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Model Checking in General

• Model checking is the problem of checking whether a structure
S satisfies, or is a model of, some formula φ: does S |= φ?

• Typically, S is a Kripke structure representing a program, and φ

a formula of modal or temporal logic describing its behaviour.

• More generally, S could be any kind of mathematical structure
and φ a formula in a language describing such structures.
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Model Checking for Separation Logic

• Separation logic (SL) facilitates verification of imperative
pointer programs by describing program memory.

• Typically, we do static analysis: given an annotated program,
prove that it meets its specification.

• When static analysis fails, we might try run-time verification:
run the program and check that it does not violate the spec.

• In that case, we need to compare memory states S against a
specification φ: does S |= φ?

• We focus on the popular symbolic-heap fragment of SL,
allowing arbitrary sets of inductive predicates.
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Overview of our Results

For symbolic-heap SL with arbitrary inductive predicates:

• the model checking problem is decidable

• complexity is EXPTIME

• We identify three natural syntactic criteria for restricting
inductive definitions

• These reduce the complexity to NP or PTIME

• We provide a prototype tool implementation and experimental
evaluation
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Symbolic Heaps with Inductive Predicates

Terms: t ::= x | nil

Pure Formulas: π ::= t = t | t ̸= t
Spatial Formulas: Σ ::= emp | x 7→ t | P t | Σ ∗ Σ

(P a predicate symbol, t a tuple of terms)

• emp is the empty heap
• 7→ ("points to") denotes a pointer to a single heap record

• ∗ ("separating conjunction") describes the combining of two
domain-disjoint heaps

Symbolic heaps F given by ∃x.Π : Σ (Π a set of pure formulas)
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Inductive Definitions

• Inductive predicates defined by (finite) sets of rules of the
form:

∃z.Π : Σ ⇒ P x

e.g. nil-terminated linked lists with root x:

x = nil : emp ⇒ List x
∃y. x ̸= nil : x 7→ y ∗ List y ⇒ List x
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Model Checking: Problem Statement

• Recall the general form: given a structure S and a formula φ,
decide whether S |= φ

• Models of symbolic heaps are pairs (s,h) where:

• s is a stack mapping variables to heap locations / null value

• h is a heap: a finite map from locations to heap records

• Given an inductive rule set Φ, stack s, heap h and symbolic
heap formula F, we must decide whether (s,h) |=Φ F
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Model Checking: Subtleties

P x (s,h)

• How do we decompose h into h1, . . . ,hn to match Σ1, . . . ,Σn?

• How do we pick values for the existential variables z?

• We may need values that do not even occur in s or h!

• How to prove termination of such a procedure?

• Any of the hi could be empty!
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Model Checking: Solution

How to decide whether (s,h) |=Φ F

• We give a bottom-up fixed-point algorithm which:

• only considers sub-heaps of h

• instantiates existentially quantified variables from a
well-defined finite set of values

• and computes the set of all such "sub-models" for each
predicate in Φ, then checks if (s,h) is in the set for P

• We show that this procedure is complete and has EXPTIME
complexity
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Restricting Inductive Definitions

MEM: (Memory-consuming) rule bodies may only contain
predicates if they also contain explicit, non-empty memory
fragments (7→)

DET: (Deterministic) the sets of pure constraints of the rules
for a given predicate P are mutually exclusive with each other

CV: (Constructively Valued) the values of the existentially
quantified variables in rule bodies are uniquely determined
by the parameters

x = nil : emp ⇒ List x ∃y. x ̸= nil : x 7→ y ∗ List y ⇒ List x
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Complexity of Model Checking Restricted Fragments

CV DET CV+DET
non-MEM EXPTIME EXPTIME EXPTIME ≥ PSPACE
MEM NP NP NP PTIME
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Implementation

• Implemented both algorithms in OCaml

• Formulated 'typical performance' benchmark suite:

• 6 annotated programs from the Verifast1 test suite

• harvested over 2150 concrete models at runtime

• Also tested worst-case performance
• using hand-crafted predicates requiring the generation of all
possible submodels

• Tested top-down algorithm on instances within MEM+CV+DET
1Bart Jacobs et al., KU Leuven
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Experimental Results

• All runs of the top-down algorithm took ~10ms

• Running times for the bottom-up algorithm indicate suitability
for unit testing / debugging

• for 10 heap cells – between 5 and 60ms

• for 30 heap cells – between 10ms and 10s

• some instances with 100 heap cells still checking in ~100ms
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Thank you for listening!

Implementation available at:
github.com/ngorogiannis/cyclist
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Future Work

• Investigate how adding classical conjunction affects the
decidability / complexity results

• Model checking may facilitate disproving of entailments via
generation and checking of concrete models


