is given by ∃z. Π : F , where z is a tuple
of (distinct) variables, F is a spatial formula and Π is a finite set
of pure formulas. Whenever one of Π, F is empty, we omit the
colon. We write FV (A) for the set of free variables occurring in
a symbolic heap A; by convention, the bound variable names in A
are chosen disjoint from the free variables FV (A).

Definition 2.2. An inductive rule set is a finite set of inductive
rules, each of the form A ⇒ Px, where A is a symbolic heap
(called the body of the rule), Px a formula (called its head), x is a
tuple of distinct variables and FV (A) ⊆ x.

For convenience, we sometimes drop existential quantifiers
from inductive rulesA⇒ Px: in that case, any variables occurring
in A but not in x are implicitly existentially quantified.

As usual, the inductive rules with P in their head should be
read as exhaustive, disjunctive clauses of an inductive definition of
P . The formal semantics appears below.

2.2 Semantics
We use a RAM model employing heaps of records. We assume
a countably infinite set Val of values of which an infinite subset
Loc ⊂ Val are addressable locations; we insist on at least one non-
addressable value nil ∈ Val \ Loc.

A stack is a function s : Var → Val; we extend stacks to terms
by setting s(nil) =def nil , and write s[z 7→ a] for the stack defined
as s except that s[z 7→ a](z) = a. We extend stacks pointwise to
act on tuples of terms.

A heap is a partial function h : Loc⇀fin (Val List) mapping
finitely many locations to records, i.e. arbitrary-length tuples of
values; we set dom(h) to be the set of locations on which h
is defined, and e to be the empty heap that is undefined on all
locations. We write ◦ for composition of domain-disjoint heaps:
if h1 and h2 are heaps, then h1 ◦h2 is the union of h1 and h2 when
dom(h1) # dom(h2), and undefined otherwise. Finally, we define
the cover of a heap h as

cover(h) =def dom(h) ∪ {b ∈ Val | b ∈ h(a), a ∈ dom(h)},
i.e., the set of all values mentioned anywhere in h.

Definition 2.3. Let Φ be a fixed inductive rule set. Then we say
that a stack-heap pair (s, h) is a model of a symbolic heap A if the
relation s, h |=Φ A holds, defined by structural induction on A:

s, h |=Φ t1 = t2 ⇔ s(t1) = s(t2)

s, h |=Φ t1 6= t2 ⇔ s(t1) 6= s(t2)

s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ P t ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃a ∈ Val|z|. s[z 7→ a], h |=Φ π for all
π ∈ Π and s[z 7→ a], h |=Φ F

where the semantics JP KΦ of the inductive predicate P under Φ is
defined below.

If A contains no inductive predicates, then its satisfaction re-
lation does not depend on the inductive rules Φ, and we typically
write s, h |= A to mean that s, h |=Φ A, for any Φ. Similarly, if Π

is a set of pure formulas, we write s |= Π to mean that s, h |=Φ Π
for any heap h and inductive rule set Φ.

The following definition gives the standard semantics of the
inductive predicate symbols P according to a fixed inductive rule
set Φ, i.e., as the least fixed point of an n-ary monotone operator
constructed from Φ:

Definition 2.4. First, for each predicate Pi ∈ P with arity αi say,
we define τi = Pow(Valαi ×Heap) (where Pow(−) is powerset).
We also partition the rule set Φ into Φ1, . . . ,Φn, where Φi is the
set of all inductive rules in Φ of the form A⇒ Pix.

Now let each Φi be indexed by j (i.e., Φi,j is the j-th rule
defining Pi), and for each inductive rule Φi,j of the form ∃z. Π :
F ⇒ Pix, we define the operator ϕi,j : τ1 × . . .× τn → τi by:

ϕi,j(Y) =def {(s(x), h) | s, h |=Y Π : F}

where Y ∈ τ1×. . .×τn and |=Y is the satisfaction relation defined
above, except that JPiKY =def proji(Y). We then finally define the
tuple JPKΦ ∈ τ1 × . . .× τn by:

JPKΦ =def µY. (
⋃
j ϕ1,j(Y), . . . ,

⋃
j ϕn,j(Y))

where µ is the least fixed point constructor. We write JPiKΦ as an
abbreviation for proji(JPKΦ).

Note that in computing ϕi,j(Y) above, we strip the existential
quantifiers ∃z from the body of the inductive rule Φi,j , taking
advantage of the convention that the existentially bound variables
z are disjoint from the free variables x in Φi,j .

3. A model checking algorithm for SLSHID
In this section we develop a decision procedure for the model
checking problem in our logic SLSHID . Formally, this problem is stated
as follows:

Model checking problem (MC). Given an inductive rule set Φ,
stack s, heap h and symbolic heap A, decide whether s, h |=Φ A.

We observe that whether s, h |=Φ A depends not on the entire
(infinite) valuation of s but only on the values of s on FV (A),
which is finite; thus an instance of MC can be also viewed as finite.
In fact, the problem can be simplified further by noting that, if we
can solve the case when A = Px, for P an inductive predicate,
then the general case follows almost immediately:

Restricted model checking problem (RMC). Given an inductive
rule set Φ, tuple of values a ∈ Val, heap h and predicate symbol
P , decide whether (a, h) ∈ JP KΦ.

Proposition 3.1. MC and RMC are (polynomially) equivalent.

Proof. Given an instance (Φ,a, h, P) of RMC, where m = |a| is
the arity of P , we define the corresponding instance of MC to be
(Φ, s, h, Px), where x is an m-tuple of distinct variables and s is
any stack satisfying s(x) = a. Then, clearly,

s, h |=Φ Px ⇔ (s(x), h) ∈ JP KΦ ⇔ (a, h) ∈ JP KΦ .

Conversely, let (Φ, s, h,A) be an instance of MC. Let FV (A) =
x, let Q be a predicate symbol of arity |x| not occurring in Φ, and
define Φ′ = Φ ∪ {A ⇒ Qx}. We then define the corresponding
instance of RMC to be (Φ′, s(x), h,Q). By construction,

s, h |=Φ A ⇔ s, h |=Φ′ Qx ⇔ (s(x), h) ∈ JQKΦ′
.

Both reductions are trivially computable in polynomial time.

Thus it suffices to formulate a decision procedure for the re-
stricted problem RMC. Before diving into the details of our de-
cision procedure, let us motivate its development by making two
main observations about this problem.

1. One might be tempted to adopt a top-down approach to the
problem by applying inductive rules backwards to Px, obtain-
ing smaller model-checking problems (in the size of the heap
h) as recursive instances. Unfortunately, our general schema for
inductive rules does not guarantee that the models of subformu-
las of the body of an inductive rule are strictly smaller than the
models of the entire body, and so such an approach might fail
to terminate. For example, suppose ((a, b), h) ∈ JP KΦ, and is
generated by the inductive rule

∃z. Pxz ∗ Pzy ⇒ Pxy.

Then we know that, for some c ∈ Val, we should have both
((a, c), h1) ∈ JP KΦ and ((c, b), h2) ∈ JP KΦ, where h =
h1 ◦ h2; but we do not know that h1, h2 are smaller than h;
either might be the empty heap e. (Indeed, it is quite possible
that all of h, h1, h2 are empty.)
Therefore, we adopt a bottom-up approach: we attempt to com-
pute all tuples in JPiKΦ that are “sub-models” of (a, h), by iter-
atively applying the inductive rules until we reach a fixed point.
(In fact, we have to do this for all inductive predicates P simul-
taneously, in order to account for possible mutual dependency
among them.) This process is guaranteed to terminate provided
that there are only finitely many such sub-models.

2. The principal remaining difficulty is one of completeness: i.e.,
can we guarantee that any (a, h) ∈ JP KΦ can be generated
by applying the inductive rules in Φ to sub-models of (a, h)?
In fact this point is quite delicate, due to the presence of un-
restricted existential quantification in our inductive rules. For
example, suppose (a, e) ∈ JP KΦ is generated by the rule

∃z. z 6= x : Qxz ⇒ Px.

Then we know that for some b ∈ Val, we have ((a, b), e) ∈
JQKΦ, where b 6= a and b (trivially) does not appear in the
empty heap e. Thus we must allow our sub-models to mention
fresh, or “spare”, values not mentioned in a or h.
Fortunately, as we show (Lemma 3.7), only finitely many such
spare values are needed for any given rule set Φ; these can be
“recycled” as needed at each fresh application of an inductive
rule in our fixed point computation.

We now formally define our fixed point construction computing
all tuples (b, h′) ∈ JPKΦ that are sub-models of a given (a, h),
where “sub-model” means that h′ ⊆ h and b consists of values
from a, cover(h), the null value nil and a suitably chosen set of
“spare” values.

Definition 3.2. Let Φ be an inductive rule set, a a tuple of values
(from Val) and h a heap. We define the set Good(a, h) (of “good
sub-model values for (a, h)”) by

Good(a, h) = a ∪ {nil} ∪ cover(h).

Now let β be the maximum number of (free and bound) vari-
able names appearing in any inductive rule in Φ. We define
SpareΦ(a, h) to be a set of β fresh values (from Val) that do not
occur in Good(a, h).

Definition 3.3. Let Φ be an inductive rule set, a a tuple of values
and h a heap. For each inductive rule Φi,j ∈ Φ of the form
∃z.Π : F ⇒ Pix, we define an operator ψi,j : τ1× . . .×τn → τi

as follows:
ψi,j(Y) =def{

(s(x), h′)

∣∣∣∣ s, h′ |=Y Π : F and h′ ⊆ h and
s(x ∪ z) ⊆ Good(a, h) ∪ SpareΦ(a, h)

}
where Good(a, h) and SpareΦ(a, h) are the sets of values given
by Definition 3.2. It should be clear that each ψi,j is a monotone
operator. Thus we define the tuple MCΦ(a, h) ∈ τ1× . . .× τn by

MCΦ(a, h) =def µY. (
⋃
j ψ1,j(Y), . . . ,

⋃
j ψn,j(Y))

We write MCΦ
i (a, h) as an abbreviation for proji(MCΦ(a, h)).

For the remainder of this section, we shall assume a fixed in-
stance of MCΦ(a, h), given by choosing inductive rule set Φ, tu-
ple of values a and heap h.

It should be fairly obvious by comparing the constructions in
Definitions 2.4 and 3.3 that MCΦ

i (a, h) can only contain tuples that
are already elements of JPiKΦ. The following lemma formalises
that claim.

