
Characterising Renaming within OCaml’s Module

System: Theory and Implementation

Reuben N. S. Rowe, Hugo Férée, Simon J. Thompson, Scott Owens

{r.n.s.rowe,h.feree,s.j.thompson,s.a.owens}@kent.ac.uk
School of Computing, University of Kent, Canterbury, UK

Abstract

We present an abstract, set-theoretic denotational semantics

for a significant subset of OCaml and its module system

in order to reason about the correctness of renaming value

bindings. Our abstract semantics captures information about

the binding structure of programs. Crucially for renaming, it

also captures information about the relatedness of different

declarations that is induced by the use of various different

language constructs (e.g. functors, module types and mod-

ule constraints). Correct renamings are precisely those that

preserve this structure. We demonstrate that our semantics

allows us to prove various high-level, intuitive properties

of renamings. We also show that it is sound with respect to

a (domain-theoretic) denotational model of the operational

behaviour of programs. This formal framework has been

implemented in a prototype refactoring tool for OCaml that
performs renaming.

CCS Concepts • Theory of computation → Abstrac-

tion; Denotational semantics; Program constructs; Func-
tional constructs; • Software and its engineering → Soft-

ware maintenance tools.

Keywords Adequacy, denotational semantics, dependen-

cies, modules, module types, OCaml, refactoring, renaming,

static semantics.

ACM Reference Format:

Reuben N. S. Rowe, Hugo Férée, Simon J. Thompson, Scott Owens.

2019. Characterising Renaming within OCaml’s Module System:

Theory and Implementation. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New

York, NY, USA, 24 pages. https://doi.org/10.1145/3314221.3314600

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314600

1 Introduction

Refactoring is the process of changing how a program works

without changing what it does, and is a necessary and on-

going process in both the development and maintenance of

any codebase [12]. Whilst individual refactoring steps are

often conceptually very simple, applying them in practice

can be complex, involving many repeated but subtly varying

changes across the entire codebase. Moreover refactorings

are, by and large, context sensitive, meaning that carrying

them out by hand can be error-prone and the use of general-

purpose utilities (even powerful ones such as grep and sed)
is only effective up to a point.

This immediately poses a challenge, but also presents an

opportunity. The challenge is how to ensure, or check, a

proposed refactoring does not change the behaviour of the

program (or does so only in very specific ways). The opportu-

nity is that since refactoring is fundamentally a mechanistic

process it is possible to automate it. Indeed, this is desirable

in order to avoid human-introduced errors. Our aim in this

paper is to outline how we might begin to provide a solution

to the dual problem of specifying and verifying the correct-

ness of refactorings and building correct-by-construction

automated refactoring tools for OCaml [22, 31].
Renaming is a quintessential refactoring, and so it is on

this that we focus as a first step. Specifically, we look at re-

naming the bindings of values in modules. One might very

well be tempted to claim that, since we are in a functional

setting, this is simply α-conversion (as in λ-calculus) and
thus trivial. This is emphatically not the case.OCaml utilises
language constructs, particularly in its module system, that

behave in fundamentally different ways to traditional vari-

able binders. Thus, to carry out renaming inOCaml correctly,
one must take the meaning of these constructs into account.

Some of the issues are illustrated by the example program

in fig. 1 below. This program defines a functor Pair that

takes two modules as arguments, which must conform to

the Stringable module type. It also defines two structures

Int and String. It then uses these as arguments in applica-

tions of Pair, the result of which is bound as the module

P. Suppose that, for some reason, we wish to rename the

to_string function in the module Int. To do so correctly,

we must take the following into account.

(i) Since Int is used as the first argument to an application

of Pair, the to_string member of Pair’s first parameter

must be renamed.

https://doi.org/10.1145/3314221.3314600
https://doi.org/10.1145/3314221.3314600

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

module type Stringable = sig
type t
val to_string : t -> string

end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ^ " " ^ (Y.to_string y)
end
module Int = struct

type t = int
let to_string i = int_to_string i

end
module String = struct

type t = string
let to_string s = s

end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P.to_string (0, ("!=", 1))) ;;

Figure 1. Example illustrating issues for renaming.

(ii) The first parameter of Pair is declared to be of mod-

ule type Stringable, so to_string in Stringablemust be

renamed; similarly for the second parameter, since Int is

also used as the second argument in an application of Pair.
(iii) String is also used as an argument in an application

of Pair, thus its to_string member must be renamed too.

(iv) An application of Pair is used as an argument to an-

other such application, meaning that we also need to rename

to_string in the body of Pair itself.

(v) Since P is bound to the result of applying Pair, we
must then instances of P.to_string.
Thus, renaming the binding Int.to_string actually de-

pends on renaming many other bindings in the program:

failing to rename any one of them would result in the pro-

gram being rejected by the compiler. Moreover, this is not

simply an artifact of choosing to rename this particular bind-

ing; if we were to start with, say, to_string in String or

Stringable we would still have to rename the same set of

bindings. These bindings are allmutually dependent on each

other. Consequently, the phenomenon we observe here is

distinct from the notion of a refactoring pre-condition [33].

Note that although, in this example, it seemingly suffices

to simply ‘find-and-replace’ all occurrences of to_string,
this is not generally the case. If the example simply used

String as the second argument to the (outer) application

of Pair, then we would not have to rename the binding of

to_string in the body of the functor.

The salient point in this example is that the various defini-

tions and declarations that must be renamed are not simply

references that resolve to a single instance of some syntactic

construct in the program. On the contrary, they are them-

selves binding constructs, which can bind occurrences of

identifiers elsewhere in the program. Nevertheless, as noted

above, they are connected through certain syntactic con-

structions, albeit in a different sense to the notion of variable

binding with which we are familiar from λ-calculus. Since
here names matter, one way of viewing the situation might

be to see the mutually dependent declarations (and their

referents) all as instances of the same ‘free variable’ in the

program. Free variables cannot be α-renamed, and so this

view highlights the gap compared with an understanding of

renaming based in the λ-calculus.
One objection to the foregoing analysis might be that the

wide-reaching footprint of this refactoring indicates it is not

really a renaming, or that it is, in some sense, ‘undesirable’.

As to the former we would argue that, whilst the changes are

extensive, the only syntactic operation that has occurred is to

replace one identifier with another—surely, by definition, a

renaming. Regarding the latter, other alternatives are indeed

possible. One could, for example, localise the changes by

introducing a new module expression in the applications

of Pair that wraps the reference to the Int module and

reintroduces a binding with the old name.

module P = Pair
(struct include Int let to_string = ⟨⟨new_name⟩⟩ end)
(Pair(String)
(struct include Int let to_string = ⟨⟨new_name⟩⟩ end))

The point here is not that we are trying to dictate which
refactoring should be applied in any particular case, but that

we are able to characterise precisely which changes of name

are (not) refactorings. We can therefore provide a sound

foundation for a refactoring tool enabling programmers to

safely modify their code.

Our Contributions

In this paper, we propose a formal framework for reason-

ing about renaming in a significant subset of the OCaml
language. We define an abstract semantics for programs in

this subset, which captures particular aspects of the struc-

ture of programs relevant for renaming value bindings. This

comprises name-invariant information about binding struc-

ture and dependencies between value binding constructs.

We then define correctness of renamings in terms of the

preservation of this structure. We show that our semantics

constitutes a sensible abstraction by proving that it is sound

with respect a denotational semantics of the operational be-

haviour of programs. We use our semantics to develop a

theory of renaming, in which we characterise correct renam-

ings in a natural and intuitive way and prove that they enjoy

desirable (de)composition properties. Finally, we have built

a prototype refactoring tool for the full OCaml language
based on the concepts elucidated by our framework. We

have evaluated our tool on two large real-world codebases.

We have formalised our framework and the renaming

theory in the Coq proof assistant [11]. This is included as

supplementary material. Also included as supplementary

material is an appendix containing a proof sketch of the

adequacy result in section 5, and a high-level elaboration of

proofs for the renaming theory.

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

While the paper describes the work in the context of

OCaml modules, the approach can be used to understand

aspects of (re)naming in other languages, such as Haskell

(classes and instances), and Java (interfaces).

PaperOutline. In section 2, we present the subset of OCaml
that we study, and formally define renaming.We then present

our abstract renaming semantics in section 3, before devel-

oping a formal theory of renaming in section 4. Section 5

shows that our renaming semantics is sound with respect

to a denotational model of the operational behaviour of our

calculus. In section 6 we describe our prototype refactoring

tool and experimental evaluation. Section 7 surveys related

work, section 8 discusses directions for future work, and

section 9 concludes.

2 An OCaml Module Calculus

The subset of OCaml for which we build our formal theory is

defined in fig. 2. It extends the calculus considered in [20, 21]

and consists, essentially, of a two-level lambda calculus: the

‘core’ level defines basic values of the language (e.g. func-

tions), whereas the other comprises the module system. The

module system contains structures, functors, and module

types (with module constraints and destructive module sub-

stitutions), along with include statements. Since value types

do not interact with the renaming that we consider, we do

not include a language for defining them. Thus, in order for

our calculus to count as valid actual OCaml code, we use
OCaml’s underscore syntax for anonymous type variables in

value declarations in signatures, e.g. sig val foo : _ end.
Other features of OCaml’s module system that we do

not model, but which nonetheless interact with renaming,

include: (local) open statements; recursive and first-class

modules; module type extraction; and type-level module

aliases. All but the first of these are extensions to the core

OCaml language. We leave the treatment of these language

extensions to future work.

We have assumed (disjoint) setsM, T , andV of module,

module type, and value identifiers, respectively. These are

ranged over by x , t , andv , respectively, and we use ι to range
over the set I =M+T +V of all identifiers. In realOCaml,
both module identifiers and module type identifiers belong

to the same lexical class. However, it will be convenient to

distinguish them in our formalism. In any case it is syntacti-

cally unambiguous when such an identifier acts as a module

identifier and when it acts as a module type identifier; thus

we do not lose any generality in making this distinction.

2.1 Renaming Operations

To formalise the notion of carrying out renaming, we will

take (fragments of) programs to be abstract syntax trees

(ASTs). It will be convenient for us to consider ASTs as func-

tions over some set L of locations (ranged over by ℓ) re-
turning local syntactic information. That is, for locations

denoting internal nodes of the AST the function maps to

the locations of the roots of the child subtrees and indicates

which compound syntactic production is applied. For lo-

cations denoting leaves the function maps to the relevant

identifier or constant. We will also assume that there is some

null location ⊥ ∈ L that does not denote any location in

any AST. This will be used by our semantics to indicate that

a reference does not resolve to anything in a program. Al-

though ASTs impose additional hierarchical structure on

locations, we leave this implicit and do not further specify

their concrete nature.

Definition 1. One program (fragment) σ ′ is the result of
renaming another such σ , when: (i) dom(σ) = dom(σ ′);
(ii) σ (ℓ) ∈ V ⇔ σ ′(ℓ) ∈ V ; and (iii) if σ (ℓ) < V then

σ (ℓ) = σ ′(ℓ). In this case, we call the pair (σ ,σ ′) a renaming
and write σ ↪→ σ ′.

That is, renaming is only allowed to replace value iden-

tifiers by other value identifiers, and must otherwise leave

the program (fragment) unchanged.

We now define a number of syntactic concepts that will

be useful in describing the action of renamings. Firstly, we

consider the notion of the footprint of a renaming. This is all

the locations in the program that are affected, or changed,

by the renaming.

Definition 2 (Footprints). The footprint φ (σ ,σ ′) of a re-

naming σ ↪→ σ ′ is defined to be the set of locations (neces-

sarily in both σ and σ ′) that are changed by the renaming:

φ (σ ,σ ′) = {ℓ | ℓ ∈ dom(σ) ∧ σ (ℓ) , σ ′(ℓ)}. We write

σ
ℓ
↪→ σ ′ when ℓ is in the footprint of the renaming, and

σ
v/ℓ
↪→ σ ′ when moreover σ ′(ℓ) = v .

A general problem we are interested in is the following:

given the location ℓ of some identifier in a program P and

an identifier v that we wish to rename it to, can we pro-

duce a program P ′ such that P
v/ℓ
↪→ P ′ is a valid renaming?

Moreover, we are usually interested in finding such a P ′ that
also minimises the footprint of the renaming. One purpose

of the semantics that we define in section 3 is to enable us

to provide solutions to this problem, as well as an effective

abstraction of what constitutes validity for renaming.

Besides footprints, we are also interested in what we call

the dependencies of a renaming. These are all the binding

declarations modified by a renaming. In both the following

definition and when presenting example syntax below, we

will use subscripts on identifiers to indicate their unique

position in the AST. In particular, numeric subscripts should

not be taken to be part of the identifier itself.

Definition 3 (Declarations). The set decl(σ) of (value) dec-
larations in a program (fragment) σ is the set of all loca-

tions ℓ ∈ dom(σ) for which there exists ℓ′ ∈ dom(σ) such
that either: σ (ℓ′) = val vℓ : _;;, σ (ℓ′) = let vℓ = e;;,
σ (ℓ′) = let vℓ = e in e ′;;, or σ (ℓ′) = fun vℓ -> e;;.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

Module Paths Extended Module Paths Value Expressions Programs

p F x | p.x q F x | q.x | q(q) e F v | p.v | let v = e in e | fun v -> e | e e P F e | module x = m ;; P

Module Types M F t | p.t | sig S end | functor (x :M) -> M | M with module x = q | M with module x := q

Signature Body S F ε | D ;; S Signature Components D F val v : _ | module x :M | module type t | module type t = M | include M

Module Expressions m F p | struct s end | functor (x :M) -> m | m (m) | m :M

Structure Body s F ε | d ;; s Structure Components d F let v = e | module x = m | module type t = M | include m

Figure 2. Syntax of a core calculus for OCaml with modules.

Definition 4 (Dependencies). The dependencies δ (σ ,σ ′) of
σ ↪→ σ ′ are defined by δ (σ ,σ ′) = φ (σ ,σ ′) ∩ decl(σ).

Intuitively, the dependencies should be the key piece of

(syntactic) information required to characterise a renaming

since we expect the remaining locations in the program that

must be renamed to be simply those references that resolve

to one of the dependencies.

We also formally define the references of a program (frag-

ment) as follows.

Definition 5 (References). The set of (value) references of
a program (fragment) σ is the set of locations ℓ ∈ dom(σ)
such that σ (ℓ) ∈ V and ℓ < decl(σ).

Notice that both the footprint and the dependencies of

composite renamings are bounded by the footprints and

dependencies, respectively, of their individual component

renamings.

Proposition 1. For renamings σ ↪→ σ ′ and σ ′ ↪→ σ ′′:
(i) φ (σ ,σ ′′) ⊆ φ (σ ,σ ′) ∪ φ (σ ′,σ ′′).
(ii) δ (σ ,σ ′′) ⊆ δ (σ ,σ ′) ∪ δ (σ ′,σ ′′).

3 A Static Semantics for Renaming

In this section, we define a set-theoretic semantics for pro-

grams in our calculus that will allow us to reason about

renaming values. The entities that comprise the meaning of

a program are sets of (possibly nested) tuples of elements.

Note that this allows us to also talk about functions, since

these can be described by sets of ordered pairs. The semantics

jointly describes binding resolution and dependency infor-

mation in a name-invariant manner (using AST locations),

and represents name-relevant information separately.

In the following presentation, we use standard notation

for function update: i.e. f [a 7→ b] denotes the function that

behaves like f except that f (a) = b. f [a 7→ b | a ∈ A]
denotes the function that behaves like f except that f (a) = b
for all a ∈ A, and f \ A the (partial) function that behaves

like f but only has domain dom(f) \A.

3.1 Semantic Elements

Our abstract semantics will consist of the following entities.

Binding Resolution is a function that maps the locations

of uses of identifiers to binding instances of identifiers.

Definition 6 (Binding resolution). A binding resolution

function↣ is a partial function between locations (we as-

sume it does not map the null location ⊥). We write ℓ↣ ℓ′

instead of↣(ℓ) = ℓ′, and say that ℓ resolves to ℓ′.

The idea is that locations in the domain of the function

will represent precisely the references in a program, and the

function will describe the declaration that each reference

resolves to.

Syntactic Characteristics that are captured by our seman-

tics comprise the identifiers that are found at given locations.

This allows for the locations of binding instances of like

identifiers to be related (cf. section 3.2 below).

Definition 7 (Syntactic Reification). A syntactic reification

function ρ : L ⇀ I is a partial mapping from locations to

identifiers (we assume it does not map the null location ⊥).

We write domV (ρ) to denote the set {ℓ | ρ (ℓ) ∈ V}.

We can view syntactic reification functions as capturing

a restricted view of ASTs, giving information only about

those leaves that contain identifiers. The syntactic reification

function can be used to give additional information, over and

above the binding resolution function, about the declarations

in a program (specifically, those which are never referenced).

Value Extensions capture sets of declarations that are all

different facets of the same logical concept modelled in the

program. For example, a program may contain many differ-

ent functions named compare that act on values of various

different data types, which might be related through the use

of different signatures declaring values named compare, or
the application of various functors to different modules. Al-

though the different declarations may be distributed widely

throughout the program, they all model a single concept

or entity in the mind of the programmer or architecture of

the system. These entities are high-level abstractions en-

coded via the global structure of program. When we rename

a declaration, we must rename all parts of the program that

constitute the logical entity of which it is part. The difficulty

inherent in renaming in OCaml arises since these high-level
entities are not necessarily immediately evident, nor neces-

sarily localised in the source code.

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

module type Stringable = sig
val to_string : _

end
module Pair = functor (X : Stringable) ->

functor (Y : Stringable) -> struct
let to_string = fun (x, y) ->

(X.to_string x) ^ " " ^ (Y.to_string y)
end
module Int = struct

let to_string = fun i -> int_to_string i
end
module String = struct

let to_string = fun s -> s
end
module P = Pair(Int)(Pair(String)(Int)) ;;
print_endline (P.to_string (0, ("!=", 1))) ;;

Figure 3. Graphical representation of the semantics.

We call such collections of declarations the extension of

a high-level program abstraction. Ultimately, the extension

is modelled by an equivalence class. However the structural

relationships between the elements of an extension are more

fine-grained and it is these that we capture, using a binary

relation that we call a ‘kernel’. Taking the reflexive, sym-

metric and transitive closure of this kernel results in the

equivalence relation whose equivalence classes we take to

model extensions.

Definition 8 (Value Extension Kernel). A value extension

kernel E is a binary relation on locations.
ˆE denotes the

reflexive, symmetric and transitive closure of E.

We use value extensions to capture high-level, global struc-

tures present in a program, as expressed in proposition 6

below. For a location ℓ, we denote the ˆE-equivalence class
containing ℓ by [ℓ] ˆE. We also denote by L/ ˆE the quotient

of L by
ˆE, i.e. the partitioning of the set of locations into

ˆE-equivalence classes.
To give an intuition as to how these elements are used,

we show in fig. 3 a visual representation of the binding res-

olution function and value extension kernel that would be

derived for the example of fig. 1 as expressed in our OCaml
calculus (i.e. value type components are elided and functions

and functors are written out ‘long-hand’; for clarity, we still

assume pairs and an infix string concatenation operation).

Dashed arrows depict the binding resolution mappings, and

solid arrows show pairs in the value extension kernel.

3.2 Semantic Descriptions

In constructing the semantics of programs, we will need to

keep track of the binding structure of modules and mod-

ule types. We do so using semantic descriptions, which cap-

ture the locations of binding instances of identifiers and the

nested structure of modules and module types. We distin-

guish two kinds of semantic descriptions: structural descrip-

tions describe structures and signatures, while functorial

descriptions describe functors and functor types.

Definition 9 (Semantic descriptions). Semantic descriptions

∆, and their constituent components c , are objects defined
inductively by:

∆ F {c1, . . . , cn } | (ℓ:∆)�∆ c F ℓ | (ℓ,∆)

We use the meta-variable D to range over structural descrip-
tions, i.e. those of the form {c1, . . . , cn }, and write ⌊D⌋ to
denote the set {ℓ | ℓ ∈ D}. Descriptions of the form (ℓ:∆)�∆′

are called functorial. We write D for the set of all semantic

descriptions.

Basic components, comprising of simply a location, cap-

ture the locations of instances of identifiers bound to values.

Components of the form (ℓ,∆) represent sub-modules or

sub-module types, comprising a description of the subcom-

ponent along with the location of its binding, i.e. the instance

of the identifier to which it is bound. Structural descriptions,

which are sets of such components, thus describe the binding

structure of structures and signatures. Functorial descrip-

tions (ℓ:∆)�∆′ capture that of functors and functor types:

the left-hand member ℓ:∆ captures the location of the param-

eter of the functor or functor type, along with a description

of its declared module type; the right-hand member of the

pair ∆′ describes the body.

Example 1. Consider the Stringablemodule type and the

Int and String modules in the program of fig. 1.

module type Stringable = sig val to_string1 : _ end
module Int = struct let to_string5 i = int_to_string i end
module String = struct let to_string6 s = s end

The numerical subscripts on identifiers indicate the abstract

locations of declarations in the program. The corresponding

semantic descriptions are DStringable = {1}, DInt = {5}, and

DString = {6}. For the Pair functor

module Pair =
functor (X2 : Stringable) -> functor (Y3 : Stringable) ->
let to_string4 = fun (x, y) -> . . . end

the corresponding semantic description is the following.

DPair = (2:DStringable)�(3:DStringable)�{4}
= (2:{1})�(3:{1})�{4}

The syntactic reification function ρ for this program has the

obvious action on these declarations: ρ (2) = X, ρ (3) = Y, and
ρ (1) = ρ (4) = ρ (5) = ρ (6) = to_string.

Semantic Operations. We now describe a number of oper-

ations on semantic descriptions. Before giving the formal

definition of each operation, we explain its purpose and give

an example.

The value extension kernel, capturing the relationships

between the declarations, is computed via a semantic join

operation ⊗ρ on descriptions, which is parameterised by a

syntactic reification function. This operation pairs up basic

components in two semantic descriptions that syntactically

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

reify to the same identifier. For example, applications of func-

tors induce dependencies between the declarations in the

module type of the parameter, and corresponding bindings

in the module used as the argument.

Example 2. The nested functor application in fig. 3, that

is Pair(String)(Int), links the declaration of to_string
in the module type Stringable to those of to_string in

the String and Int modules. Joining the description of the

declared module type, Stringable, of Pair’s first parameter

with the description of the first argument, String, gives

DStringable ⊗ρ DString = {1} ⊗ρ {6} = {(1, 6)}

since ρ (1) = ρ (6) = to_string. Similarly, joining the de-

scription of the declared module type, Stringable, of Pair’s
second parameter with the description of the second argu-

ment, Int, gives

DStringable ⊗ρ DInt = {1} ⊗ρ {5} = {(1, 5)}

for the same reason. The description of the result of a functor

application is simply the description of the functor body,

thus the description of Pair(String)(Int) is {4}. The outer
functor application Pair(Int)(Pair(String)(Int)) then

relates the declaration of to_string in Stringable to that

in the body of the Pair functor itself, via the join operation

as follows.

DStringable ⊗ρ {4} = {1} ⊗ρ {4} = {(1, 4)}

The join operation is defined as follows, where writing

ρ (ℓ) for a reification function ρ and a location ℓ asserts that
ρ is defined on ℓ.

Definition 10 (Description Join). For a given syntactic reifi-

cation function ρ, the description join operation ⊗ρ is a

binary operation on descriptions that produces a binary re-

lation on locations and is defined inductively as follows:

D1 ⊗ρ D2 = {(ℓ1, ℓ2) | ℓ1 ∈ D1 ∧ ℓ2 ∈ D2 ∧ ρ (ℓ1) = ρ (ℓ2)}

∪ {(ℓ1, ℓ2) | ∃(ℓ,∆1) ∈ D1, (ℓ
′,∆2) ∈ D2.

ρ (ℓ) = ρ (ℓ′) ∧ (ℓ1, ℓ2) ∈ ∆1 ⊗ρ ∆2}

(ℓ1:∆1)�∆′
1
⊗ρ (ℓ2:∆2)�∆′

2
= (∆1 ⊗ρ ∆2) ∪ (∆′

1
⊗ρ ∆′

2
)

∆ ⊗ρ ∆′ = ∅ otherwise

The join of two structural descriptions consists of two parts:

first, basic components that reify to the same identifier are

related; second, the join is applied recursively to subcompo-

nents whose bindings reify to the same identifier. The join

of two functorial descriptions is given point-wise: the join

of the parameters is combined with the join of the bodies.

Joins of dissimilar descriptions result in the empty relation.

To build semantic descriptions compositionally, we use a

number of semantic operations that correspond to the vari-

ous syntactic constructions that are used to define modules

and module types.

To model the effect of include statements, we define a

superposition operation ⊕ρ on structural descriptions that

combines the elements of two descriptions, preferring those

of its second argument when identifiers coincide.

Example 3. Consider the following modules.

module A = struct let foo1 = . . .;; let bar2 = . . .;; end
module B = struct include A let bar3 = . . .;; end

A semantic description of the module A consists of the set

DA = {1, 2}, while the remainder of the body of module B
after the include statement consists of the set Dbody = {3}.