Lemma 3.4 (Soundness). MCΦ(a, h) ⊆ JPKΦ.

Proof. We proceed by fixed point induction on the tuple of sets
MCΦ(a, h). That is, we assume the inclusion Y ⊆ JPKΦ holds
for some tuple of sets Y = (Y1, . . . , Yn) ∈ τ1×. . .×τn, and must
show it holds for (

⋃
j ψ1,j(Y), . . . ,

⋃
j ψn,j(Y)). This means,

assuming that (b, h′) ∈ ψi,j(Y) for some inductive rule Φi,j , we
must show that (b, h′) ∈ JPiKΦ. Without loss of generality, we can
consider Φi,j to be written in the form:

∃z.Π : y1 7→ u1 ∗ . . .∗ yk 7→ uk ∗Pj1x1 ∗ . . .∗Pjmxm ⇒ Pix.

By construction of ψi,j(Y), there is a stack s with s(x) = b and

s, h′ |=Y Π : y1 7→ u1 ∗ . . . ∗ yk 7→ uk ∗ Pj1x1 ∗ . . . ∗ Pjmxm .

This means that s |= Π and h′ = h1 ◦ . . . ◦ hk+m, where

s, hi |=Y yi 7→ ui for all 1 ≤ i ≤ k,
and s, hk+i |=Y Pjixi for all 1 ≤ i ≤ m.

In particular, for any 1 ≤ i ≤ m we have (s(xi), hk+i) ∈ Yji and
thus, by the induction hypothesis, (s(xi), hk+i) ∈ JPjiK

Φ. That is,

s, hi |=Φ yi 7→ ui for all 1 ≤ i ≤ k,
and s, hk+i |=Φ Pjixi for all 1 ≤ i ≤ m.

Putting everything together, we have

s, h′ |=Φ Π : y1 7→ u1 ∗ . . . ∗ yk 7→ uk ∗ Pj1x1 ∗ . . . ∗ Pjmxm .

Therefore, s, h′ |=Φ Pix, i.e., (b, h′) ∈ JPiKΦ as required.

Next, we must show that MCΦ
i (a, h) contains all (b, h′) ∈

JPiKΦ that are “sub-models” of (a, h). To do this, we need to
argue that for any element (b, h′) ∈ JPiKΦ that is “almost a sub-
model” of (a, h) in that h′ ⊆ h but b contains “bad” values
(not in Good(a, h) or SpareΦ(a, h)), there are corresponding sub-
models in MCΦ

i (a, h), obtained by substituting “spare” values for
“bad” ones. The following definition captures the relevant notion
of substitution.

Definition 3.5. A finite partial function θ : Val ⇀fin Val is
called a substitution for MCΦ(a, h) if it is injective, and, for all
b ∈ dom(θ),

θ(b) = b if b ∈ Good(a, h), and
θ(b) ∈ SpareΦ(a, h) if b /∈ Good(a, h).

Next, the following technical lemma, which will be crucial to
completeness, captures the fact that we can “recycle” values as
needed. Roughly speaking, it says that we can extend a substitution

on the values b instantiating the head of an inductive rule to a
substitution on the values V ⊇ b instantiating the head of the rule
and the existentially quantified variables in its body. This relies on
the fact that, by construction, there are at least as many spare values
in SpareΦ(a, h) as there are variables in any inductive rule.

Lemma 3.6. Let θ be a substitution for MCΦ(a, h) such that
dom(θ) ⊇ b, and V ⊂ Val a (finite) set of values with b ⊆ V and
|V | ≤ |SpareΦ(a, h)|. Let SpareΦ(a, h) \ θ(b) = {d1, . . . , dm}
and let V \ (b ∪ Good(a, h)) = {e1, . . . , ek}. Then the function
θ′ : V → Val, defined by

θ′(c) =def


c if c ∈ Good(a, h)

θ(c) if c ∈ b \Good(a, h)

di if c = ei for some 1 ≤ i ≤ k,

is also a substitution for MCΦ(a, h), with θ′(b) = θ(b).

Proof. For convenience, we abbreviate Good(a, h) by G and
SpareΦ(a, h) by S in this proof.

First, since V ⊂ Val is finite, θ′ is indeed a finite partial function
Val ⇀fin Val. We argue that θ′ is well-defined. The three cases of
its definition above are non-overlapping by construction, the first
case is trivially well-defined and the second case is well-defined
since dom(θ) ⊇ b. Thus we just need to show that the third case
is well-defined, which means showing that k ≤ m, i.e.,

|V \ (b ∪ G)| ≤ |S \ θ(b)| .
Since θ is injective by assumption, |θ(b)| = |b|. Thus, as |V | ≤
|S|, we have |V | − |b| ≤ |S| − |θ(b)|. Then, using standard set
theory, we have as required

|V \ (b ∪ G)| ≤ |V \ b|
= |V | − |b| (since b ⊆ V)
≤ |S| − |θ(b)| (by the above)
≤ |S \ θ(b)|.

Next we argue that θ′ is indeed a substitution for MCΦ(a, h).
It is easy to see that θ′(c) = c if c ∈ Good(a, h) and θ′(c) ∈
SpareΦ(a, h) otherwise. We just need to show θ′ is injective. This
follows from the fact that the three definitional cases of θ′ are
given by three injective functions with pairwise disjoint ranges: G,
θ(b)(⊆ S) and S \ θ(b), respectively. Hence if θ′(c1) = θ′(c2)
then both c1 and c2 fall into the same definitional case of θ′, and so
c1 = c2 by injectivity of the corresponding function. Thus indeed
θ′ is a substitution for MCΦ(a, h) as required.

Finally, to see that θ′(b) = θ(b), observe that θ′(c) = θ(c)
immediately if c ∈ b \ G, and if c ∈ b ∩ G then θ′(c) = c = θ(c),
using the fact that θ is a substitution for MCΦ(a, h).

Lemma 3.7 (Completeness). Let (b, h′) ∈ JPiKΦ and h′ ⊆ h,
and let θ be a substitution for MCΦ(a, h) with dom(θ) ⊇ b.
Then (θ(b), h′) ∈ MCΦ

i (a, h).

Proof. We proceed by fixed point induction on JPKΦ. That is, we
assume the lemma holds for Y = (Y1, . . . , Yn) ∈ τ1 × . . .× τn,
and must show it holds for (

⋃
j ϕ1,j(Y), . . . ,

⋃
j ϕn,j(Y)). This

means, assuming that (b, h′) ∈ ϕi,j(Y) for some inductive rule
Φi,j , where h′ ⊆ h and we have a θ satisfying the conditions of the
lemma, we must show that (θ(b), h′) ∈ MCΦ

i (a, h).
Without loss of generality, we may consider Φi,j to be written

in the form:

∃z.Π : y1 7→ u1 ∗ . . .∗ yk 7→ uk ∗Pj1x1 ∗ . . .∗Pjmxm ⇒ Pix.

By construction of ϕi,j , we have a stack s such that s(x) = b and

s, h′ |=Y Π : y1 7→ u1 ∗ . . . ∗ yk 7→ uk ∗ Pj1x1 ∗ . . . ∗ Pjmxm .

This means that s |= Π and h′ = h1 ◦ . . . ◦ hk+m, where

s, hi |= yi 7→ ui for all 1 ≤ i ≤ k,
and s, hk+i |=Y Pjixi for all 1 ≤ i ≤ m.

The latter two statements can be rewritten as follows:
dom(hi) = {s(yi)} and hi(s(yi)) = s(ui) for all 1 ≤ i ≤ k,

and (s(xi), hk+i) ∈ Yji for all 1 ≤ i ≤ m.

Recall that x and z describe respectively the sets of all free
and bound variables appearing in the inductive rule Φi,j . We have
that s(x ∪ z) ⊂ Val is finite, and b = s(x) ⊆ s(x ∪ z)
and |s(x ∪ z)| ≤ |SpareΦ(a, h)| by construction. Therefore, by
taking V = s(x ∪ z) in Lemma 3.6, and noting dom(θ) ⊇ b by
assumption, we can obtain a substitution θ′ for MCΦ(a, h) with
dom(θ′) = s(x ∪ z) and θ′(b) = θ(b).

Now, since θ′ is injective, it is easy to see that s ◦ θ′ |= Π
(where ◦ here denotes function composition). Additionally, since
s(yi), s(ui) ⊆ cover(h) ⊆ Good(a, h), we have by construction,
for all 1 ≤ i ≤ k,

dom(hi) = {θ′(s(yi))} and hi(θ′(s(yi))) = θ′(s(ui))
i.e. s ◦ θ′, hi |= yi 7→ ui.

Notice that, for any 1 ≤ i ≤ m, we have both hk+i ⊆ h′ ⊆ h and
dom(θ′) ⊇ s(xi). Therefore, by the induction hypothesis,

(θ′(s(xi)), hk+i)) ∈ MCΦ
i (a, h) for all 1 ≤ i ≤ m.

Putting everything together, we obtain

s ◦ θ′, h′ |=MCΦ(a,h)
Π : y1 7→ u1 ∗ . . . ∗ yk 7→ uk

∗ Pj1x1 ∗ . . . ∗ Pjmxm .

As (s◦ θ′)(x∪z) ⊆ Good(a, h)∪SpareΦ(a, h) by construction,
we obtain by the definition of MCΦ(a, h) (Definition 3.3):

((s ◦ θ′)(x), h′) ∈ MCΦ
i (a, h) .

Finally, as s(x) = b and θ′ coincides with θ on b, we have
(s ◦ θ′)(x) = θ′(s(x)) = θ(b). Thus we obtain as required

(θ(b), h′) ∈ MCΦ
i (a, h) .

Lemma 3.8. For each 1 ≤ i ≤ n,

(a, h) ∈ JPiKΦ ⇔ (a, h) ∈ MCΦ
i (a, h) .

Proof. The (⇐) direction follows directly from Lemma 3.4. The
(⇒) direction follows from Lemma 3.7 by taking (b, h′) there
to be (a, h), and θ to be the identity function on a (noting that
a ⊆ Good(a, h), so this is trivially a substitution in the sense of
Definition 3.5).

Lemma 3.9. MCΦ(a, h) is finite and computable.