To form a description of the module B, we can superpose DA

andDbody with respect to a reification function ρ
′
containing

mappings ρ ′(1) = foo, and ρ ′(2) = ρ ′(3) = bar. That is
DB = DA ⊕ρ′ Dbody = {1, 3}. Here, the location 3 from Dbody

is chosen over 2 from DA since ρ ′ maps them both to the

same identifier.

Definition 11 (Description Superposition). The superposi-

tion operation ⊕ρ on structural descriptions is defined by:

D ⊕ρ D ′ = D ′ ∪ {ℓ | ℓ ∈ D ∧ ∀ℓ′ ∈ D ′. ρ (ℓ) , ρ (ℓ′)}

∪ {(ℓ,∆) | (ℓ,∆) ∈ D ∧ ∀(ℓ′,∆′) ∈ D ′. ρ (ℓ) , ρ (ℓ′)}

SuperpositionD ⊕ρ D ′ augmentsD ′ with those components

from D for which there is no corresponding component in

D ′ whose binding reifies to the same identifier.

To model module type annotationsm : M , we define a

modulation operation ▶ρ on semantic descriptions. This op-

eration modifies the description of a modulem according to

the description of its module type M in two ways. First, it

removes any (sub)components for which there does not exist

a corresponding component in the module type with a simi-

larly named binding. Second, it adds those subcomponents

from the description of the module type for which there is

no similarly named component in the module description.

Example 4. Consider the following module types defining

a weakening of the type of the Pair functor.

module type Stringable2 =
sig val to_string7 : _ ;; val from_string8 : _ ;; end

module type WeakPair = functor (X9 : Stringable2) ->
functor (Y10 : Stringable2) -> sig end

DWeak = (9:DStringable2)�(10:DStringable2)�∅ describes the
module type WeakPair, where DStringable2 = {7, 8}. Assum-

ing the syntactic reification function ρ from example 1 above

also contains mappings reflecting the identifiers occurring in

Stringable2 and WeakPair, then M = Pair : WeakPair is
described by the result of the applying the modulation oper-

ation, as follows.

DM = DPair ▶ρ DWeak = (2:{1, 8})�(3:{1, 8})�∅

In the result, the description of the body of DPair has been

restricted, but the descriptions of the parameters have been

augmented by the additional from_string declaration (lo-

cation 8) in the module types of the parameters in DWeak.

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Definition 12 (Description Modulation). The description

modulation operation ▶ρ is a binary operation on semantic

descriptions defined inductively as follows:

D ▶ρ D ′ = {ℓ | ℓ ∈ D ∧ ∃ℓ′ ∈ D ′. ρ (ℓ) = ρ (ℓ′)}

∪ {ℓ′ | ℓ′ ∈ D ′ ∧ ∀ℓ ∈ D. ρ (ℓ) , ρ (ℓ′)}

∪ {(ℓ,∆ ▶ρ ∆′) | (ℓ,∆) ∈ D ∧

∃ℓ′. (ℓ′,∆′) ∈ D ′ ∧ ρ (ℓ) = ρ (ℓ′)}

∪ {(ℓ′,∆′) | (ℓ′,∆′) ∈ D ′ ∧ ∀(ℓ,∆) ∈ D. ρ (ℓ) , ρ (ℓ′)}

(ℓ:∆1)�∆2 ▶ρ (ℓ′:∆′
1
)�∆′

2
= (ℓ:(∆1 ▶ρ ∆′

1
))�(∆2 ▶ρ ∆′

2
)

∆ ▶ρ ∆′ = ∅ otherwise

Finally, to model the effects of module type constraints

we define two more operations. In selective modulation,

∆1 ◀ρ (x :∆2), only subcomponents (ℓ,∆′) of ∆1 for which ℓ
reifies to the module identifier x are modulated (by ∆2). This

models how a module constraint modifies the subcompo-

nents of a module type. The filtering operation \ρ removes

subcomponents from a structural description whose binding

reifies to a given identifier, corresponding to a destructive

module substitution on a module type.

Example 5. Suppose we have a module type Set and a

module Int defined by

module type Set = sig
module Elt11 : Stringable ;; val empty12 : _ ;; end

Int2 = struct include Int;; let from_string13 = . . .;; end

withDSet = {12, (11,DStringable)} andDInt2 = {5, 13}. Again
assuming ρ also contains mappings reflecting the identi-

fiers occurring in Set and Int above, the description of

IntSet = Set with module Elt = Int2 is given by the

result of selective modulation, as follows.

DIntSet = DSet ◀ρ (Elt:DInt2)

= {12, (11, (DStringable ▶ρ DInt2))}

= {12, (11, {1, 13})}

To compute the description of the module type given by

IntSet2 = Set with module Elt := Int2, we use filter-
ing: DIntSet2 = DSet \ρ Elt = {12}.

Definition 13 (Selective Modulation). The selective mod-

ulation operation is a binary operation ∆ ◀ρ (x :∆′) on se-

mantic descriptions with respect to a module identifier, and

is defined by:

D ◀ρ (x :∆′) = {ℓ | ℓ ∈ D} ∪ {(ℓ,∆) | (ℓ,∆) ∈ D ∧ ρ (ℓ) , x }

∪ {(ℓ,∆ ▶ρ ∆′) | (ℓ,∆) ∈ D ∧ ρ (ℓ) = x }

(ℓ:∆1)�∆2 ◀ρ (x :∆′) = ∅

Definition 14 (Description Filtering). The function \ρ on

semantic descriptions and (module) identifiers is defined by:

D \ρ x = {ℓ | ℓ ∈ D} ∪ {(ℓ,∆) | (ℓ,∆) ∈ D ∧ ρ (ℓ) , x }

(ℓ:∆)�∆′ \ρ x = ∅

3.3 Semantic Environments

When constructing the semantics of programs, we will also

need to keep track of the binding locations and descriptions

of bound values, modules andmodule types.We do this using

an environment, which is a pair (ΓV , ΓM) of functions ΓV :

V → L and ΓM :M∪T → D that map value identifiers to

the location in the program context to which they are bound,

and map module and module type identifiers to semantic

descriptions of the module or module type, respectively to

which they are bound. We also require ΓV to be injective on

L \ {⊥}, i.e. ΓV (v) = ΓV (v
′) , ⊥ ⇒ v = v ′.

For notational convenience, we will write Γ(v), Γ(t), and
Γ(x) for ΓV (v), ΓM (t), and ΓM (x), respectively. Similarly,

we will write Γ[v 7→ ℓ], Γ[t 7→ ∆], and Γ[x 7→ ∆] for
(ΓV [v 7→ ℓ], ΓM), (ΓV , ΓM[t 7→ ∆]), and (ΓV , ΓM[x 7→ ∆]),
respectively.

We say that a structural description D is proper for a reifi-
cation function ρ when it satisfies: (i) ρ (ℓ) ∈ V for all ℓ ∈ D;
(ii) ρ (ℓ) ∈ M ∪ T for all (ℓ,∆) ∈ D; and (iii) when ℓ, ℓ′ ∈ D
or (ℓ,∆), (ℓ′,∆′) ∈ D for distinct locations ℓ and ℓ′, then
ρ (ℓ) , ρ (ℓ′). That is, each location in D corresponds to a

unique identifier under ρ. In this case, we may treat it like a

partial semantic environment and combine it with an exist-

ing environment Γ (written Γ +ρ D) as follows:

(Γ +ρ D) (ι) =




ℓ if ℓ ∈ D and ρ (ℓ) = ι

∆ if (ℓ,∆) ∈ D and ρ (ℓ) = ι

Γ(ι) otherwise

3.4 Semantics of Programs

Our static renaming semantics interprets programs as tuples

(↣,E, ρ) comprising a binding resolution function, a value

extension kernel, and a syntactic reification function. We

use Σ to range over such tuples. We may also write Σ↣, ΣE,
and Σρ to denote the individual respective components of Σ.
To define the semantics of programs, we use two sorts

of judgement, Σ; Γ ⊢ σ ⇝ Σ′ and Σ; Γ ⊢ σ ⇝ (∆, Σ′), which
specify how a syntactic fragment σ extends the semantics Σ
of a program context, described by Γ, to result in the seman-

tics Σ′. The former sort of judgement applies when σ is a

value expression, or a program (i.e. some number of module

bindings followed by a value expression). The latter applies

when σ is a module expression, module type expression,

or the body of a structure or signature; in which case the

judgement also derives a semantic description of σ .
Valid semantic judgements are defined inductively, in a

‘big-step’ style, by the rules in fig. 4, below. To determine

the semantics Σ of a program P , we derive a valid judge-

ment of the form Σ⊥; Γ⊥ ⊢ P ⇝ Σ, where Σ⊥ denotes the

empty semantics (i.e. the tuple consisting of the empty bind-

ing resolution and syntactic reification functions and empty

value extension kernel), and Γ⊥ denotes the empty environ-

ment (i.e. mapping every value identifier to the null location,

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

(Extended) Module Paths

(ModId):

Σ; Γ ⊢ x ⇝ (Γ(x), Σ)
(PMod):

Σ; Γ ⊢ q ⇝ (D, Σ′)
(∃ℓ. Σ′ρ (ℓ) = x ∧ (ℓ, ∆) ∈ D)

Σ; Γ ⊢ q.x ⇝ (∆, Σ′)
(PApp):

Σ; Γ ⊢ q1 ⇝ ((ℓ:∆1)�∆2, Σ
′′) Σ′′; Γ ⊢ q2 ⇝ (∆′

1
, Σ′)

Σ; Γ ⊢ q1 (q2)⇝ (∆2, Σ
′
[∆1 ⊗ ∆′

1
])

Value Expressions

(ValId):

Σ; Γ ⊢ vℓ ⇝ Σ[ℓ 7→ (v, Γ(v))]

(PVal1):

Σ; Γ ⊢ p ⇝ (D, Σ′)
(Σ′ρ (ℓ

′) = v ∧ ℓ′ ∈ D)

Σ; Γ ⊢ p.vℓ ⇝ Σ′[ℓ 7→ (v, ℓ′)]

(PVal2):

Σ; Γ ⊢ p ⇝ (D, Σ′)
(∀ℓ′ ∈ D . Σ′ρ (ℓ

′) , v)
Σ; Γ ⊢ p.vℓ ⇝ Σ′[ℓ 7→ (v, ⊥)]

(VLet):

Σ; Γ ⊢ e1 ⇝ Σ′′ Σ′′[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ e2 ⇝ Σ′

Σ; Γ ⊢ let vℓ = e1 in e2 ⇝ Σ′
(VFun):

Σ[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ e ⇝ Σ′

Σ; Γ ⊢ fun vℓ -> e ⇝ Σ′
(VApp):

Σ; Γ ⊢ e1 ⇝ Σ′′ Σ′′; Γ ⊢ e2 ⇝ Σ′

Σ; Γ ⊢ e1 e2 ⇝ Σ′

Signature Bodies

(Empty):

Σ; Γ ⊢ ε ⇝ (∅, Σ)
(SigVal):

Σ[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ S ⇝ (D, Σ′)

Σ; Γ ⊢ val vℓ : _;; S ⇝ ({ℓ } ⊕Σ′ D, Σ
′
[{ℓ } ⊗ D])

(SigMod):

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x]; Γ[x 7→ ∆] ⊢ S ⇝ (D, Σ′)

Σ; Γ ⊢ module xℓ :M;; S ⇝ ({(ℓ, ∆) } ⊕Σ′ D, Σ
′)

(SigInc):

Σ; Γ ⊢ M ⇝ (D, Σ′′) Σ′′; Γ +Σ′′ρ D ⊢ S ⇝ (D′, Σ′)
(D proper for Σ′′ρ)

Σ; Γ ⊢ include M;; S ⇝ (D ⊕Σ′ D
′, Σ′[⌊D ⌋ ⊗ D′])

(SigMty1):

Σ[ℓ 7→ t]; Γ[t 7→ ∅] ⊢ S ⇝ (D, Σ′)

Σ; Γ ⊢ module type tℓ;; S ⇝ ({(ℓ, ∅) } ⊕Σ′ D, Σ
′)

(SigMty2):

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ t]; Γ[t 7→ ∆] ⊢ S ⇝ (D, Σ′)

Σ; Γ ⊢ module type tℓ = M;; S ⇝ ({(ℓ, ∆) } ⊕Σ′ D, Σ
′)

Module Types

(MtyId):

Σ; Γ ⊢ t ⇝ (Γ(t), Σ)
(PMty):

Σ; Γ ⊢ p ⇝ (D, Σ′)
(∃ℓ. Σ′ρ (ℓ) = t ∧ (ℓ, ∆) ∈ D)

Σ; Γ ⊢ p.t ⇝ (∆, Σ′)
(Sig):

Σ; Γ ⊢ S ⇝ (∆, Σ′)

Σ; Γ ⊢ sig S end⇝ (∆, Σ′)

(MtyFun):

Σ; Γ ⊢ M1 ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x]; Γ[x 7→ ∆] ⊢ M2 ⇝ (∆′, Σ′)

Σ; Γ ⊢ functor (xℓ :M1) -> M2 ⇝ ((ℓ:∆)�∆′, Σ′)

(Constr):

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x]; Γ ⊢ q ⇝ (∆′, Σ′)

Σ; Γ ⊢ M with module xℓ = q ⇝ (∆ ◀Σ′ (x :∆
′), Σ′[∆ ⊗ {(ℓ, ∆′)}])

(Subst):

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x]; Γ ⊢ q ⇝ (∆′, Σ′)

Σ; Γ ⊢ M with module xℓ := q ⇝ (∆ \Σ′ x, Σ
′
[∆ ⊗ {(ℓ, ∆′)}])

Structure Bodies

(StrVal):

Σ; Γ ⊢ e ⇝ Σ′′ Σ′′[ℓ 7→ v]; Γ[v 7→ ℓ] ⊢ s ⇝ (D, Σ′)

Σ; Γ ⊢ let vℓ = e;; s ⇝ ({ℓ } ⊕Σ′ D, Σ
′
[{ℓ } ⊗ D])

(StrInc):

Σ; Γ ⊢m ⇝ (D, Σ′′) Σ′′; Γ +Σ′′ρ D ⊢ s ⇝ (D′, Σ′)
(D proper for Σ′′ρ)

Σ; Γ ⊢ include m;; s ⇝ (D ⊕Σ′ D
′, Σ′[⌊D ⌋ ⊗ D′])

(StrMod):

Σ; Γ ⊢m ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x]; Γ[x 7→ ∆] ⊢ s ⇝ (D, Σ′)

Σ; Γ ⊢ module xℓ = m;; s ⇝ ({(ℓ, ∆) } ⊕Σ′ D, Σ
′)

(StrMty):

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ t]; Γ[t 7→ ∆] ⊢ s ⇝ (D, Σ′)

Σ; Γ ⊢ module type tℓ = M;; s ⇝ ({(ℓ, ∆) } ⊕Σ′ D, Σ
′)

Module Expressions and Programs

(Struct):

Σ; Γ ⊢ s ⇝ (∆, Σ′)

Σ; Γ ⊢ struct s end⇝ (∆, Σ′)

(Annot):

Σ; Γ ⊢m ⇝ (∆1, Σ
′′) Σ′′; Γ ⊢ M ⇝ (∆2, Σ

′)

Σ; Γ ⊢m :M ⇝ (∆1 ▶Σ′ ∆2, Σ
′
[∆1 ⊗ ∆2])

(MApp):

Σ; Γ ⊢m1 ⇝ ((ℓ:∆1)�∆2, Σ
′′) Σ′′; Γ ⊢m2 ⇝ (∆′

1
, Σ′)

Σ; Γ ⊢m1 (m2)⇝ (∆2, Σ
′
[∆1 ⊗ ∆′

1
])

(MFun):

Σ; Γ ⊢ M ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x]; Γ[x 7→ ∆] ⊢m ⇝ (∆′, Σ′)

Σ; Γ ⊢ functor (xℓ :M) -> m ⇝ ((ℓ:∆)�∆′, Σ′)
(PMod):

Σ; Γ ⊢m ⇝ (∆, Σ′′) Σ′′[ℓ 7→ x]; Γ[x 7→ ∆] ⊢ P ⇝ Σ′

Σ; Γ ⊢ module xℓ = m;; P ⇝ Σ′

Figure 4. The abstract renaming semantics of the OCaml calculus.

and every module and module type identifier to the empty

structural description, viz. the empty set).

We use some shorthand notation for specifying updates

to Σ = (↣,E, ρ): (1) Σ[ℓ 7→ ι] stands for (↣,E, ρ[ℓ 7→ ι]);
(2) Σ[ℓ 7→ (ι, ℓ′)] stands for (↣[ℓ 7→ ℓ′],E, ρ[ℓ 7→ ι]); and
(3) Σ[∆1⊗∆2] stands for (↣,E∪ (∆1 ⊗ρ ∆2), ρ). To minimise

notation, we alsowrite: (4)D ⊕Σ D ′ forD ⊕ρ D ′; (5)∆ ▶Σ ∆′

for ∆ ▶ρ ∆′; (6) ∆ ◀Σ (x :∆′) for ∆ ◀ρ (x :∆′); and (7) ∆ \Σ x
for ∆ \ρ x .

Figure 4 groups the rules according to the different kinds of

syntax: value expressions, module types (including signature

components), modules (including structure components),

and module paths. We only give rules for extended module

paths, as standard module paths are a strict subset of these.

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

The meaning of identifiers is given by looking them up in

the semantic environment Γ, as specified in the rules (ValId),

(ModId), and (MtyId). The rule (ValId), for value identifiers,

also updates the binding resolution function. Thus, a refer-

ence vℓ (i.e. the occurrence of a value identifier v at location

ℓ) resolves to the location Γ(v) of the declaration of v cur-

rently in scope. When Γ(v) = ⊥, this signifies no matching

declaration is in scope and so the binding resolution function

indicates that the reference is unresolved. Identifers quali-

fied by module paths are handled by rules (PVal1), (PVal2),

(PMod), and (PMty). The premises of these rules derive a de-

scription D of the module path, and the meaning is given by

the component of D whose binding ℓ reifies to the identifier.

When there is no such component, then qualified module

and module type identifiers are meaningless (i.e. have no

valid judgements), but in this case (PVal2) indicates that a

value identifier is an unresolved reference.

The derivation rules process syntactic elements left-to-

right, bringing each declaration into the scope of the re-

maining program. For example the (PMod) rule derives the

semantics for a program beginning with a module binding,

module xℓ = m, in the context of a semantics Σ and a seman-

tic environment Γ. The left-hand premise of the rule adds to

Σ the abstract renaming information (i.e. binding structure,

value extension, and syntactic reification information) from

the module expressionm to produce an updated semantics

Σ′′, as well as a semantic description ∆ ofm. The right-hand

premise then derives the semantics Σ′ of the remainder of

the program, P . Note that it adds the module binding to the

scope, by updating the semantic environment Γ to include a

mapping of the module identifier x to the description ∆. It
also adds a mapping ℓ 7→ x for the module binding to the

syntactic reification function of Σ′′. Similarly, the (MFun)

rule derives a semantic description of a functor parameter

in the left-hand premise, and adds a corresponding mapping

in the environment for the right-hand premise to derive the

semantics of the functor body.

To derive the description of a modulem annotated with

a module typeM , the (Annot) rule applies the modulation

operation (cf. definition 12) to the descriptions ∆1 and ∆2

derived form andM , respectively. This results in a modified

version of ∆1, in which bindings not also appearing in ∆2

are removed and any new bindings from ∆2 are added. The

rules (Constr) and (Subst) give meanings to module types

modified by module constraints and destructive module sub-

situtions, respectively, using the selective modulation and

filtering operations (cf. definitions 13 and 14).

The rules for signature bodies build descriptions by using

the superposition operation (cf. definition 11) to combine

the descriptions derived for the initial component and the

remainder of the body. The rules for structure bodies work

analogously. For example, the (SigInc) rule handles a sig-

nature body starting with include M;; by building the

description D ⊕ D ′, where D and D ′ are the descriptions

derived for the included module typeM and the remainder

of the signature body, S , respectively. The environment Γ
(i.e. containing scope) for the remainder of body is updated

with the description D of the included module type (cf. sec-

tion 3.3). Thus the rule requires that the description D is

proper. Using superposition means that if the remainder of

the signature body S contains a redeclaration (i.e. a shad-

owing) of any binding inM , then the resulting description

contains information only about the new declaration.

Notice that in the rules for signature and structure bodies,

the value extension in the abstract semantics is also updated

with the join of the derived descriptions (cf. definition 10).

The result is that any shadowed declarations or bindings are

related by the value extension. This is necessary to be able

to construct valid renamings (cf. proposition 8 below).

Example 6 (Shadowing). In the type of the module

module M : sig val foo : bool;; val foo : int;; end =
struct let foo = 42 end

val foo : int;; shadows val foo : bool;;. To rename

foo correctly, both declarations in the module type (as well

as the binding let foo = 42) must be renamed, else the

compiler will reject the resulting program as ill-typed.

Although the semantics allows us to preserve well-typedness

during renaming (since it captures the information required

for renaming to occur within module types), notice that the

semantic rules do not perform any sort of type checking nor

guarantee the well-typedness of programs. We consider this

a feature rather than a bug since we see issues of renaming

as orthogonal to type safety. Indeed, it is often desirable

to be able to carry out renaming on incomplete (ill-typed)

programs, and our semantics facilitates this.

The semantics also allows us to properly reason about re-

naming with respect to encapsulation, which is a key feature

of the use of module types annotations.

Example 7 (Encapsulation). In the following modules

module A = struct let foo = . . . ;; let bar = . . . ;; end
module B = struct

include (A : sig val foo : _ end);; let bar = . . . ;;
end

the include of module A in B is restricted by a module type.

This serves to hide the fact that A contains a binding of

bar. Thus, the binding of bar given in module B does not

introduce any shadowing and so we can rename A.bar and

B.bar independently.

Under certain conditions (which we elide, but elaborate in

the appendix), the semantics of fig. 4 are deterministic. That

is, for a given syntactic fragment σ , Semantics Σ and envi-

ronment Γ, there is at most one description ∆ and semantics

Σ′ such that Σ; Γ ⊢ σ ⇝ Σ′ or Σ; Γ ⊢ σ ⇝ (∆, Σ′) is valid.
Thus, assuming the conditions that imply determinism, the

rules compute a (partial) semantic function. As such, they
allow us to interpret programs.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

Definition 15 (Semantics of programs). We define fami-

lies of (partial) interpretation functions JσKΣ;Γ and DΣ;Γ (σ),
indexed by pairs of semantics Σ and environments Γ, that
return (when they exist) the unique Σ′ and ∆, respectively,
such that Σ; Γ ⊢ σ ⇝ Σ′ or Σ; Γ ⊢ σ ⇝ (∆, Σ′) is valid.

Wewrite JσK tomean JσKΣ⊥;Γ⊥ . For a program P with JPK = Σ,
we will write ↣P , EP , and ρP to mean Σ↣, ΣE, and Σρ
respectively.

The semantics naturally captures the syntactic informa-

tion in a program pertaining to value identifiers.

Proposition 2. If JPK is defined then ref (P) = dom(↣P)
and decl(P) = domV (ρP) \ dom(↣P).

4 Characterising Renaming

The primary purpose of our semantics is to distinguish ‘cor-

rect’ renamings from ‘incorrect’ ones. For example, given

some declaration ℓ in program P and a new identifier v , it
might seem that P ′ = P[ℓ′ 7→ v | ℓ′ = ℓ ∨ ℓ′↣P ℓ] would
be a good candidate for forming a minimal, valid renaming.

That is, rename the identifier at location ℓ to v , as well as
the identifiers at all the locations ℓ′ that resolve to ℓ. As
discussed in section 1 this is not always sufficient, and in

general we find that we should modify multiple declarations

and their associated references.

The first step, therefore, is to specify which renamings pre-

serve meaning as captured by our semantics. The meaning

that we are interested in is name-invariant binding structure,
which we capture at the semantic level via the following

equivalence relations.

Definition 16 (Semantic Equivalence). We define the fol-

lowing equivalences on semantics and environments:

• Σ ∼ Σ′ iff Σ↣ = Σ′↣, ΣE = Σ′E, dom(Σρ) = dom(Σ′ρ),
Σρ (ℓ) ∈ V ⇔ Σ′ρ (ℓ) ∈ V , and if Σρ (ℓ) < V then

Σρ (ℓ) = Σ′ρ (ℓ).
• Γ ∼ Γ′ iff ΓM = Γ′

M
, and ran(ΓV) = ran(Γ′

V
).

When Σ ∼ Σ′ and Γ ∼ Γ′ hold, we write (Σ, Γ) ∼ (Σ′, Γ′).

Intuitively, this equivalence relation captures when two

pairs of semantics and environments represent program con-

texts having the same binding structure regardless of the

particular value identifiers that have been used. Notice that

the equivalence relation on semantics comprises the same

conditions on the syntactic reification function as are used

to define renamings. With this equivalence we define what

it means for a renaming to be valid.

Definition 17 (Valid Renamings). We say that a renaming

σ ↪→ σ ′ is valid with respect to Σ; Γ, and write Σ; Γ ⊢ σ ↪→ σ ′,
when JσKΣ;Γ is defined, and there exists a semantics Σ′ and
environment Γ′ with (Σ′, Γ′) ∼ (Σ, Γ) such that Jσ ′KΣ′;Γ′ is
defined and JσKΣ;Γ ∼ Jσ ′KΣ′;Γ′ . When Σ⊥; Γ⊥ ⊢ σ ↪→ σ ′ holds,
then we simply say that the renaming σ ↪→ σ ′ is valid.