Proof. By construction (Definition 3.3), MCΦ(a, h) can only con-
tain tuples of the form (b, h′), where h′ ⊆ h and b is a finite tuple
of values, drawn from the finite set Good(a, h)∪SpareΦ(a, h). As
the heap h is also finite, each such (b, h′) is a finite object and there
can be only finitely many of them. Hence MCΦ(a, h) is finite.

To see that MCΦ(a, h) is computable, observe that it is defined
as the least fixed point of a monotone operator. It is well known that
this least fixed point can be approached iteratively in approximant
stages, starting from the n-tuple (∅, . . . , ∅). Since MCΦ(a, h) is
finite, there can be only finitely many such approximants. To see
that each one is computable, it suffices to show that any ψi,j(Y) is
computable, given that Y ∈ τ1 × . . . × τn is computable and the
inductive rule Φi,j is of the form ∃z. Π : F ⇒ Pix, say. This is
quite clear: First, there are only finitely many membership candi-
dates (b, h′) with h′ ⊆ h and b ⊆ Good(a, h) ∪ SpareΦ(a, h).

Second, since whether s, h′ |=Y Π : F depends only on the val-
ues s assigns to the variables appearing in Π : F , for each candi-
date (b, h′) it suffices to pick an arbitrary stack s with s(x) = b
and s(z) ⊆ Good(a, h) ∪ SpareΦ(a, h). Finally, for any such
s, h′ and computable Y it is straightforward to decide whether
s, h′ |=Y Π : F .

Theorem 3.10. The model checking problem MC is decidable.
That is, for any stack s, heap h, inductive rule set Φ and symbolic
heap A, it is decidable whether s, h |=Φ A.

Proof. By Proposition 3.1, it suffices to show that RMC is decid-
able. Let (Φ,a, h, Pi) be an instance of RMC. By Lemma 3.8, de-
ciding whether (a, h) ∈ JPiKΦ is equivalent to deciding whether
(a, h) ∈ MCΦ

i (a, h). By Lemma 3.9, we have that MCΦ
i (a, h) =

proji(MCΦ(a, h)) is a finite and computable set. Hence it is de-
cidable whether (a, h) ∈ MCΦ

i (a, h).

Remark 3.11. Since satisfiability for our logic is known to be
decidable [10], one might imagine that we can simply reduce
model checking to satisfiability: encode the state (s, h) as a for-
mula γ(s, h), so that s, h |=Φ A iff γ(s, h) ∧ A is satisfiable.
Unfortunately, this does not work for our logic since standard con-
junction ∧ between arbitrary symbolic heaps is not permitted.

Remark 3.12. In practice, we might sometimes want to consider
“intuitionistic” model checking queries, of the following form:
Given an inductive rule set Φ, stack s, heap h and formula A,
decide whether there is an h′ ⊆ h such that s, h′ |=Φ A. As
in Proposition 3.1, we may assume without loss of generality
that A = Pix for some predicate symbol Pi. This problem is
clearly also decidable: letting s(x) = a, we simply check whether
(a, h′) ∈ MCΦ

i (a, h) for some h′. Correctness follows similarly
to Lemma 3.8. Indeed, all of our correctness and complexity results
in this paper adapt straightforwardly to intuitionistic queries.

We conclude this section by deducing some immediate conse-
quences of Theorem 3.10 for the entailment problem in SLSHID .

Definition 3.13. Given an inductive rule set Φ and symbolic heaps
A,B, we say the entailment A `Φ B is valid if s, h |=Φ A implies
s, h |=Φ B for all stacks s and heaps h, and invalid otherwise.

It was shown in [4] that the set of valid sequents is not recur-
sively enumerable (and, therefore, validity is, in general, undecid-
able). However, it does turn out to be co-recursively enumerable.

Corollary 3.14. For any entailment A `Φ B, the set of its coun-
termodels, {(s, h) | s, h |=Φ A and s, h 6|=Φ B}, is recursively
enumerable.

Proof. First, the set of all heaps is recursively enumerable, since
heaps are finite objects. Second, although stacks are not finite
objects, it clearly suffices to enumerate only the values of s on the
finite set of variables FV (A) ∪ FV (B) = x, say. Thus we can
recursively enumerate all “representative candidates” of the form
(s(x), h). Finally, for any such candidate model, we can decide
whether s, h |=Φ A and s, h 6|=Φ B by Theorem 3.10.

Corollary 3.15. For any inductive rule set Φ, the set of invalid
entailments over Φ is recursively enumerable.

Proof. The set of all symbolic heaps over Φ is recursively enumer-
able, so the set of all entailmentsA `Φ B is also enumerable. Next,
note that the set of countermodels of a given entailment is enumer-
able (Corollary 3.14). Thus the invalid entailments are recursively
enumerable simply by enumerating all entailments and, for each of
these, dovetailing the process of searching for a countermodel.

4. Complexity of general model checking
In this section we investigate the computational complexity of the
general model checking problem MC, as described in the previous
section. Specifically, we show that MC is EXPTIME-complete,
and is still NP-hard in the size of the heap when the underlying
inductive rule set is fixed in advance.

In the following, we write ‖o‖ to denote the length of (some
reasonable) encoding of a finite mathematical object o.

Lemma 4.1. MC is EXPTIME-hard.

Proof. By Proposition 3.1, it suffices to show that the restricted
model checking problem, RMC, is EXPTIME-hard. This is by re-
duction from the following special case of the satisfiability problem
for SLSHID , which was shown to be EXPTIME-hard in [10]: given
an inductive rule set Φ containing no occurrences of 7→, and a
predicate symbol P from Φ of arity 0, decide whether there ex-
ists a model s, h such that s, h |=Φ P . Since Φ contains no occur-
rences of 7→ and P no free variables, this means deciding whether
e ∈ JP KΦ (recall e is the empty heap). Thus, given any instance
(Φ, P) of the above problem, the corresponding instance of RMC
is simply given by (Φ, (), e, P).

Lemma 4.2. MC ∈ EXPTIME.

Proof. By Proposition 3.1, it suffices to show RMC ∈ EXPTIME.
By Lemma 3.8, deciding a given instance I = (Φ,a, h, Pi)
of RMC can be done by computing MCΦ(a, h) and checking
whether (a, h) ∈ proji(MCΦ(a, h)). Thus it suffices to show that
MCΦ(a, h) can be computed in time exponential in m =def ‖I‖.

Recall that MCΦ(a, h) is obtained by a fixed point construc-
tion of a monotone operator (Definition 3.3):

MCΦ(a, h) =def µY. (
⋃
j ψ1,j(Y), . . . ,

⋃
j ψn,j(Y))

This least fixed point can be approached iteratively from below,
starting from (∅, . . . , ∅). Writing N = |MCΦ(a, h)|, this pro-
cess will reach a fixed point in at most N iterations. Let T be the
maximum number of polynomial-time steps required to compute
any ψi,j(Y), given the earlier fixed point approximant Y. Since
each iteration involves the computation of ψi,j(Y) for every induc-
tive rule Φi,j ∈ Φ, it is clear that computing MCΦ(a, h) requires
N · |Φ| · T polynomial-time steps.

Now, to obtain an upper bound for N , observe that by con-
struction |MCΦ(a, h)| contains only pairs of the form (b, h′) such
that h′ ⊆ h, the length of b is bounded by the maximum arity of
any predicate, which is bounded by ‖Φ‖, and b ⊆ Good(a, h) ∪
SpareΦ(a, h), which is bounded by ‖a‖+‖h‖+1+‖Φ‖ = ‖I‖+1
(the extra 1 comes from nil). Therefore, we obtain

N ≤ (‖I‖+ 1)‖Φ‖ · 2‖h‖ = O
(

2poly(m)
)

Next, we obtain an upper bound for T . Given Y and the induc-
tive rule Φi,j of the form ∃z.Π : F ⇒ Pix, say, it clearly
suffices, for any “candidate” (b, h′) of the above form, to de-
cide whether or not (b, h′) ∈ ψi,j(Y). This means checking
whether h′ ⊆ h and, for every valuation of the variables x ∪ z
into Good(a, h) ∪ SpareΦ(a, h), checking whether s(x) = b
and s, h′ |=Y Π : F (where s is any stack obtained by extend-
ing the chosen valuation). The heap inclusion check can be done
in polynomial time, and the number of possible valuations is (eas-
ily) bounded by N . To check s, h′ |=Y Π : F we might need
to consider every possible division of h′ into a number of “sub-
heaps” bounded by the maximum number of ∗s in any rule, in turn
bounded by ‖Φ‖ (as per the proofs of Lemmas 3.4 and 3.7). There
are at most 2‖h‖·‖Φ‖ such combinations. Finally, as Y might con-
tain up to N elements, checking whether a chosen division of h′

satisfies F with respect to Y might take up to N steps. All other
checks are polynomial, so we obtain

T ≤ N ·N ·N · 2‖h‖·‖Φ‖ = O
(

2poly(m)
)

Therefore, altogether, the computation of MCΦ(a, h) requires at
most N · |Φ| · T = O(2poly(m)) polynomial-time steps.

Theorem 4.3. MC is EXPTIME-complete.

Proof. Immediate by Lemmas 4.1 and 4.2.

Typically, in program verification applications, the definitions
of the inductive predicates are fixed in advance. Thus, it is also of
interest to know how the complexity of MC varies in the size of the
heap h over a fixed inductive rule set Φ.

Proposition 4.4. MC is NP-hard in ‖h‖.

Proof. By Proposition 3.1, it suffices to show RMC is NP-hard in
‖h‖. We exhibit a polynomial-time reduction from the following
triangle partition problem, known to be NP-complete [21]: given a
graph G = (V,E) with |V | = 3q for some q > 0, decide whether
there is a partition of G into triangles.