For whole programs, validity of renamings collapses to

the following statement.

Proposition 3. P ↪→ P ′ is valid iff JPK and JP ′K are defined
and JPK ∼ JP ′K.

Thus, to check whether a renaming is valid, it suffices to

compute the semantics of the original and renamed programs

and then check that they are equivalent. We now proceed

to explore some of the properties of valid renamings. That

is to say, we begin to outline a theory of renaming for our

OCaml calculus.
Firstly, as a basic sanity check, we note that renamings

induce an equivalence relation on programs.

Proposition 4 (Equivalences). The following properties hold:
i) P ↪→ P is a (valid) renaming (when JPK defined).
ii) If P ↪→ P ′ is a (valid) renaming, then so is P ′ ↪→ P .
iii) If P ↪→ P ′ and P ′ ↪→ P ′′ are (valid) renamings, then so

is P ↪→ P ′′.

A main objective for defining the semantics is to charac-

terise renamings semantically. The following property shows

that (up to unresolved references) a renaming is described

by its dependencies and the binding resolution function.

Proposition 5. Suppose P ↪→ P ′ is a valid renaming, and
let L = {ℓ | ℓ ∈ δ (P , P ′) ∨ ∃ℓ′ ∈ δ (P , P ′). ℓ ↣P ℓ

′}; then
L ⊆ φ (P , P ′) and ℓ↣P ⊥ for all ℓ ∈ φ (P , P ′) \ L.

This also means checking whether a renaming is invalid

is cheaper than checking its validity, since we need only

compute the semantics of the original program. Furthermore,

the dependencies of a renaming are themselves characterised

by the extension kernel.

Proposition 6. If P ↪→ P ′ is valid, then δ (P , P ′) has a parti-
tioning that is a subset of L/ ˆEP

.

The value extension kernel thus captures the dependen-

cies inherent in a renaming: for a program P , all declarations
belonging to an

ˆEP -equivalence class must be renamed to-

gether (along with their associated references), or none at

all. In other words, dependencies are value extensions. This
provides an alternative check for invalidity of renamings.

Given a declaration in a semantically meaningful pro-

gram, it then follows from propositions 5 and 6 that we can

uniquely identify a lower bound for the footprint of any valid

renaming containing the given declaration.

Proposition 7. If P
ℓ
↪→ P ′ is valid and ℓ ∈ decl(P), then

φ (P , P ′) ⊇ {ℓ′ | ℓ′ ∈ [ℓ] ˆEP ∨ ∃ℓ
′′ ∈ [ℓ] ˆEP . ℓ

′↣P ℓ
′′}.

This is, in fact, a tight bound since we can construct a

valid renaming with exactly this footprint.

Proposition 8. Suppose JPK is defined, ℓ ∈ decl(P), and v ∈
V does not occur in P , then P ↪→ P ′ is a valid renaming, where
P ′ = P[ℓ′ 7→ v | ℓ′ ∈ [ℓ] ˆEP ∨ ∃ℓ

′′ ∈ [ℓ] ˆEP . ℓ
′↣P ℓ

′′
].

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Moreover, when a valid renaming does not have a mini-

mal footprint it is always possible to decompose it into two

strictly smaller valid renamings, provided the renaming in-

volves a fresh identifier.

Proposition 9 (Factorisation). Suppose P ↪→ P ′ is valid, and
let ℓ and ℓ′ be two distinct declarations in δ (P , P ′) such that
(ℓ, ℓ′) < ˆEP and ρP ′ (ℓ) does not occur in P ; then there exists
P ′′ such that both P ↪→ P ′′ and P ′′ ↪→ P ′ are valid, with
φ (P , P ′′) ⊂ φ (P , P ′) and φ (P ′′, P ′) ⊂ φ (P , P ′).

5 Adequacy of the Semantics

The renaming semantics defined in section 3 leads to an

intuitive theory for characterising renaming. However, it

is also important that it constitutes a sensible abstraction

of what we understand programs really to be. That is, the

abstract semantics should be adequate, in the sense that it is

a sound abstraction of the behavioural meaning of programs.

We now show that our renaming semantics is indeed ade-

quate in this sense, by proving that if two renaming-related

programs have equivalent abstract semantics then they have

the same behaviour.

The model of program behaviour we consider is a deno-

tational semantics that extends the model considered by

Leroy in [21]. Our extensions cover the additional features

of the module system incorporated by our OCaml calculus
(i.e. include statements, module types as members of struc-

tures and signatures, and module with constraints on mod-

ule types). However, we depart from that model in another

important way: our model gives a denotational meaning

to module types, which contribute towards the meaning of

programs. This is because, as discussed in section 3 above,

module types have meaning in the context of renaming. In

contrast, the model of [21] simply ignores all module types

in programs. For lack of space, we only describe the essential

differences of our denotational model compared with [21].

Full definitions can be found in the appendix.

We assume an interpretation, using standard results, of

value expressions (viz. lambda terms) in some domain F
containing an element wrong denoting run-time errors. We

interpret modules in a domainM satisfying:

M = D + (M→ M) +wrong
D = (V ⇀fin F) × (T ⇀fin T) × (M ⇀fin M)

where T is the set in which we interpret module types, de-

fined inductively as the set X satisfying the following:

X = D + (M × X) × X +wrong
D = ℘fin (V) × (T ⇀fin X) × (M ⇀fin X)

The denotational semantics of programs is given by a func-

tion L·Mθ , which interprets syntactic elements in their appro-

priate domains. As usual, it is parameterised by a denota-

tional environment θ mapping identifiers to elements of the

appropriate domain.

The interpretation of module types mirrors the way de-

scriptions of module types are constructed by our abstract

semantics. The main difference, then, between our denota-

tional semantics and that of [21] is that module type deno-

tations affect the meaning of modules. This happens in two

ways. Firstly, the denotation of a module is modified by the

denotation of a module type with which it is annotated.

Lm :MMθ = let d = LmMθ in let τ = LMMθ in d : τ

Here, we utilise a semantic operation d : τ on denotations d
and τ , which essentially inserts ‘dynamic’ type checks. For

example, if d denotes a structure containing some binding

of v but τ denotes a signature not containing a declaration

of v , then v will not be in the domain of d : τ . In the reverse

situation, v will be in the domain of d : τ , but it will return
wrong on being applied to v . This is analogous to the ap-

proach taken in gradual typing frameworks [39, 40], which

insert casts that perform such dynamic checks.

Secondly, this operation is used to insert checks on the

argument to a functor according to the module type declared

for the corresponding parameter.

Lfunctor (x :M) -> mMθ =
let τ = LMMθ in λd .LmMθ [x 7→d :τ]

We note that, for well-typed programs, this approach should

be equivalent to the one ignoring all type annotations. Not-

withstanding, by considering a ‘dynamically typed’ model

we do not have to separately consider well-typedness.

Our abstract renaming semantics is sound with respect to

the denotational semantics defined above. We write LPM to
mean LPMθ⊥ , where θ⊥ is the environment that maps every-

thing to wrong.

Proposition 10 (Adequacy). LPM = LP ′M if P ↪→ P ′ is valid.

The converse result, completeness, does not hold. That is,

there are renamings that preserve the operational meaning

of programs, but which result in different abstract semantics.

This is due to the fact that, according to our semantics, valid

renamings must preserve the shadowing structure.

Example 8. Consider the following variation of example 6.

module M = (struct let foo = true let foo = 42 end
: sig val foo : bool val foo : int end) ;;

M.foo ;;

Here there is shadowing in both the module expression and

the module type. According to our semantics, the only valid

renaming is the one that renames all instances of the identi-

fier foo. However, it would be sufficient (in the sense that

the result is denotationally equivalent) to rename both in-

stances in the module type, but only the latter one in the

module expression. It seems plausible that our semantics

could be refined in order to reason about those cases in

which (un)shadowing is allowed to occur, thus facilitating a

completeness result. We leave this for future work.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

6 Rotor: A Refactoring Tool for OCaml
We have built a prototype refactoring tool for the OCaml
language, called Rotor (Reliable OCaml Tool for OCaml
Refactoring), that carries out renaming based on the analysis

modelled in our abstract semantics. The source code and a

pre-compiled executable are available online [5, 6].

6.1 Implementation

The aim of our implementation was to produce a tool em-

bodying proposition 8 above. That is, given a particular dec-

laration in the input source code, the tool should produce a

patch consisting of the minimal number of changes needed

to correctly enact the renaming. In handling the OCaml
language as a whole, we faced a number of challenges.

– In order to avoid having to build basic language pro-

cessing functionality from scratch, we implemented Rotor

in OCaml itself. This allowed us to reuse the compiler as

a library, providing an abstract representation of the input

source code directly. OCaml’s abstract syntax data type con-
tains source code location information, which we used to

produce accurate patches describing how to apply the re-

naming. We also relied on the recently developed visitors
library [35] to automatically generate boilerplate code for

traversing and processing the abstract syntax trees. This li-

brary provides similar functionality to that found inHaskell’s

SYB [18] and Strafunski [19] libraries, or the Stratego/XT

framework [10].

– For complex, real-world codebases the wider ecosystem

and build pipeline of OCaml becomes relevant, as it intro-

duces extra layers not present in the basic language itself.

Two aspects of this were particularly relevant in implement-

ing Rotor. Firstly, OCaml has a preprocessor infrastructure
called PPX [13]. This means that, in general, the abstract

syntax that is processed by Rotor may contain elements

that do not correspond to actual source code. Moreover it is

not always straightforward to determine when this is and

is not the case, and our analysis must work on the post-

processed code in order to fully compute the information it

needs. Secondly, some build systems (e.g. dune [4]), in order

to implement packaging and namespace separation, utilise

custom mappings between the names of source files and

the names of compiled modules, cf. [22, §8.12]. Rotor must

be aware of these custom mappings to be able to produce

accurate patch information.

– The primary difficulty in implementing our analysis

was computing the binding resolution and dependency in-

formation on which our analysis is built. Since it was not

feasible to reimplement an entire binding analysis for the full

language, we again relied on the OCaml compiler as much

as possible. During type inference the compiler performs

a binding analysis, assigning each binding a unique stamp.

However, it only computes a partial view of the binding reso-

lution function of our analysis. For value identifiers qualified

by a module path (i.e. that refer to a binding inside another

module), the compiler only provides the stamp of the out-

ermost containing module whereas our binding resolution

function provides the ‘stamp’ of the value binding itself.

For this reason, Rotor approximates the abstract loca-

tions of our semantics using these logical paths. In fact, we

had to extend the notion of paths implemented by the com-

piler, since they cannot refer to subcomponents of module

types, or those of functors and their parameters. For each

reference in the program, Rotor can rely on information

provided by the compiler to determine which logical path

it resolves to. For each path, Rotor must then compute the

other paths it depends upon, i.e. which other declarations

are in its value extension. It does this by comparing path pre-

fixes whenever it encounters an include statement, module

type annotation, module type constraint, or functor appli-

cation. For example if, in analysing the dependencies of the

path M.N.foo (representing the foo value binding in the

N submodule of module M), Rotor encounters the module

binding module P = M : T, it would generate dependen-

cies on the paths P.N.foo and T.N.foo. An important point

here is that, in our semantics, the logical paths M.N.foo and

P.N.foo would denote the same (abstract) location, since

module P is bound to module M. However, according to the

information we can extract from the compiler, references

might resolve to either of the paths. Thus, Rotor must treat

them as (logically) distinct dependencies.

Rotor computes dependency information using aworklist

algorithm, beginning with a working set containing just the

path of the declaration to be renamed. For each dependency,

it analyses the codebase to compute which other paths it

depends upon, adding ones it has not previously processed

to the working set. As each dependency is processed, Rotor

also identifies all of its references and builds up the final

patch that can be applied to enact the renaming. At each

point in the analysis, Rotor checks to ensure that the new

name does not introduce shadowing, or modify any shadow-

ing that already occurs. If this is the case, Rotor fails with a

warning to the user. The renaming might also fail if Rotor

detects a declaration must be renamed that is not part of the

input source code (e.g. a library function).

6.2 Rotor in Practice

The aim of Rotor is to provide a practical tool for refactoring

“real world” OCaml code, but in doing this we have made

a number of tradeoffs between the cost of handling certain

features and the benefits that that would bring. We chose not

to support modules that use PPX, because this can give rise to

function declarations being automatically generated during

PPX preprocessing; extending Rotor to handle these cases

would be very hard, as we would need to enable it to reason

about meta-programming. Other aspects include module

type extraction, which lies outside of coreOCaml; our choice

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

here has been to concentrate on a set of language features

that cover all essential aspects of the module system, such

that other aspects could be treated using similar techniques.

We evaluated Rotor on two substantial, real-world code-

bases. Firstly, Jane Street’s standard library overlay [16],

comprising 869 source files in 77 libraries. Secondly, part

of the OCaml (4.04.0) compiler itself [3] consisting of 502

source files. We analysed each codebase to extract its set of

value bindings, which we used as test cases. For each case,

we asked Rotor to rename the binding to a fresh name not

occurring in the codebase and tested the result by attempting

to re-compile.

Setting aside the cases that we do not handle, and the cases

which fail because they generate a requirement to rename

an (external) library function, at the point of writing around

70% of the tests pass; of the remainder, some are doubtlessly

due to bugs, but others are due to the presence of features of

the language so far unhandled by the system.

Data for the successful test cases are given in table 1. This

comprises the number of source files requiring changes and

the number of hunks in the diff patch produced by Rotor.

These measures constitute a good proxy for the theoretical

notion of ‘footprint’ we have considered in our formalism.

We also show the number of renaming dependencies. For

each metric, we give maximum, mean, and mode values. Our

evaluation shows that while renamings usually require only

a small number of changes (both commonly, as well as on

average), they can be surprisingly complex. The largest foot-

print for the successful Jane Street test cases consists of 128

changes in 50 individual files. For the OCaml compiler the

largest footprint is 59 changes across 19 files. The metrics

for the Jane Street testbed have significantly higher values

than for the OCaml compiler, showing that the former code-

base is more complex. Indeed, an examination of the source

code shows much heavier use of module types, module type

constraints, and functors in the Jane Street codebase.

As well as providing test data, this exercise has demon-

strated the value of the dependency concept in practice.

Among the test cases for the OCaml compiler, more than

thirty generate sets of dependencies of size at least 10, and

over a hundred have non-trivial sets of dependencies. For

the Jane Street testbed, over eight hundred cases generate

10 or more dependencies; over a thousand have more than 1.

7 Related Work

A general survey of refactoring research up until 2004 has

been given by Mens and Tourwé [30]. Much work on refac-

toring has been carried out within the object-oriented pro-

gramming paradigm; a standard reference is [12]. Thompson

and Li have carried out a survey of refactoring tools for func-

tional languages [42] including the tools Wrangler [23, 24]

(for Erlang [8]) and HaRe [25] (for Haskell [34]). Renam-

ing, and perhaps refactoring generally, seems to be more

Table 1. Results of experimental evaluation.

Jane Street OCaml Compiler

Max Mean Mode Max Mean Mode

Files 50 5.0 3 19 3.8 3

Hunks 128 7.5 3 59 5.9 3

Dependencies 1127 24.0 19 35 1.6 1

difficult in a language like OCaml with its powerful module

system. Erlang is dynamically typed, but has a flat module

system, and Haskell, whilst possessing a powerful multi-

feature type system, also does not support complex modules.

Object-oriented features overlap somewhat with those of

OCaml’s module system, since the use of inheritance and

interfaces can lead to analogous dependencies across a pro-

gram. Schäfer et al. use an inversion of attribute-grammar

lookup rules to help identify entities within object-oriented

programs [38]. This handles classes and interfaces, but not

the full complexity needed for the OCaml module system

(e.g. functor applications, include statements, and module

type inference); it also requires an existing attribute-based

formalism, which does not exist for OCaml.
It has long been recognised that, for correctness, refac-

torings generally require certain preconditions to hold [14].

As we have already noted, the notion of dependency that

we describe in this paper is something other than a pre-

condition and seems not to have been studied before. Our

approach of constructing a semantic abstraction specifically

to support refactoring in a general purpose programming lan-

guage is also novel, as far as we know. Whiteside et al. have

considered a similar approach for refactoring formal proofs

scripts [44] including, in particular, renaming lemmas. How-

ever, in this setting, lemma names are global free identifiers

and so renaming is simply a matter of replacing uses of the

name, which are readily identified. Our semantic abstrac-

tion also bears some similarity to work on program analysis

via fact extraction. This is the approach behind the code-

Quest tool [15] and, more recently, the QL language [9] and

Semmle platform [1]. The JunGL tool [43] uses this technique

in the context of refactoring to check preconditions. How-

ever, these tools do not consider this technique as a semantic

abstraction in a formal sense as we do. Lin and Holt consider

an abstract formalization of fact extraction [27], and consider

different notions of semantic completeness [28], but this is

not tied to any language in particular and cannot obviously

be applied to refactoring. Separately, Lin has also devised

a (relational) algebraic procedure for binding resolution in

various (imperative) languages, based on fact extraction [26].

Related to this is the recent work on scope graphs for name

resolution [32] and static type checking [7]. This is a generic

framework for specifying (and checking) static semantics

of languages (including binding resolution), but it does not

contain anything that supports or directly corresponds to

our notion of value extension. Poulsen et al. show that scope

graphs represent an abstraction of a generic memory model

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

based on frames, and thus allow interpreters to be derived

from scope graphs [36]. However it is not shown that scope

graphs directly abstract any existing operational models, as

our semantics does. Menarini et al. take a semantic approach

to code review, but do not address how semantics may guide

automatic construction of refactorings [29].

We have formally shown our renaming semantics to be an

abstraction of an operational model of our OCaml calculus,
which is an extension of the model considered in [20, 21] by

Leroy. Rossberg et al. have also given a semantics for a large

subset of OCaml and its module system via a translation

to System Fω [37]. However, since this translation requires

programs to be well-typed, we did not follow this approach.

The CakeML project [17] is a compiler stack for a large subset

of OCaml that is formalised and fully verified in the HOL4

theorem prover [41]. However, it currently contains only the

most basic form of the module system.

8 Future Work

One direction for future work is to extend our calculus and

abstract semantics to cover the extended features of OCaml’s
module system, such as first class and recursive modules,

module type extraction, and type-level module aliases. The

first three should only require straightforward extensions of

the approach we describe in this paper. Modelling type-level

aliases is more challenging, as they interact non-trivially

with module type constraints [2]. In particular, it would in-

volve updating semantic descriptions in a non-local manner.

We would like to further extend our approach in order to

rename identifiers within OCaml’s other namespaces. These

include value types, modules, module types, record fields,

object methods, and data constructors and polymorphic vari-

ants. Again, we anticipate that this should be largely straight-

forward. Module and module type identifiers behave in a

similar way to value identifiers. The relationship between

object methods and object types is analogous to that between

value bindings and module types, and so could be handled by

the semantic structures we have already defined. The case of

value type identifiers is even simpler since type definitions

cannot shadow each other in the same module. The more

difficult cases are those of (polymorphic) data constructors

and record field identifiers, because they can be overloaded

and are resolved by means of a type-based analysis.

As mentioned in the introduction, the notion of renam-

ing we have focussed on is not the only one that might be

sensibly applied. Our motivation was to effect renaming

by applying only the simplest of syntactic transformations,

whilst ensuring the operational meaning of programs was

preserved. This necessitated an unrestricted, whole-program,

scope for changes. However the scope of changes can be lim-

ited by allowing more complex syntactic transformations.

For example, we can limit changes to within a given module

by transforming references to that module into an ‘adapter’

module which client code can treat as if it were the original

version. This would preserve the operational meaning of pro-

grams and could be supported by extending our semantics

to: (1) include binding information for module identifiers;

and (2) restricting the value extension kernel to relate decla-

rations only within the specified module. Alternatively we

could extend the semantics to keep track of a containment

relation between value declarations and module bindings.

Support for renaming of methods in object-oriented pro-

grams in, e.g., Eclipse or Visual Studio allows users to simply

restrict the scope of renaming but without introducing any

mitigation outside of this scope. Although generally unsound,

this is another approach we could support and would require

simply restricting construction of the value extension kernel.

We note that our current notion of value extension kernel

can already directly support other kinds of refactorings. For

example, generalising a function to accept an additional argu-

ment requires identifying the value extension that it belongs

to, since we would also need to generalise the other func-

tions in the extension. Furthermore, although our renaming

theory currently only utilises the equivalence relations in-

duced by value extension kernels, it is interesting to consider

whether there is useful information in the particular struc-

ture of the kernel relation itself. One possibility is to define

a complexity measure for programs based on the ‘distance’

of the value extension kernel from its equivalence closure.

Lastly, our prototype tool, Rotor, needs further develop-

ment. It is our hope that it can become an industrially useful

tool to the OCaml community. Furthermore, we would like

to investigate whether our approach can be integrated into

a mechanised formal framework, such as CakeML [17].

9 Conclusion

In this paper we have presented a framework based on an

abstract denotational semantics that allows us to reason

about the correctness of renaming value bindings within

OCaml modules. We have formally modelled a significant

subset of the OCaml core language and its module system.

Our abstract semantics allows us to characterise renamings

which do not change the operational meaning of programs,

and describe how they compose. A key concept that arose

from our analysis was that of the extension of a value binding,
this being the collection of bindings in the program that

are related via the name-aware structures of the language.

To the best of our knowledge, this is a novel concept not

previously identified in the literature. We implemented our

framework in a prototype tool called Rotor, which is able

to automatically carry out renaming on real-world OCaml
code with a significant degree of success.

Acknowledgments

This work was supported by EPSRC grant no. EP/N028759/1.

https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/N028759/1

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References

[1] [n. d.]. Semmle™. https://www.semmle.com/ (accessed 11th November

2018).

[2] 2012. OCaml Bug Report 5514: “with module” semantics seem broken.

https://github.com/ocaml/ocaml/issues/5514 Last accessed 22nd March

2018. Communicated to us by Leo White.

[3] 2016. The Core OCaml System: Compilers, Runtime System, Base

Libraries (version 4.04.0). https://github.com/ocaml/ocaml/tree/4.04.0
[4] 2018. Dune: A Composable Build System. https://github.com/ocaml/

dune
[5] 2019. A Prototype Refactoring Tool for OCaml. https://gitlab.com/

trustworthy-refactoring/refactorer/
[6] 2019. A Prototype Refactoring Tool for OCaml (Docker Image). https:

//hub.docker.com/r/reubenrowe/ocaml-rotor/
[7] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and

Eelco Visser. 2018. Scopes As Types. PACMPL 2, OOPSLA (2018),

114:1–114:30. https://doi.org/10.1145/3276484
[8] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.

1996. Concurrent Programming in ERLANG (2
nd

ed.). Prentice Hall

International (UK) Ltd., Hertfordshire, UK.

[9] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max

Schäfer. 2016. QL: Object-oriented Queries on Relational Data. In 30th
European Conference on Object-Oriented Programming, ECOOP 2016,
July 18-22, 2016, Rome, Italy. 2:1–2:25. https://doi.org/10.4230/LIPIcs.
ECOOP.2016.2

[10] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco

Visser. 2008. Stratego/XT 0.17. A Language and Toolset for Program

Transformation. Sci. Comput. Program. 72 (2008), 52–70. Issue 1–2.
https://doi.org/10.1016/j.scico.2007.11.003

[11] The Coq Development Team. 2018. The Coq Proof Assistant, version

8.8.0. https://doi.org/10.5281/zenodo.1219885
[12] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don

Roberts. 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[13] Alain Frisch. 2014. PPX and Extension Points. https://lexifi.com/blog/
ppx-and-extension-points (blog post).

[14] William G. Griswold and William F. Opdyke. 2015. The Birth of

Refactoring: A Retrospective on the Nature of High-Impact Software

Engineering Research. IEEE Software 32, 6 (2015), 30–38. https:
//doi.org/10.1109/MS.2015.107

[15] Elnar Hajiyev, Mathieu Verbaere, Oege de Moor, and Kris De Volder.

2005. CodeQuest: Querying Source Code with Datalog. In Compan-
ion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2005,
October 16-20, 2005, San Diego, CA, USA. ACM, New York, NY, USA,

102–103. https://doi.org/10.1145/1094855.1094884
[16] Jane Street. 2018. Standard Library Overlay. https://github.com/

janestreet/core
[17] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.