First, we fix the following inductive rule set ΦPT:

x 7→ nil⇒ V (x)

e 7→ (x, y) ∗ e′ 7→ (y, x)⇒ E(x, y)

V (x) ∗ V (y) ∗ V (z) ∗ E(x, y) ∗ E(y, z) ∗ E(z, x)⇒ T

E(x, y) ∗ J ⇒ J emp⇒ J T ∗ P ⇒ P J ⇒ P

Now we give the reduction. For any instance G = (V,E) of the
above triangle partition problem, first write V = {v1, . . . , vn}
and E = {e1, . . . , em}. We let a1, . . . , an and b1, . . . , b2m be
distinct addresses in Loc, and define a heap hG, with dom(hG) =
{a1, . . . , am, b1, . . . , b2m}, as follows:

hG(ai) = nil for 1 ≤ i ≤ n,
hG(b2k) = (ai, aj) for 1 ≤ k ≤ 2m and ek = {vi, vj},

hG(b2k+1) = (aj , ai) for 1 ≤ k ≤ 2m and ek = {vi, vj}.
The required instance of RMC is then given by (ΦPT, (), hG, P)
(note that ΦPT and P are fixed for anyG). Clearly it is polynomial-
time computable. For correctness, we need to show that G has a
partition into triangles if and only if hG ∈ JP KΦPT . This follows
from the following easy observations, for any subheap h of hG and
values c, d (the formal details are easily reconstructed):

• (c, h) ∈ JV KΦPT iff (c, h) exactly represents a vertex in G;
• ((c, d), h) ∈ JEKΦPT iff ((c, d), h) exactly represents an (undi-

rected) edge in G;
• h ∈ JT KΦPT iff h exactly represents a triangle in G;
• h ∈ JJKΦPT iff h exactly represents some collection of edges

in G;
• h ∈ JP KΦPT iff h exactly represents a collection of non-

overlapping triangles in G covering all vertices in G, plus a
collection of “leftover” edges from G, i.e. iff G has a partition
into triangles.

5. Restricted fragments
According to Theorem 4.3, the general model checking problem is
EXPTIME-complete. In practice, however, one frequently encoun-
ters definition schemas that are more restrictive than our general
schema. Here and in the next section, we investigate the computa-
tional complexity of model checking when various natural syntac-
tic restrictions are imposed on predicate definitions. Informally, the
restrictions we consider are the following:

MEM: “Memory-consuming” rules, which only permit recursion
in the presence of explicit non-empty memory.

CV: “Constructively valued” rules, in which the values of all vari-
ables occurring in a rule body are uniquely determined by the
values of variables occurring in its head, together with the heap.

DET: “Deterministic” rules, in which the pure (dis)equality con-
ditions in the rules for a predicate P are mutually exclusive.

Arity: The maximum arity of any predicate is fixed in advance.

Importantly, each of the above restrictions can be described
in a clear syntactical way. The restrictions DET and CV have
appeared previously in the literature, in various guises (e.g. [16, 3]).
Together, as we will show in Section 6.5, they imply precision, the
notion that a formula unambiguously circumscribes the part of the
heap on which it is true [27]. The restriction MEM, as far as we
know, is novel, but is seemingly crucial in reducing the complexity
of model checking from EXPTIME down to NP or PTIME.

In Section 6 we show that the general EXPTIME can be reduced
to PSPACE to NP or even PTIME for the fragments defined by
different combinations of the above restrictions. The following
table summarises our results:

CV DET CV +DET

non-MEM EXPTIME EXPTIME EXPTIME ≥ PSPACE

MEM NP NP NP PTIME

Remark 5.1. For each of the combinations MEM, MEM+CV,
MEM+DET, their NP-completeness holds even when the arity of
the predicates involved is fixed in advance.

In contrast, notwithstanding EXPTIME-hardness, for the frag-
ment defined only by non-memory-consuming rules, model check-
ing can be resolved in PTIME, but the degree of the polynomial is
proportional to the maximal arity of the predicates involved.

We now formally introduce the restrictions MEM, CV and DET.

Definition 5.2 (MEM). An inductive rule set is said to be memory-
consuming (a.k.a. “in MEM”) if every rule in it is of the form

Π : emp ⇒ Px,
or ∃z. Π : F ∗ x 7→ t ⇒ Px .

In practice, most predicate definitions in the literature fall into
MEM: one or more pointers are “consumed” when recursing.

Example 5.3. The following definitions of binary predicates ls,
defining possibly-cyclic list segments by head recursion, and rls,
defining possibly-cyclic list segments by tail recursion, are both in
MEM. Both definitions “consume” a pointer when recursing.

x = y : emp ⇒ ls(x, y)

∃z. x 7→ z ∗ ls(z, y) ⇒ ls(x, y)
(1)

and
x = y : emp ⇒ rls(x, y)

∃z. x 6= y : rls(x, z) ∗ z 7→ y ⇒ rls(x, y)
(2)

Definition 5.4 (CV). A variable z occurring in an inductive rule
∃y.Π : F ⇒ Pix is said to be constructively valued in that rule
if: (a) z ∈ x, or (b) there is a variable w also occurring in the rule
such that w is constructively valued, and either

• Π |= z = w, or,
• w 7→ u is a subformula of F and z ∈ u.

An inductive rule is constructively valued if all its variables are,
and an inductive rule set is constructively valued (a.k.a. “in CV”) if
all its rules are.

Example 5.5. The existentially quantified variable z is construc-
tively valued in the definition of ls in Example 5.3 (1), but not in
the definition of rls (2).

Definition 5.6 (DET). A predicate Pi is said to be deterministic
(in an inductive rule set Φ) if for any two distinct rules of the form

∃z.Π : F ⇒ Pix and ∃z′.Π′ : F ′ ⇒ Pix ,

there exists no stack s such that s, e |= ∃z. (Π : emp) and
s, e |= ∃z′. (Π′ : emp). An inductive rule set Φ is deterministic
(a.k.a. “in DET”) if all predicates defined in Φ are deterministic.

We note that whether Φ is deterministic is decidable in polyno-
mial time via a simple procedure that eliminates pure sub-formulas
employing quantified variables [10].

Example 5.7. In Example 5.3, the definition of rls (2) is determin-
istic, but the definition of ls (1) is not.

6. Complexity of naturally restricted fragments
In this section, we investigate the computational complexity of
model checking for different combinations of the restrictions
MEM, CV and DET introduced in the previous section.

The main technical tool underpinning the following complexity
results is the notion of an unfolded inductive tree. The idea is
simple: in order to show that (a, h) ∈ JP KΦ, we repeatedly unfold
the rules from Φ backwards (from head to body), instantiating
variables with values and matching 7→ assertions with pointers in h
as we go according to the rule constraints.

Definition 6.1. For the sake of brevity, given an elementary for-
mula Q(x1, .., xn), we write Q̃ to denote a statement Q(a1, .., an)
obtained by instantiating the variables in Q with values and heap
pointers in the obvious way. For example, x̃ 7→ ỹ represents the
one-cell heap that contains ỹ at location x̃. Then we specify the
unfolded inductive tree by induction (see Figure 1):

(a) Let Q̃m be generated by an instantiated rule ρm of the form

Π̃m : hm ⇒ Q̃m

Then we make a tree, TQ̃m , consisting of one edge labelled

by ρm; the root is labelled by Q̃m, the leaf by hm.

•̃
Qm

?

ρm

•
hm

TQ̃m


(b) Suppose that an instantiated rule ρ of the form

Π̃ : Q̃0 ∗ Q̃1 ∗ · · · ∗ Q̃m ⇒ R̃

generates R̃, and TQ̃0
, TQ̃1

,. . . ,TQ̃m are inductive trees having

been already constructed for Q̃0, Q̃1,. . . ,Q̃m, resp.
Then we make a tree, TR̃, by taking a new root with m+1

outgoing edges all labelled by ρ, labelling the root by R̃, and
connecting our root with the roots of TQ̃0

, TQ̃1
,. . . ,TQ̃m , resp.

•̃
R

�
��	

ρ @
@@R

ρ
����������9

ρ
XXXXXXXXXXz

ρ

•Q̃0

�
��

A
AA

T
Q̃0

•Q̃1

�
��

A
AA

T
Q̃1

•Q̃2

�
��

A
AA

T
Q̃2

•Q̃m
�
��

A
AA

T
Q̃m

• • •

Figure 1. An unfolded inductive tree for R̃.

Proposition 6.2. The restricted model checking problem RMC can
be solved by an exhaustive search for an unfolded inductive tree for
the query (a, h) ∈ JP KΦ, where the values for instantiated existen-
tial variables are drawn from the set Good(a, h) ∪ SpareΦ(a, h),
as per Definition 3.2.

Proof. (Sketch) The soundness of the approach is obvious. Termi-
nation follows from the fact that the range of permissible values is
finite, and completeness from the results in Section 3 which show
that it suffices to confine our attention to values drawn from the
polynomial-size set Good(a, h) ∪ SpareΦ(a, h).

However, the above procedure might still generate an exponen-
tial number of leaves labelled by the empty heap e:

Example 6.3. Let Φn be the set of inductive rules (for 1 ≤ j ≤ n):

P1 ∗ P2 ⇒ P0,
P2j+1 ∗ P2j+2 ⇒ P2j−1, P2j+1 ∗ P2j+2 ⇒ P2j ,

emp⇒ P2n+1, emp⇒ P2n+2.

Then any unfolded inductive tree for the query s, e |=Φn P0 has
2n+1 leaves labelled by e.

Nevertheless, in the case of MEM, we are able to reduce
EXPTIME to NP by proving that the number of leaves labelled
by e can be bounded by |dom(h)|.

6.1 An upper NP-bound for MEM

Here, we show that, when we restrict to memory-consuming rules
(MEM), model checking becomes an NP problem.

Theorem 6.4. We can design an NP procedure to determine, given
a set of memory-consuming inductive rules Φ, tuple of values a,
heap h and predicate symbol P , whether (a, h) ∈ JP KΦ.

Proof. (Sketch) Taking into account the bounds provided by Sec-
tion 3, we look for an unfolded inductive tree such that within each
rule instance ρ from Φ used in the tree all values are taken only
from a set of polynomial size, which is fixed in advance.

To provide an NP procedure, it suffices to prove Lemma 6.5
and Lemma 6.6 below. The crucial issue is that, in contrast to
Example 6.3, the number of leaves labelled by e can be bounded
by the size of dom(h) when all rules are memory-consuming.

Lemma 6.5. According to Section 3, (a, h) ∈ JP KΦ iff there is an
unfolded tree for the appropriately instantiated P̃ such that h is the
∗-composition of all heaps labelling the leaves of the tree.

Lemma 6.6. The number of nodes in the above inductive trees
for P̃ is bounded by 2(m+ 1) · |dom(h)|, wherem is the maximal
number of predicate symbols in the body of the rules.

Proof. It is clear that the number of leaves labelled by non-empty
heaplets is bounded by |dom(h)|. Let v be a leaf labelled by e.
Then either its parent w is the root of the tree, or the edge of
the form (v0, w) incoming to w is labelled by some ρ, providing
thereby a leaf v′ with its incoming edge (v0, v

′) labelled by the
same ρ, such that v′ is labelled by a non-empty x̃ 7→ t̃ (Figure 2
shows such a ρ in MEM). Since no more than m leaves labelled
by e can be associated with one and the same v′ specified in such a
way, the total number of leaves is bounded by (m+1) · |dom(h)|.

It remains to apply an induction to conclude the proof.

6.2 NP-hardness for MEM+CV

Here we show NP-hardness for the restricted fragment MEM+ CV.
The proof is by reduction from the 3-partition problem [21].

•̃
R

�
��	

ρ @
@@R

ρ
����������9

ρ
XXXXXXXXXXz

ρ

•
x̃ 7→ t̃

•Q̃1

�
��

A
AA

T
Q̃1

•Q̃2

�
��

A
AA

T
Q̃2

•Q̃m

?

ρm
• • •

•
e

Figure 2. ρ = Π̃: x̃ 7→ t̃ ∗ Q̃1 ∗ Q̃2 ∗ · · · ∗ Q̃m ⇒ R̃

Definition 6.7. By means of the length of circular lists, we resolve
a key issue: representing integers as logic formulas.

By a ring-formula of length `, with leading variable x, we mean
a formula of the form (x′1, x′2,. . . ,x′` are fresh):

x 7→ x′1 ∗ x′1 7→ x′2 ∗ x′2 7→ x′3 ∗ · · ·x′`−1 7→ x′` ∗ x′` 7→ x′1

Given a 3-partition problem instance, i.e., a bound B and a
multiset S = { s1, s2, . . . , s3m }, we introduce a linear-ordered list
X of distinct variables: X = x1, x2, . . . , xi, . . . , x3m.

Then we encode each of the numbers si by a ring-formula,
Si(xi), of length si, with the leading variable xi.

The whole S is encoded as a concrete heap hS , which is a
collection of 3m disjoint “circular” lists of the form Si(ai).
With an appropriate stack sS , sS , hS |= Π(X) : ϕS(X), where

ϕS(X) = S1(x1) ∗ S2(x2) ∗ · · · ∗ S3m(x3m)

and Π(X) says (x 6= y) for all distinct variable names x and y
mentioned, explicitly or implicitly, in ϕS(X).

Define a set of inductive rules ΦS as follows. To keep the
predicate arities fixed and, at the same time, maintain i-th position
inside the tuple X, we define predicates Qi(x) by the rules

x 6= nil : emp ⇒ Qi(x) (3)

For i<j< k, we use “goal” predicatesRijk(x, y, z) with the rules

x 6= y, y 6= z, z 6= x : emp ⇒ Rijk(x, y, z) (4)

In the case of i<j< k and si+sj+sk = B, we add the rule:

Si(x) ∗ Sj(y) ∗ Sk(z) ∗Rijk(x, y, z) ⇒ Rijk(x, y, z) (5)

Lemma 6.8. Let hS and sS be defined above. Then

sS , hS |=ΦS Π(X) :∗3m

i=1
Qi(xi) ∗∗i<j<k

Rijk(xi, xj , xk)

iff there is a complete 3-partition on S - i.e., S can be partitioned
in groups of three, say si, sj , and sk, so that si+sj+sk = B.

Proof. Each Rijk(ai, aj , ak) at the top is generated either by (4),
with emp, or by (5), with Si(ai), Sj(aj), Sk(ak) being ‘con-
sumed’. The latter provides the corresponding group of si, sj , sk.

Corollary 6.9. (a) In the case of the memory-consuming rules, the
model checking problem is NP-complete (even if the arity of the
predicates involved is at most 3).

(a) For the memory-consuming rules with constructively valued
variables, model checking is still NP-complete (even if the arity
of the predicates involved is at most 3).

Proof. This follows from Sections 6.1 and 6.2.

6.3 NP-hardness for MEM+DET

The challenge - to simulate intrinsically non-deterministic 3-SAT
by deterministic memory-consuming rules, with, moreover, keep-
ing the arity of predicates fixed - is solved using generalised ver-
sions of the linked list segments inductively defined in Exam-
ple 5.3.

Namely, within a list fragment leading from x to y, by means of
RLS(x, u, y), defined below, we will keep the information about
the exact predecessor u of the final y in the list.

Here we abbreviate X = x0, x1, .., xn, Q = q0, q1, .., q`, Ξ = ξ0, ξ1, .., ξm, Πi = {xj 6=q | j 6= i, q ∈ Q } ∪ { z 6=z′ | z, z′ ∈ Q ∪Ξ }
The final “empty configuration” is generated by the “backward” rule (recall that ξ̂0 is the blank symbol, ξ̂1 and ξ̂2 are end markers)

Π0, x0 =q0, x1 =ξ1, x2 =x3 = · · · =xn−1 =ξ0, xn=ξ2 : emp ⇒ T (X,Q,Ξ)

An instruction “if in state q̂k looking at ξ̂s, replace it by ξ̂s′ , move to the right, and go into q̂k′”, is simulated by n rules (here 0 ≤ i < n):

Πi, xi=qk, xi+1 =ξs, yi=ξs′ , yi+1 =qk′ : T (x0, x1, .., xi−1, yi, yi+1, xi+2, .., xn,Q,Ξ) ⇒ T (X,Q,Ξ)

An instruction “if in state q̂k looking at ξ̂s, replace it by ξ̂s′ , move to the left, and go into q̂k′”, is simulated in a similar “backward” way.
An alternating instruction “if in state q̂k , run two copies of the configuration in parallel but with states q̂k′ and q̂k′′ , resp.”, is simulated by (0≤ i<n):

Πi, xi=qk, yi=qk′ , zi=qk′′ : T (x0, .., xi−1, yi, xi+1, .., xn,Q,Ξ) ∗ T (x0, .., xi−1, zi, xi+1, .., xn,Q,Ξ)⇒ T (X,Q,Ξ)

Figure 3. Simulating a Turing machine M running in space n, in a backward manner - “from outputs to inputs”

A linked list RLS(x, u, y) is formed by attaching a new tail:
x=y : emp⇒ RLS(x, x, y)

∃u. x 6=z : RLS(x, u, y) ∗ y 7→ (y, z)⇒ RLS(x, y, z)

Notice that the rules forRLS(x, u, y) are both memory-consuming
and deterministic. The fact that u is not constructively valued is a
key ingredient in our reduction, which allows us to cope with the
non-deterministic problem 3-SAT.

Definition 6.10. By means of the following heaplets h(0)
ab and h(1)

ab
(here a 6=b) we represent the truth values, “false” and “true”, resp.:

h
(δ)
ab =

{
a→ a b i.e. a 7→ (a, b), for δ = 0,

a→ a b−→ b b i.e a 7→ (a, b) ∗ b 7→ (b, b), for δ = 1.

Lemma 6.11. Assuming a 6=b, let h(δ)
ab |=RLS RLS(a, c, b) for

some c. Then:
(
(δ=0) ∧ (a=c 6=b)

)
∨
(
(δ=1) ∧ (a 6=c=b)

)
.

Proof. h(0)
ab |=RLS RLS(a, a, b), and h

(1)
ab |=RLS RLS(a, b, b).

Letϕ ≡ (Ĉ1 ∧ · · · ∧ Ĉm) be a formula ofm clauses over linear
ordered n propositional variables p1,p2,..,pn, and each Ĉj is of the
form (here, for any q, we denote q1 = q and q0 = ¬q):

Ĉj(q1, q2, q3) ≡ (q
εj,1
1 ∨ qεj,22 ∨ qεj,33)

Each Ĉj is encoded by a predicate Cj(α1, γ1, α2, γ2, α3, γ3) with
the following rule ξj (for the sake of readability, we squeeze three
deterministic rules into one but with disjunction):
((α1 6=γ1)εj,1 ∨ (α2 6=γ2)εj,2 ∨ (α3 6=γ3)εj,3) ∧

∧
k 6=`(αk 6=α`) :

emp⇒ Cj(α1, γ1, α2, γ2, α3, γ3)

Example 6.12. Here we represent pi as “xi 6=ui”. So satisfiability
of Ĉ(p1, p2, p3) of the form (p1 ∨ ¬p2 ∨ p3) is reformulated as

(x1 6=u1) ∨ (x2 =u2) ∨ (x3 6=u3) : C(x1, u1, x2, u2, x3, u3)

We take the following linear-ordered variables: W = w0,
X = x1, x2, .., x2n, U = u1, u2, .., u2n, Y = y1, y2, .., y2n.

The challenge - to maintain the arity fixed and, at the same time,
to “keep i-th position” inside the long X, U, Y - is solved by taking
predicates Qi(x, u, y) with the rules κi:
x 6=y, u=x : emp⇒ Qi(x, u, y), x 6=y, u=y : emp⇒ Qi(x, u, y).

The key points of our reduction are encapsulated in the rule ωok:

∃X,U,Y,W
(

Π(X,Y,W) : w0 7→ w0 ∗

∗2n

i=1
Qi(xi, ui, yi) ∗∗2n

i=1
RLS(xi, ui, yi) ∗

∗m

j=1
Cj(xij,1 , uij,1 , xij,2 , uij,2 , xij,3 , uij,3)

)
⇒ ok

where Π(X,Y,W) says (x 6= y) for all distinct variable names x
and y mentioned either in X or in Y or in W.

Definition 6.13. Define a heap HRLS as a collection of n disjoint
heaplets of the form h

(0)
ab , and n disjoint heaplets of the form h

(1)
ab

(we assume a 6=b), and a heap Hϕ as a loop of the form d0 7→ d0.

Lemma 6.14. With the empty input tuple of values,

((), HRLS ◦Hϕ) ∈ JokKωok ∪ RLS ∪
⋃m
j=1 ξj ∪

⋃
i κ

2n
i=1 (6)

if and only if (Ĉ1 ∧ · · · ∧ Ĉm) is satisfiable.

Proof. (Sketch) The (⇒) direction is the hardest. Suppose that (6)
is valid. Then ok is generated by ωok with an unfolded induc-
tive tree for ok. We can show that, for some values a1, a2, .., a2n,
c1, c2, .., c2n, b1, b2, .., b2n, the heap HRLS can be partitioned into
2n disjoint heaplets of the form h

(δi)
aibi

, so that we get the follow-
ing: h(δi)

aibi
|=RLS RLS(ai, ci, bi). Now, using the rules ξj and κi

and Lemma 6.11, we can prove the desired satisfiability (see also
Example 6.12): ϕ(δ1, δ2, . . . , δn−1, δn) = 1.