2014. CakeML: A Verified Implementation of ML. In The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. ACM, New

York, NY, USA, 179–192. https://doi.org/10.1145/2535838.2535841
[18] Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate:

A Practical Design Pattern for Generic Programming. In Proceedings
of TLDI’03: 2003 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, New Orleans, Louisiana, USA,
January 18, 2003. ACM, New York, NY, USA, 26–37. https://doi.org/
10.1145/604174.604179

[19] Ralf Lämmel and Joost Visser. 2003. A Strafunski Application Letter. In

Practical Aspects of Declarative Languages, 5th International Symposium,
PADL 2003, New Orleans, LA, USA, January 13-14, 2003, Proceedings.
Springer-Verlag, Heidelberg Berlin, Germany, 357–375. https://doi.
org/10.1007/3-540-36388-2_24

[20] Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compila-

tion. In Proceedings of POPL’94: 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Portland, Oregon, USA,
January 17–21, 1994. ACM, New York, NY, USA, 109–122. https:
//doi.org/10.1145/174675.176926

[21] Xavier Leroy. 1995. Applicative Functors and Fully Transparent Higher-

Order Modules. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Fran-
cisco, California, USA, January 23–25, 1995. ACM, New York, NY, USA,

142–153. https://doi.org/10.1145/199448.199476
[22] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier

Rémy, and Jérôme Vouillon. 2018. The OCaml System Release 4.07

Documentation and User’s Manual. http://caml.inria.fr/pub/docs/
manual-ocaml/

[23] Huiqing Li and Simon J. Thompson. 2012. A Domain-Specific Lan-

guage for Scripting Refactorings in Erlang. In Fundamental Approaches
to Software Engineering - 15th International Conference, FASE 2012, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2012, Tallinn, Estonia, March 24 – April 1, 2012. Proceedings.
501–515. https://doi.org/10.1007/978-3-642-28872-2_34

[24] Huiqing Li, Simon J. Thompson, George Orösz, andMelinda Tóth. 2008.

Refactoring with Wrangler, Updated: Data and Process Refactorings,

and Integration with Eclipse. In Proceedings of the 7th ACM SIGPLAN
workshop on ERLANG, Victoria, BC, Canada, September 27, 2008. 61–72.
https://doi.org/10.1145/1411273.1411283

[25] Huiqing Li, Simon J. Thompson, and Claus Reinke. 2005. The Haskell

Refactorer, HaRe, and its API. Electr. Notes Theor. Comput. Sci. 141, 4
(2005), 29–34. https://doi.org/10.1016/j.entcs.2005.02.053

[26] Yuan Lin. 2008. Completeness of Fact Extractors and a New Approach to
Extraction with Emphasis on the Refers-to Relation. Ph.D. Dissertation.
http://hdl.handle.net/10012/3865

[27] Yuan Lin and Richard C. Holt. 2004. Formalizing Fact Extraction. Electr.
Notes Theor. Comput. Sci. 94 (2004), 93–102. https://doi.org/10.1016/j.
entcs.2004.01.001

[28] Yuan Lin, Richard C. Holt, and Andrew J. Malton. 2003. Completeness

of a Fact Extractor. In 10th Working Conference on Reverse Engineering,
WCRE 2003, Victoria, Canada, November 13-16, 2003. 196–205. https:
//doi.org/10.1109/WCRE.2003.1287250

[29] Massimiliano Menarini, Yan Yan, and William G. Griswold. 2017.

Semantics-assisted Code Review: An Efficient Toolchain and a User

Study. In Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2017, Urbana, IL, USA,
October 30 – November 03, 2017. IEEE Computer Society, 554–565.

https://doi.org/10.1109/ASE.2017.8115666
[30] Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring.

IEEE Trans. Softw. Eng. 30 (2004), 126–139. Issue 2. https://doi.org/10.
1109/TSE.2004.1265817

[31] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. 2013. Real
World OCaml: Functional Programming for the Masses. O’Reilly Media,

Sebastopol, CA, USA.

[32] Pierre Neron, Andrew P. Tolmach, Eelco Visser, and GuidoWachsmuth.

2015. A Theory of Name Resolution. In Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 205–
231. https://doi.org/10.1007/978-3-662-46669-8_9

[33] William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks.
Ph.D. Dissertation. University of Illinois at Urbana-Champaign.

[34] Simon Peyton Jones (Ed.). 2003. Haskell 98 Language and Libraries:
Revised Report. Cambridge University Press, Cambridge, UK. https:
//haskell.org/onlinereport

[35] François Pottier. 2017. Visitors Unchained. PACMPL 1, ICFP (2017),

28:1–28:28. https://doi.org/10.1145/3110272

https://www.semmle.com/
https://github.com/ocaml/ocaml/issues/5514
https://github.com/ocaml/ocaml/tree/4.04.0
https://github.com/ocaml/dune
https://github.com/ocaml/dune
https://gitlab.com/trustworthy-refactoring/refactorer/
https://gitlab.com/trustworthy-refactoring/refactorer/
https://hub.docker.com/r/reubenrowe/ocaml-rotor/
https://hub.docker.com/r/reubenrowe/ocaml-rotor/
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.5281/zenodo.1219885
https://lexifi.com/blog/ppx-and-extension-points
https://lexifi.com/blog/ppx-and-extension-points
https://doi.org/10.1109/MS.2015.107
https://doi.org/10.1109/MS.2015.107
https://doi.org/10.1145/1094855.1094884
https://github.com/janestreet/core
https://github.com/janestreet/core
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
https://doi.org/10.1007/3-540-36388-2_24
https://doi.org/10.1007/3-540-36388-2_24
https://doi.org/10.1145/174675.176926
https://doi.org/10.1145/174675.176926
https://doi.org/10.1145/199448.199476
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/
https://doi.org/10.1007/978-3-642-28872-2_34
https://doi.org/10.1145/1411273.1411283
https://doi.org/10.1016/j.entcs.2005.02.053
http://hdl.handle.net/10012/3865
https://doi.org/10.1016/j.entcs.2004.01.001
https://doi.org/10.1016/j.entcs.2004.01.001
https://doi.org/10.1109/WCRE.2003.1287250
https://doi.org/10.1109/WCRE.2003.1287250
https://doi.org/10.1109/ASE.2017.8115666
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1007/978-3-662-46669-8_9
https://haskell.org/onlinereport
https://haskell.org/onlinereport
https://doi.org/10.1145/3110272

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

[36] Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco

Visser. 2016. Scopes Describe Frames: A Uniform Model for Memory

Layout in Dynamic Semantics. In 30th European Conference on Object-
Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy. 20:1–
20:26. https://doi.org/10.4230/LIPIcs.ECOOP.2016.20

[37] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. 2014. F-ing

Modules. J. Funct. Program. 24, 5 (2014), 529–607. https://doi.org/10.
1017/S0956796814000264

[38] Max Schäfer, Torbjörn Ekman, and Oege de Moor. 2008. Sound and

Extensible Renaming for Java. In Proceedings of the 23rd ACM SIGPLAN
Conference on Object-oriented Programming Systems Languages and
Applications (OOPSLA ’08). ACM, New York, NY, USA, 277–294. https:
//doi.org/10.1145/1449764.1449787

[39] Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional

Languages. In Scheme and Functional Programming 2006 - Proceed-
ings of the 2006 Workshop on Scheme and Functional Programming,
Portland, Oregon, Sunday September 17, 2006, Robert Bruce Findler

(Ed.). University of Chicago, 1100 East 58th Street, Chicago, IL 60637,

81–92. https://newtraell.cs.uchicago.edu/research/publications/
techreports/TR-2006-06 Technical Report TR-2006-06.

[40] Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In

ECOOP 2007 - Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 - August 3, 2007, Proceedings. 2–27. https:
//doi.org/10.1007/978-3-540-73589-2_2

[41] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4. In

Theorem Proving in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings. 28–32.
https://doi.org/10.1007/978-3-540-71067-7_6

[42] Simon Thompson and Huiqing Li. 2013. Refactoring Tools for Func-

tional Languages. Journal of Functional Programming 23, 3 (2013),

293–350. https://doi.org/10.1017/S0956796813000117
[43] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. 2006. JunGL: A

Scripting Language for Refactoring. In 28th International Conference
on Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006.
ACM, New York, NY, USA, 172–181. https://doi.org/10.1145/1134311

[44] Iain Whiteside, David Aspinall, Lucas Dixon, and Gudmund Grov.

2011. Towards Formal Proof Script Refactoring. In Intelligent Computer
Mathematics, James H. Davenport,WilliamM. Farmer, Josef Urban, and

Florian Rabe (Eds.). Springer, Berlin/Heidelberg, Germany, 260–275.

https://doi.org/10.1007/978-3-642-22673-1_18

https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1017/S0956796814000264
https://doi.org/10.1017/S0956796814000264
https://doi.org/10.1145/1449764.1449787
https://doi.org/10.1145/1449764.1449787
https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2006-06
https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2006-06
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1017/S0956796813000117
https://doi.org/10.1145/1134311
https://doi.org/10.1007/978-3-642-22673-1_18

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Appendix

Here we elaborate on the results stated in the main body of

the paper, and provide proofs of those results that are not

included in the Coq formalisation.

The Abstract Renaming Semantics

It was stated in section 3 that, under certain conditions, the

semantics are deterministic. Here, we give the formal state-

ment of this property.

We first have to define a notion of well-behavedness for

semantic descriptions and environments. Given an interpre-

tation of locations as identifiers (i.e. a syntactic reification

function), a semantic description is well-behaved when each

location in a (possibly nested) structural description corre-

sponds to an identifier that is unique within that description.

Definition 18 (Well-behaved Descriptions). We define the

subset of semantic descriptions that are well-behaved with

respect to a given syntactic reification function ρ as the

smallest set satisfying the following.

• A structural description D is well-behaved w.r.t. ρ when:

(i) ℓ ∈ D implies ℓ ∈ dom(ρ) and ρ (ℓ) ∈ V ;

(ii) (ℓ,∆) ∈ D implies ℓ ∈ dom(ρ), ρ (ℓ) ∈ M ∪T and ∆
is well-behaved w.r.t. ρ; and

(iii) if ρ (ℓ) = ρ (ℓ′) for ℓ, ℓ′ ∈ D or (ℓ,∆), (ℓ′,∆′) ∈ D,
then also ℓ = ℓ′.

• A functorial description (ℓ:∆)�∆′ is well-behaved w.r.t.

ρ when both ∆ and ∆′ are well-behaved w.r.t. ρ.

That is, a semantic description that is well-behaved for ρ is

proper for ρ ‘all the way down’.

We say that an environment Γ is well-behaved for a syn-

tactic reification function ρ when Γ(v) = ℓ implies ρ (ℓ) = v
for every ℓ , ⊥, and each ∆ι such that Γ(ι) = ∆ι (ι ∈ M∪T)

is well-behaved w.r.t. ρ. We say that an environment Γ or

semantic description ∆ is well-behaved for a semantics Σ
when it is well-behaved w.r.t. the reification function ρ for

which ρ (ι) = ℓ if and only if Σρ (ι) = ℓ and ℓ < dom(Σ↣).
We denoted by ranI (Γ) the set ran(ΓV) ∪ {ℓ | ∃∆. (ℓ,∆) ∈
ran(ΓM)}.

Lemma 1 (Determinism). For any program fragment σ , se-
mantics Σ, and environment Γ that is well-behaved for Σ and
satisfies (dom(Σρ) ∪ ranI (Γ)) ∩ dom(σ) = ∅, there is at most
one Σ′ and one ∆ such that Σ; Γ ⊢ σ ⇝ Σ′ or Σ; Γ ⊢ σ ⇝
(∆, Σ′).

Proof. Given in the Coq formalisation. By induction on the

definition of the semantics. In fact, we need to use a stronger

hypothesis involving the following additional invariants:

(1) Σ′ contains only locations in dom(Σρ) and dom(σ);
(2) Γ is well-behaved also for Σ′;
(3) for judgements Σ; Γ ⊢ σ : (∆, Σ′), then ∆ is well-

behaved for Σ′; and
(4) ∆ well-behaved w.r.t. Σ implies ∆ well-behaved w.r.t.

Σ′, for all ∆. □

Thus, we specify that JσKΣ;Γ andDΣ;Γ (σ) are only defined
when Γ is well-behaved for Σ and (dom(Σρ) ∪ ranI (Γ)) ∩
dom(σ) = ∅. A consequence of lemma 1 is that (when

defined) DΣ;Γ (σ) is well-behaved w.r.t. ρ, where JσKΣ;Γ =
(↣,E, ρ).
The following property is necessary for a semantics to

correspond to an actual program fragment.

Definition 19 (Properness). A semantics Σ = (↣,E, ρ) is
called proper when it satisfies the following conditions.

(i) dom(↣) ∩ ran(↣) = ∅.
(ii) ℓ↣ ℓ′ and ℓ′ , ⊥ implies ρ (ℓ) = ρ (ℓ′).
(iii) ρ (ℓ) ∈ V , for all l ∈ dom(↣) ∪ ran(↣) with ℓ , ⊥.
(iv) ρ (ℓ) = ρ (ℓ′) ∈ V , ℓ < dom(↣) and ℓ′ < dom(↣),

for all (ℓ, ℓ′) in E.

Note that the empty semantics is trivially proper. We can

show that properness is preserved by the semantics.