The (⇐) direction follows essentially by reading the above line
of reasoning “bottom-up”.

Corollary 6.15. For deterministic and memory-consuming rules,
model checking is still NP-complete (even if the arity of the predi-
cates involved is at most 6).

6.4 PSPACE- and EXPTIME-hardness for non-MEM rules.
Unexpectedly, with non-memory-consuming rules, such as

∃z. Π : Q1u1 ∗ Q2u2 ∗ · · · ∗ Qmum ⇒ Px.

model checking becomes more complex. Namely:

Theorem 6.16. (a) For inductive rule sets in CV, model checking
is EXPTIME-complete.

(b) For inductive rule sets in CV + DET, model checking is
PSPACE-hard.

(c) For inductive rule sets in DET, model checking is EXPTIME-
complete.

Proof. (Sketch) We prove all three lower bounds by simulating
Turing machines in a backward manner - “from outputs to inputs”.

Let M be a Turing machine that accepts in space n, with states
q̂0, q̂1,.., q̂`, and tape symbols ξ̂0, ξ̂1,.., ξ̂m. Here q̂1 is the initial
state, q̂0 is an accept state, ξ̂0 is the blank symbol, and M acts in
the space n between two unerased markers, say ξ̂1 and ξ̂2.
Let M always jump, and no M ’s instruction starts with q̂0.
By (η1, η2, .., ηi−1, qk, ηi, .., ηn) we formalize that “in state q̂k,
M scans i-th square, when η̂1, η̂2, .., η̂i−1, η̂i, .., η̂n is printed on
its tape”. We encode M by means of the rules ΦM given in Fig-
ure 3, where the “tape” predicate T depicts M ’s configurations:

T (x0, x1, .., xn︸ ︷︷ ︸
configuration

, q0, q1, .., q`︸ ︷︷ ︸
states

, ξ0, ξ1, .., ξm︸ ︷︷ ︸
tape symbols

)

Lemma 6.17. Let M be a deterministic TM or an alternating
TM [15]. Then s, e |=ΦM T (q1, ξ1, ξ0, ξ0, ξ0.., ξ0, ξ2,Q,Ξ) if and
only if M can go from the initial “empty configuration” to the final
“empty configuration”.

All variables in ΦM occur in X ∪Q ∪Ξ, hence, they are con-
structively valued, which provides item (a) in Theorem 6.16.

Whenever M is deterministic, ΦM is deterministic, which pro-
vides item (b) in Theorem 6.16.

To answer the challenging (c), M ’s non-deterministic instruc-
tion “if in state q̂k looking at ξ̂s, go either into q̂k1 or into q̂k2”
is simulated by the deterministic rules (here 0≤ i<n, `=1, 2):
∃y. Πi, xi=qk, xi+1 =ξs, y 6∈ Ξ, yi+1 =ξd(s,k) :

T (x0, .., xi−1, y, yi+1, xi+2, .., xn,Q,Ξ) ⇒ T (X,Q,Ξ),

Πi, xi=qd′(s,k,k`), xi+1 =ξd(s.k), yi=qk` , yi+1 =ξs :
T (x0, .., xi−1, yi, yi+1, xi+2, .., xn,Q,Ξ) ⇒ T (X,Q,Ξ)

where, however, y is not constructively valued.
The idea behind the encoding is as follows. First, M goes non-

deterministically into any state y, with encrypting the situation by
a special ‘double’ ξ̂d(s.k). To continue a computation, the lucky
guess should be one of our specially introduced states q̂d′(s,k,k1)

and q̂d′(s,k,k2). As a result, M finishes either in q̂k1 or in q̂k2 .

Remark 6.18. The above EXPTIME-hardness necessarily em-
ploys predicates of unbounded arity (cf. Remark 5.1).

6.5 Polynomial time for MEM+CV+DET
We next show that the model checking problem is in PTIME when-
ever Φ is in MEM+CV+DET. Essentially, predicates in CV+DET
make a top-down procedure fully deterministic; and, the size of any
possible proof is linear in the size of the heap, if Φ is in MEM.

Where h is a heap and v is a value such that v ∈ dom(h), we
write h .− v to denote the heap h′ that has domain dom(h) \ v and
agrees with h on its domain. This operation is lifted in the obvious
way to sets of values, i.e., h .− V where V ⊆ dom(h).

Definition 6.19. The construct s, h
Φ A h′ is called a
reduction, where s is a stack, h, h′ are heaps and A is a symbolic
heap with inductive predicate occurrences defined in Φ. We say that
the above reduction is valid if h′ ⊆ h and s, h .− dom(h′) |=Φ A.

Figure 4 presents a proof system for reductions. A proof is, as
usual, a tree whose leaves are labelled by axioms and internal nodes
are labelled by inference rules accordingly. We say that a reduction
R is provable if there exists a proof whose root is labelled by R.

Lemma 6.20. (Soundness) For any set of rules Φ, formulaA, stack
s and heap h, if s, h
Φ A h′ is provable then it is valid.

Proof. Follows by induction over the structure of the proof.

Let φ̄(Y) =def (
⋃
j ϕ1,j(Y), . . . ,

⋃
j ϕn,j(Y)) (cf. Def. 3.3).

Set φ̄0 = (∅, . . . , ∅) and φ̄α+1 = φ̄(φ̄α) for any ordinal α.
Clearly, (a, h) ∈ JPiKΦ iff there is an ordinal α such that
(a, h) ∈ proji(φ̄

α). Next, we write s, h |=α
Φ Π : F if it is the case

that s, h |=Φ Π : F and for every Pit in F , (s(t), h′) ∈ proji(φ̄
α)

for the appropriate subheap h′ ⊆ h. We extend this to quantified
formulas using the same ordinal, and to valid reductions in the obvi-
ous manner. Finally, we say that s, h
Φ A h′ is α-supported
if α is the least ordinal such that s, h .− dom(h′) |=α

Φ A.
Let R be the set of valid, constructively valued reductions. We

define an ordering ≺ over R. Let Ri ≡ si, hi
Φ Ai h′i be
an αi-supported reduction inR, for i ∈ {1, 2}. Then R1 ≺ R2 iff
either: (a) α1 < α2; or (b) α1 = α2 and
1. A1 ≡ Π1 : F and A2 ≡ Π2 : F and Π1 ⊂ Π2, or,
2. A1 ≡ F and A2 ≡ σ ∗ F for some atomic σ, or,
3. A1 ≡ ∃x. B and A2 ≡ ∃y. B and x ⊂ y.

The ordering ≺ is easily seen to be well-founded.

Lemma 6.21. (Completeness) For any set of rules Φ and formula
A that are in CV, and any stack s and heap h, if s, h
Φ A h′

is valid then it is provable.

Proof. We proceed by well-founded induction over (R,≺), i.e., we
show that if all R′ ∈ R such that R′ ≺ R are provable, then so is
R ∈ R.

Let R ∈ R be the reduction s, h
Φ ∃v. A h′. As R
is constructively valued, there must be some variable x ∈ v such
that (i) there is a free variable y such that x = y is a subformula
of A, or, (ii) x appears in the right-hand side of a subformula
y 7→ t of A. Let z =def v \ {x}. As R is valid we have h′ ⊆ h
and s, h .− dom(h′) |=α

Φ ∃v. A, thus there is a stack s′ such that
s′(FV (∃z. A)) = s(FV (∃z. A)) and s′, h .−dom(h′) |=α

Φ ∃z. A.
If clause (i) is true then clearly s′(x) = s′(y) by the seman-

tics of =, and s′(y) = s(y) as y is free. Thus without loss of
generality we can set s′ = s[x 7→ s(y)]. Therefore the reduction
R′ ≡ s[x 7→ s(y)], h
Φ ∃z. A h′ is valid and constructively
valued. It is easy to see that R′ must be α-supported (otherwise we
can derive a contradiction with the assumption that α is the least
such ordinal), thus R′ ≺ R by clause (2c) of the definition of ≺.
By the inductive hypothesis, R′ is provable and the rule (∃=) can
be applied, thus proving R. Clause (ii) is similar and uses (∃7→).

Next, let R ∈ R be of the form s, h
Φ x = y,Π : F h′,
thus, h′ ⊆ h and s, h .− dom(h′) |=α

Φ x = y,Π : F . It is
easy to see that the reduction R′ ≡ s, h
Φ Π : F h′

is valid, constructively valued and α-supported. By clause (2a) of
the definition of ≺ it follows that R′ ≺ R. Thus by the inductive
hypothesis, R′ is provable and the rule (=) applies, therefore R is
also provable. Disequalities are treated similarly via the rule (6=).

Now, let R ∈ R be of the form s, h
Φ σ ∗ F h′. Thus,
h′ ⊆ h and s, h .− dom(h′) |=α

Φ σ ∗ F . Therefore there are two
disjoint heaps hσ, hF such that h .− dom(h′) = hσ ◦ hF , and
s, hσ |=ασ

Φ σ and s, hF |=αF
Φ F , where α = max{ασ, αF }.

Thus h = hσ ◦ hF ◦ h′, and s, h .− dom(hF ◦ h′) |=ασ
Φ σ

and s, hF ◦ h′ .− dom(h′) |=αF
Φ F . Therefore the reductions

Rσ ≡ s, h
Φ σ hF ◦ h′ and RF ≡ s, hF ◦ h′
Φ F h′

are both valid and constructively valued. In addition,Rσ, RF ≺ R:
either ασ < α (resp., αF < α) where clause (1) of the definition
of ≺ applies, or ασ = α (αF = α) and clause (2b) applies. By the
inductive hypothesis, Rσ and RF are provable, and so is R via (∗).

Finally, suppose R ∈ R has the form s, h
Φ Pit h′,
meaning that h′ ⊆ h and s, h .− dom(h′) |=α

Φ Pit. By Def. 3.3,
this means that (s(t), h .− dom(h′)) ∈ JPiKΦ which in turn means
that there is a rule ∃v.Π : F ⇒ Pix in Φ and some stack
s′ such that s′, h .− dom(h′) |=α′

Φ Π : F , and s′(x) = s(t)

(equality of tuples), and α′ < α. Trivially, s′, h .− dom(h′) |=α′
Φ

∃v.Π : F . Thus the query R′ ≡ s′, h
Φ ∃v.Π : F h′

is valid, constructively valued and α′-supported. By the inductive
hypothesis, R′ is provable and therefore so is R by applying (Pi).

The cases for 7→, emp easily treated with rules (7→), (emp).

We recall the notion of precision: a formula A is precise iff for
every stack s and heap h, there is at most one h′ ⊆ h such that
s, h′ |=Φ A. Precision entails that if s, h
Φ A h′ is valid
then there is no other h′′ 6= h′ such that s, h
Φ A h′′ is
valid. Thus precision allows the deterministic application of (∗).
Lemma 6.22. Let Φ be a set of rules in CV+DET. Then any
formula in CV using predicates defined in Φ is precise.

Proof. Observe the following points: if Σ and Σ′ are precise then
so is Σ ∗ Σ′; if Σ is precise then so is Π : Σ, for any Π; if Π : Σ is
precise then so is A ≡ ∃v. (Π : Σ), provided all variables in v are
constructively valued in A. Finally, note that the problem reduces
to guaranteeing that every formula of the form Pit is precise.

Thus we need to show that for every tuple of values a and
heap h there is at most one h′ ⊆ h such that (a, h′) ∈ JPiKΦ.
This follows by fixpoint induction. Suppose there are values a and
heaps h1, h2 ⊆ h such that h1 6= h2 and (a, h1), (a, h1) ∈

s(x) = s(y) s, h
Φ Π : F h′

(=)
s, h
Φ x = y,Π : F h′

s(x) 6= s(y) s, h
Φ Π : F h′

(6=)
s, h
Φ x 6= y,Π : F h′

s(x) ∈ dom(h) h(s(x)) = s(t)
(7→)

s, h
Φ x 7→ t h .− s(x)

s, h
Φ σ h′ s, h′
Φ F h′′

(∗)
s, h
Φ σ ∗ F h′′

x ∈ v y /∈ v s[x 7→ s(y)], h
Φ ∃ (v \ {x}) . (x = y,Π : F) h′

(∃=)
s, h
Φ ∃v. (x = y,Π : F) h′

x ∈ v y /∈ v s(y) ∈ dom(h) ∃i. ti ≡ x s[x 7→ h(s(y))i], h
Φ ∃ (v \ {x}) . (Π : F ∗ y 7→ t) h′

(∃ 7→)
s, h
Φ ∃v. (Π : F ∗ y 7→ t) h′

(emp)
s, h
Φ emp h

(∃v. (Π : F)⇒ Pix) ∈ Φ s, e |= ∃v.(Π : emp) s[x 7→ s(t)], h
Φ ∃v. (Π : F) h′

(Pi)
s, h
Φ Pit h′

Figure 4. Proof rules for reductions. The formula σ in the rule (∗) is atomic.

⋃
j ϕi,j(Y). As the rules are precise there must be k 6= l such

that (a, h1) ∈ ϕi,k(Y) and (a, h2) ∈ ϕi,l(Y). This, however,
directly contradicts determinism.

Finally, we establish that proof search is a deterministic, ter-
minating decision procedure when all predicates are in CV+DET;
and, its runtime is naturally bounded by a polynomial in the input
size, if in addition, all rules are in MEM.

Theorem 6.23. Let A be a formula in CV and Φ a set of rules
in MEM+CV+DET. Then, for any stack s and heap h, checking
whether s, h |=Φ A can be performed in polynomial time.

Proof. First, note that s, h |=Φ A iff s, h
Φ A e is provable.
Observe that the structure of a given reduction dictates that there

is at most one applicable rule from Fig. 4. Rules about quantifiers,
(∃=) and (∃ 7→), form an exception but the order of their applica-
tions, as well as the choice of quantified variable to eliminate next,
is immaterial to the provability of a CV reduction, thus a fixed order
can be used.

As Φ is in DET, (Pi) can be used with at most one rule and this
rule can be found in polytime by evaluating the side condition of
(Pi) for all rules. This means no back-tracking is required over Φ.

The rule (∗) resembles a cut in that the intermediate heap h′

does not appear in the conclusion. This can be seen as a source of
non-determinism as many choices for h′ may have to be checked
(due to the fact that h′ ⊆ h). However, as all formulas involved
are precise (Lemma 6.22) if there is such a heap h′ it is unique.
In addition, observe that only axioms impose constraints on the
RHS heap. Thus, we avoid back-tracking by using meta-variables
for the heap h′ and order the proof search to first prove the left-
hand subgoal of (∗). If the left subgoal of (∗) is proven, then h′ is
instantiated by axioms and the search continues in the right subgoal
of (∗). Otherwise, the goal reduction is clearly invalid.

These observations together guarantee that the proof search is
fully deterministic.

Now, for MEM rules each application of (Pi) leads to at least
one subgoal that requires (7→), and there cannot be more instances
of (7→) in a proof than the size of the heap h in the root reduction.
Thus the size of the proof isO(‖h‖), and as the search is determin-
istic, runtime is linear as well.

Remark 6.24. Deciding intuitionistic queries (cf. Remark 3.12)
in MEM+CV+DET can be done in PTIME. This follows easily
by noting that the proof search described in Theorem 6.23 actually
computes a heap for the RHS of any reduction. Given the precision
of the formulas involved (Lemma 6.22), this means that we can
answer correctly intuitionistic queries using the same algorithm.

7. Implementation and evaluation
We implemented the general model checking algorithm described
in Section 3 as well as the CV+DET algorithm described in Sec-
tion 6.5, in about 1400 lines of OCaml code. Our implementation is
part of the CYCLIST theorem proving framework [13] which pro-
vides support for inductive definitions, and in particular for our
logic SLSHID . Both model checking algorithms are parameterised over
the datatypes for heap locations and ground values (e.g. integers,
booleans, strings, etc.) and thus may be instantiated to handle mod-
els where heap locations have arbitrary representations (e.g. hex
strings) and heap cells contain arbitrary data. We employed a num-
ber of techniques to improve the efficiency of the implementation,
including pre-computing the models for points-to subformulas, us-
ing hashsets to store submodels, and using bit vectors to represent
heaps. We also implemented the intuitionistic version of our algo-
rithms as per Remark 3.12 and Remark 6.24. The code and test
suite for our tool are available online [1].

We tested the performance of our implementation across a range
of ‘typical’ predicate definitions gathered from the verification
community, and a number of hand-crafted definitions designed
to elicit the worst-case, exponential performance. We extracted
models from a number of example programs at runtime using an
extension of GDB which supports scripting using Python [2]. All
tests were carried out on a 2.93GHz Intel Core i7-870 processor
with 8GB RAM.

We note that all tests carried out where on positive instances.
This was decided for two reasons. First, the worst-case perfor-
mance can be exhibited with positive instances as shown below.
Second, when using runtime checks, for instance in code contracts
or offline test suites, negative instances usually lead to program ter-
mination because they indicate that some pre- or postcondition, or
invariant is no longer satisfied. Thus the runtime on positive in-
stances is a much more important measure of performance.

‘Typical’ performance Testing our implementation against typi-
cal, real-world data requires sourcing programs annotated with sep-
aration logic assertions. We identified 6 programs from the suite of
examples in the Verifast distribution [24] containing non-trivial in-
ductive predicates which translate into our assertion language:
(i) stack.c: a stack data-structure implemented using linked lists.

(ii) queue.c: a lock-free concurrent queue based on list segments.
(iii) set.c: a concurrent set data-structure based on linked lists.
(iv) schorr-waite.c: an implementation of the Schorr-Waite graph

marking algorithm over binary trees.
(v) iter.c: a list data-structure with an iterator pointing into the list.

(vi) composite.c: an example of the composite design pattern,
where each node of a tree must maintain local data consistent
with a global property.

Heap
Cells

(MEM+CV+DET)
stack.c iter.c queue.c schorr
push add dequeue dispose -waite.c
[pre] [pre] [pre] [pre] [loop inv] [pre]

0-5 4 5 6 8 5 7
6-10 6 6 6 5 8 10

11-15 5 6 8 8 9 14
16-20 8 7 10 10 14 19
21-25 9 9 16 13 22 31
26-30 10 11 16 19 38 41
31-40 12 16 34 32 93 81
41-50 22 20 55 58 222 148
51-60 28 30 92 95 477 224
61-70 40 45 153 153 859 335
71-80 56 62 224 220 1463 491
81-90 74 83 331 327 2480 747
91-100 110 114 467 470 3863 967

Heap
Cells

(MEM+DET)
schorr-waite.c

[post]

0-5 7
6-10 14
11-15 28

16 32
17 34
18 42
19 51
20 72
21 107
22 160
23 249
24 380
25 590
26 1021
27 1887
28 3597
29 7218
30 10579

Heap
Cells

(EXPTIME) (MEM+CV) (MEM)
composite.c set.c

add/disp add set(x)
tree(x) [pre]

3 12 11 5
4 14 8 7
5 21 18 6
6 21 17 13
7 18 20 35
8 35 38 120
9 45 46 378

10 56 61 1237
11 71 94 3778
12 107 143 10438
13 155 210 -
14 231 279 -
15 359 388 -
16 474 524 -
17 690 985 -
18 1056 1384 -
19 1467 1533 -

(MEM+CV+DET)

Heap
Cells

queue.c
dequeue[loop]
Min. / Max.

7 2 / 8
8 3 / 7
9 4 / 10
10 5 / 10
11 6 / 13
12 7 / 15
13 7 / 25
14 9 / 20
15 11 / 25
16 14 / 25
17 19 / 32
18 21 / 32
19 24 / 52
20 26 / 66
21 35 / 76
22 14 / 89
23 53 / 118

(MEM)
iter.c

iter(it, list) next[pre]
Min. / Max. Min. / Max.

9 / 12 8 / 13
12 / 15 12 / 17
11 / 18 16 / 20
17 / 23 20 / 27
21 / 27 25 / 31
29 / 34 32 / 38
35 / 40 39 / 47
43 / 48 52 / 62
52 / 59 62 / 70
64 / 74 79 / 88
87 / 92 101 / 110

104 / 112 124 / 133
128 / 140 153 / 163
153 / 164 187 / 199
189 / 202 237 / 250
224 / 243 274 / 286
288 / 298 348 / 358

(CV) (EXPTIME)
schorr-waite.c

[loop inv](1) [loop inv](2)
Min. / Max. Min. / Max.

6 / 22 6 / 21
9 / 30 10 / 28
9 / 43 12 / 45

13 / 62 13 / 59
19 / 89 15 / 103
21 / 122 18 / 133
18 / 183 18 / 233
27 / 254 22 / 371
30 / 491 26 / 813
34 / 701 31 / 1151
37 / 1275 34 / 1923
40 / 2077 39 / 2850
42 / 2983 41 / 3980
49 / 5403 46 / 6872

- -
- -
- -

(a) Tests using single model per heap size (b) Tests using multiple models per heap size

(# Heap Cells)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Min. 1 2 2 1 1 1 2 2 3 5 15 30 87 208 536 1416 3476 8121 18833 41442
Max. 3 7 7 5 8 6 8 8 12 15 24 41 113 284 669 1641 4065 9120 20729 44114

(c) Spatial True Encoding

Figure 5. Test results of fixed point model checking algorithm (all times in milliseconds)

The assertions we collected cover most combinations of the syn-
tactic restrictions defined in Section 5. The first four programs
use standard list segment and tree predicates, all of which are
MEM+CV+DET apart from iter.c which uses a non-DET pred-
icate (describing a possibly cyclic list). The predicate describing
the set data-structure in set.c is in MEM+DET, but is not in CV.
The models we tested for the Schorr-Waite algorithm were taken
from the entry and exit points and the start of each loop iteration.
The precondition is MEM+CV+DET, although the postcondition
is not CV. The loop condition given in the Verifast code is CV but
not MEM or DET, and we also checked against a natural ‘simpli-
fied’ version, obtained by a predicate fold, which falls outside all
the restrictions. For the iterator example one of the three formu-
las we model checked against is MEM+CV+DET, while the others
are only MEM. The composite.c example uses ‘non-standard’
predicates, making essential use of non-DET and non-CV rules:
we checked against one formula MEM+CV, and the other in the
general EXPTIME fragment.

From each program we extracted models with heaps contain-
ing 0–100 cells, with each cell containing 1–4 data values. We ex-
tracted over 2150 models in total, covering 15 different assertions
across various program points. The results of our model checking
tests of the general algorithm can be seen in Figures 5(a) and 5(b).
Where we were able to collect a number of non-isomorphic mod-
els per heap size, we show both the minimum and maximum times
observed for model checking. In Figure 5(a), where we give a re-
sult for a range of heap sizes, this represents the maximum time
observed over that range. All times are given in milliseconds, and
averaged over 3 test runs. Where runtimes are not given, this in-
dicates that we elected not to check models of the corresponding
size due to the length of time required to obtain an answer; in these
cases we felt that the data we collected was sufficient to analyse the
performance of the algorithm.

The results, e.g. for set.c and the schorr-waite.c post-
condition, clearly show the exponential nature of the general al-
gorithm. The maximum times observed for the schorr-waite.c
loop invariants display a similar profile, although the large varia-
tion between minimum and maximum times shows that the partic-
ular shape of the model being checked also has a large influence.

The results for those formulas in the PTIME fragment display less
pronounced growth, increasing by a factor of roughly between 1.5–
2 for each 10 heap cells added. We suspect the large variation in
times is due to the specific shapes of the particular models being
checked. The stack.c and iter.c models are simple list seg-
ments checked against formulas containing only single predicate
instances. The queue.c and schorr-waite.c tests, in contrast,
consist of formulas with multiple predicate instances and so con-
sequently many more submodels must be calculated. We suggest
that the general algorithm might not be practical for runtime model
checking, except possibly as a fallback for faster algorithms, but
can be useful for offline testing, e.g., unit test suites.

We also tested the algorithm for the CV+DET fragment in Sec-
tion 6.5 on the formulas falling within it (i.e. those appearing in
the left-hand side tables of Fig. 5(a) and 5(b)) and their corre-
sponding models, whose sizes range from 0–100 heap cells. In our
benchmark suite, all such formulas happen to also be in MEM, and
thus fall within the PTIME fragment. The runtimes were excellent,
never exceeding 12 milliseconds in the worst case; we do not re-
port these times as they are very low and close to our experimental
error margin. This suggests that this algorithm should be suitable
for dynamic checking of assertions.

Worst-case performance We tested the general algorithm in two
situations designed to elicit worst-case behaviour. Firstly, we took
all of the models up to size 20 extracted from the Verifast exam-
ple programs, and checked them against a predicate encoding the
spatial truth constant >, satisfied by every model. The definition
of this predicate is in MEM, but not CV or DET. Thus, these in-
stances are in an NP-complete fragment. The results of these tests,
in Figure 5(c), clearly demonstrate the worst-case performance.
Note that while intuitionistic model checking does not incur com-
plexity penalties (see Remark 3.12), encoding such queries does.

Our second test is on a family of predicates encoding an n-
bit binary counter (as also used to elicit worst-case performance
for satisfiability in [10]). The predicate definitions in this example
satisfy none of MEM, CV, and DET (in fact, they contain no spatial
formulas at all), and thus fall into the EXPTIME fragment. The 2-
bit counter checks in 15ms, the 3-bit counter in about 2.95s, and

the 4-bit counter in just over 6 minutes; the 5-bit counter had not
returned a value after 20 hours.

8. Conclusions
Our main contribution in this paper is a general fixed point al-
gorithm that decides model checking in symbolic-heap separation
logic with user-defined inductive predicates. Furthermore, we show
that while model checking for this logic is EXPTIME-complete in
the general case, it can be made NP-complete and even polynomial
by restricting the admissible definitions of inductive predicates in
various natural (syntactic) ways. Finally, we implement two algo-
rithms, the general one described in Section 3 and the algorithm for
the CV+DET fragment, described in Section 6.5.

The performance of the CV+DET algorithm is good enough
for runtime verification, when additionally the rules employed are
memory-consuming. This, however, significantly restricts the kinds
of properties that can be checked during program execution. As ev-
idenced by the complex properties found in the Verifast examples,
the general model checking algorithm can usefully extend the ex-
pressiveness available to the programmer; its performance may not
be appropriate for verification during execution, but it can still be
used productively in offline testing such as in unit tests.

The ability to model-check formulas also opens up the possibil-
ity of disproving entailments in our logic via the direct generation
and testing of possible countermodels, in contrast e.g. to the ap-
proach based on overapproximation in [12]. We are uncertain as to
the scalability of such an approach, but nevertheless consider it an
interesting avenue for potential future work. Another possibility in-
cludes employing SAT solvers for deciding model-checking of rule
sets that fall within the MEM+DET or MEM+CV fragments.

Acknowledgements. We wish to thank the anonymous referees
for their comments, which have enabled us to improve the presen-
tation of the paper. Thanks also to Matt Parkinson for pointing us
towards the Verifast benchmarks.

Brotherston is supported by an EPSRC Career Acceleration Fel-
lowship, and Kanovich and Rowe by EPSRC grant EP/K040049/1.

References
[1] CYCLIST: software distribution.

https://github.com/ngorogiannis/cyclist/.

[2] Project Archer GDB development branch.
https://sourceware.org/gdb/wiki/ProjectArcher.

[3] P. Agten, B. Jacobs, and F. Piessens. Sound modular verification of
C code executing in an unverified context. In Proc. POPL-42. ACM,
2015.

[4] T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and
J. Ouaknine. Foundations for decision problems in separation logic
with general inductive predicates. In Proc. FoSSaCS-17. Springer,
2014.

[5] J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of
separation logic. In Proc. FSTTCS-24. Springer, 2004.

[6] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In Proc. APLAS-3. Springer, 2005.

[7] J. Berdine, B. Cook, and S. Ishtiaq. SLAyer: memory safety for
systems-level code. In Proc. CAV-23. Springer, 2011.

[8] M. Botincan, D. Distefano, M. Dodds, R. Grigore, D. Naudziuniene,
and M. J. Parkinson. coreStar: The core of jStar. In Proc. 1st
BOOGIE, 2011.

[9] J. Brotherston. Formalised inductive reasoning in the logic of bunched
implications. In Proc. SAS-14. Springer, 2007.

[10] J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Pérez. A
decision procedure for satisfiability in separation logic with inductive
predicates. In Proc. CSL-LICS. ACM, 2014.

[11] J. Brotherston and N. Gorogiannis. Cyclic abduction of inductively
defined safety and termination preconditions. In Proc. SAS-21.
Springer, 2014.

[12] J. Brotherston and N. Gorogiannis. Disproving inductive entailments
in separation logic via base pair approximation. In Proceedings of
TABLEAUX-24. Springer, 2015.

[13] J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic
theorem prover. In Proc. APLAS-10, LNCS. Springer, 2012.

[14] C. Calcagno and D. Distefano. Infer: An automatic program verifier
for memory safety of C programs. In Proc. NFM-3. Springer, 2011.

[15] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1), 1981.

[16] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated
verification of shape, size and bag properties via user-defined
predicates in separation logic. Sci. Comp. Prog., 77(9), 2012.

[17] D.-H. Chu, J. Jaffar, and M.-T. Trinh. Automatic induction proofs
of data-structures in imperative programs. In Proc. PLDI-36. ACM,
2015.

[18] E. M. Clarke. The birth of model checking. In 25 Years of Model
Checking. Springer, 2008.

[19] K. Dudka, P. Peringer, and T. Vojnar. Predator: A practical tool for
checking manipulation of dynamic data structures using separation
logic. In Proc. CAV-23. Springer, 2011.

[20] M. Frick and M. Grohe. The complexity of first-order and monadic
second-order logic revisited. Annals of Pure and Applied Logic, 130,
2004.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[22] R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation
logic with recursive definitions. In Proc. CADE-24. Springer, 2013.

[23] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable
data structures. In Proc. POPL-28. ACM, 2001.

[24] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. Verifast: A powerful, sound, predictable, fast verifier for
C and Java. In Proc. NFM-3. Springer, 2011.

[25] Q. L. Le, C. Gherghina, S. Qin, and W.-N. Chin. Shape analysis via
second-order bi-abduction. In Proc. CAV-26. Springer, 2014.

[26] H. H. Nguyen, V. Kuncak, and W.-N. Chin. Runtime checking for
separation logic. In Proc. VMCAI-9. Springer, 2008.

[27] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In Proc. POPL-31. ACM, 2004.

[28] E. Pek, X. Qiu, and P. Madhusudan. Natural proofs for data structure
manipulation in C using separation logic. In Proc. PLDI-35. ACM,
2014.

[29] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. LICS-17. IEEE, 2002.