Lemma2. Let Σ be proper, and environment Γ be well-behaved
for Σ; if Σ; Γ ⊢ σ ⇝ Σ′ or Σ; Γ ⊢ σ ⇝ (∆, Σ′) holds then Σ′ is
proper.

Proof. By induction on the semantic rules. Given in the Coq

formalisation. □

The semantic characterisation of the syntactically defined

references and declarations given in proposition 2 is a special

case of the following lemma. We write decl(Σ) to denote the
set domV (Σρ) \ dom(Σ↣).

Proposition 11. If JσKΣ;Γ = Σ′ then:
(i) ref (σ) = dom(Σ′↣) \ dom(Σ↣).
(ii) decl(σ) = decl(Σ′) \ decl(Σ).

Proof. By induction on the semantic rules. Given in the Coq

formalisation. □

We now justify the statement of validity for whole pro-

gram renamings.

Proposition 3. P ↪→ P ′ is valid iff JPK and JP ′K are defined
and JPK ∼ JP ′K.

Proof. Notice that trivially Γ⊥ is well-behaved for Σ⊥ and,

when restricting to pairs (Σ, Γ) such that Γ is well-behaved

for Σ, we have [(Σ⊥, Γ⊥)]∼ = {(Σ⊥, Γ⊥)}, whence the state-
ment follows directly from definition 17. □

We now consider some properties pertaining to the struc-

ture of the semantics and descriptions synthesised by the

semantic rules. In an abuse of notation, we will writeL (∆) to
denote the set of all locations appearing in (a subcomponent)

of ∆. For an environment Γ and identifier ι ∈ M∪T , we then

write ΓD (ι) for the description ∆ such that there exists ℓ with
Γ(ι) = (ℓ,∆), and ranD (Γ) for the set

⋃
ι∈M∪T L (ΓD (ι)).

Lemma 3. If Σ; Γ ⊢ σ ⇝ (∆, Σ′) then L (∆) ⊆ dom(σ) ∪
ranD (Γ).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

Proof. By induction on the semantic rules. Included in the

Coq formalisation. □

Lemma 4. If Σ; Γ ⊢ σ ⇝ (∆, Σ′) then E′ \ E ⊆ L × L, for
L = dom(σ) ∪ ranD (Γ), where E and E′ are the extension
kernels of Σ and Σ′, respectively.

Proof. By induction on the semantic rules. Included in the

Coq formalisation. □

The following concepts of inclusion, relevance and fresh-

ness for semantics are central to proving many of the results

in this paper. To express these properties, we use the fol-

lowing notation for partial functions f and д, and (binary)

relation R:

• f ⊆ д denotes that, for all x ∈ dom(f), if f (x) = y
then д(x) = y;
• f \ д denotes the function defined by (f \ д) (x) = y
if and only if f (x) = y and either д(x) undefined or

д(x) , y;
• f ⊆ R denotes that f (x) = y only if (x ,y) ∈ R.

The use of set-theoretic notation here is justified by the view

of (partial) functions as sets of mappings (i.e. pairs). Notice

that the following property holds.

Proposition 12. Suppose that f (x) = y but x < dom(f \ д),
then д(x) = y.

Proof. Suppose, for contradiction, that in fact д(x) is unde-
fined or else д(x) , y. But then from the assumption that

f (x) = y we have, by definition, that (f \ д) (x) = y, which
contradicts the assumption that x < dom(f \ д). □

The definitions of inclusion, relevance and freshness are

as follows.

Definition 20 (Inclusion). We say that Σ′ includes Σ, and
write Σ ⊆ Σ′, when the following hold: (1) Σ↣ ⊆ Σ′↣;

(2) ΣE ⊆ Σ′E; and (3) Σρ ⊆ Σ′ρ . When we additionally have

ℓ ∈ dom(Σρ) \ dom(Σ↣) implies ℓ ∈ dom(Σ′ρ) \ dom(Σ′↣)
for all locations ℓ ∈ L, we say that Σ′ properly includes Σ.

Definition 21 (Relevance). For semantics Σ and Σ′, and a

set of locations L ⊆ L, we say Σ′ is relevant for L over Σ, and
write Σ′ \ Σ ⊆ L, when the following hold:

(1) Σ′↣ \ Σ↣ ⊆ L × (L ∪ dom(Σρ))
(2) Σ′ρ \ Σρ ⊆ L × I

(3) Σ′E \ ΣE ⊆ (L ∪ dom(Σρ))
2 \ dom(Σρ)

2

Definition 22 (Freshness). We say that a set L ⊆ L of

locations is fresh for a semantics Σ = (↣,E, ρ) when the

following properties hold for all locations ℓ ∈ L:

(1) ℓ ∈ dom(↣) ∪ ran(↣) ⇒ ℓ < L
(2) (∃ℓ′. (ℓ, ℓ′) ∈ E ∨ (ℓ′, ℓ) ∈ E) ⇒ ℓ < L
(3) ℓ ∈ dom(ρ) ⇒ ℓ < L

For proper semantics, these properties are guaranteed by

the interpretation function.

Lemma 5. If JσKΣ;Γ = Σ′ with Σ proper then: (1) Σ′ properly
includes Σ; (2) Σ′ is relevant for dom(σ) over Σ; and (3) dom(σ)
is fresh for Σ.

Proof. Given in the Coq formalisation. The freshness prop-

erty follows fromproperness and the preconditions for JσKΣ;Γ
to be defined (cf. definition 15)—namely that dom(Σρ) ∩
dom(σ) = ∅. The other properties are shown by induction

on syntactic structure. □

Thus, the major utility of definitions 20 to 22 lies in the

following result.

Lemma 6. Take semantics Σ1, Σ2, Σ′1 and Σ′
2
, with a set of

locations L ⊆ L such that the following conditions hold:
• Σ1 ⊆ Σ′

1
, and Σ2 ⊆ Σ′

2
;

• Σ′
1
\ Σ1 ⊆ L and Σ′

2
\ Σ2 ⊆ L; and

• L is fresh for both Σ1 and Σ2.
Then Σ′

1
∼ Σ′

2
implies that Σ1 ∼ Σ2.

Proof. Let Σ1 = (↣1,E1, ρ1), Σ2 = (↣2,E2, ρ2), with Σ′
1
=

(↣′
1
,E′

1
, ρ ′

1
), and Σ′

2
= (↣′

2
,E′

2
, ρ ′

2
). Since Σ′

1
∼ Σ′

2
, we

have by definition 16 that↣′
1
= ↣′

2
, E′

1
= E′

2
, dom(ρ ′

1
) =

dom(ρ ′
2
), ρ ′

1
(ℓ) ∈ V ⇔ ρ ′

2
(ℓ) ∈ V , and ρ ′

1
(ℓ) = ρ ′

2
(ℓ) if

ρ ′
1
(ℓ) < V . We must show the following:

(↣1 =↣2): To see that↣1 ⊆ ↣2, take (ℓ, ℓ′) ∈ ↣1.

Since Σ1 ⊆ Σ′
1
it follows that ↣1 ⊆ ↣′1, and thus that

(ℓ, ℓ′) ∈ ↣′
1
. Moreover, since ↣′

1
= ↣′

2
it then follows

that (ℓ, ℓ′) ∈ ↣′
2
. Now, since L is fresh for Σ1, we have

that ℓ < L and therefore, since Σ′
2
is relevant for L over

Σ2, it follows that ℓ < dom(↣′
2
\↣2). However, since we

have that (ℓ, ℓ′) ∈ ↣′
2
, by proposition 12 it must be that

(ℓ, ℓ′) ∈ ↣2 as required. A symmetric chain of reasoning

shows that↣2 ⊆↣1, hence we conclude.

(E1 = E2): To see that E1 ⊆ E2, take (ℓ, ℓ′) ∈ E1 and rea-

son as above that (ℓ, ℓ′) ∈ E′
2
. Since, L is fresh for Σ1, it

follows that neither ℓ ∈ L nor ℓ′ ∈ L. Then, since Σ′
2
is rel-

evant for L over Σ2, we have by clause (3) of definition 21

that for any (ℓ1, ℓ2) ∈ E
′
2
\ E2 it must be that either ℓ1 ∈ L or

ℓ2 ∈ L. Thus, (ℓ, ℓ
′) < E′

2
\E2. Therefore, since (ℓ, ℓ

′) ∈ E′
2
, it

then follows by simple set-theoretic reasons that (ℓ, ℓ′) ∈ E2
as required. Again, a symmetric chain of reasoning demon-

strates that E2 ⊆ E1, hence we conclude.
(dom(ρ1) = dom(ρ2)): To see dom(ρ1) ⊆ dom(ρ2), take

ℓ ∈ dom(ρ1). Since Σ1 ⊆ Σ′
1
, we have ρ1 ⊆ ρ ′

1
and thus that

ℓ ∈ dom(ρ ′
1
). Then, since dom(ρ ′

1
) = dom(ρ ′

2
), it follows

that ℓ ∈ dom(ρ ′
2
). Also, ℓ < L by clause (3) of definition 22

since L is fresh for Σ1. Thus, since Σ
′
2
is relevant for L over Σ2,

we have by clause (2) of definition 21 that ℓ < dom(ρ ′
2
\ ρ2).

However, since we have that ℓ ∈ dom(ρ ′
2
), by proposition 12

it must be that ℓ ∈ dom(ρ2) as required. A symmetric chain

of reasoning shows that dom(ρ2) ⊆ dom(ρ1), hence we

conclude.

(ρ1 (ℓ) ∈ V ⇔ ρ2 (ℓ) ∈ V): Assume (ℓ,v) ∈ ρ1 for some

v ∈ V ; we show that there is some v ′ ∈ V with (ℓ,v ′) ∈ ρ2.

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Since Σ1 ⊆ Σ′
1
, we have ρ1 ⊆ ρ ′

1
and thus that (ℓ,v) ∈ ρ ′

1
.

Then, since ρ ′
1
(ℓ) ∈ V ⇔ ρ ′

2
(ℓ) ∈ V , it follows that there

is some v ′ ∈ V such that (ℓ,v ′) ∈ ρ ′
2
. Also, ℓ < L since L

is fresh for Σ1. Therefore, since Σ
′
2
is relevant for L over Σ2,

we have that ℓ < dom(ρ ′
2
\ ρ2). However, since we have that

(ℓ,v ′) ∈ ρ ′
2
, by proposition 12 it must be that (ℓ,v ′) ∈ ρ2

as required. A symmetric chain of reasoning shows that the

converse direction holds, hence we conclude.

(ρ1 (ℓ) = ρ2 (ℓ) if ρ1 (ℓ) < V): Assume ρ1 (ℓ) = ι and ι < V .

Since Σ1 ⊆ Σ′
1
, we have ρ1 ⊆ ρ ′

1
and thus that ρ ′

1
(ℓ) = ι.

Then, since ρ ′
1
(ℓ) < V implies ρ ′

1
(ℓ) = ρ ′

2
(ℓ), it follows that

ρ ′
2
(ℓ) = ι. Also, ℓ < L since ℓ ∈ dom(ρ1) (by assumption)

and L is fresh for Σ1. Thus, since Σ
′
2
is relevant for L over Σ2,

we have by clause (2) of definition 21 that ℓ < dom(ρ ′
2
\ ρ2).

However, since we have that ρ ′
2
(ℓ) = ι, by proposition 12 it

must be that ρ2 (ℓ) = ι as required. □

This is used in the proofs of lemmas 10 and 11 and theo-

rem 16 in order to infer the necessary conditions for applying

the inductive hypothesis, namely relatedness of the seman-

tics for corresponding sub-fragments of programs.

We now show some simple properties to do with preser-

vation of properness and equivalence of semantics.

Lemma 7. Suppose {ℓ} is fresh for Σ, with ℓ , ⊥; then Σ is
proper if and only if Σ[ℓ 7→ v] is.

Proof. Immediate, by definition 19, since the only difference

between the two semantics is the mapping of ℓ to v in the

reification functions, and the freshness constraint entails

that ℓ does not occur in the binding resolution function or

the extension. □

Lemma 8. Let v,v ′ ∈ V with ℓ < dom(Σρ), ℓ < dom(Σ′ρ),
ℓ < ran(Γ1), and ℓ < ran(Γ2) for ℓ , ⊥; then:

1. Σ ∼ Σ′ if and only if Σ[ℓ 7→ v] ∼ Σ′[ℓ 7→ v ′].
2. Γ1 ∼ Γ2 only if Γ1[v 7→ ℓ] ∼ Γ2[v

′ 7→ ℓ].

Proof. Immediate, by definition 16. For the case of semantics,

the result obtains because we have only updated the reifi-

cation functions with mappings to value identifiers in both

cases. For environments, we have only updated the value

identifier mappings, in each case to the same location thus

preserving the equality of the ranges. □

Lemma 9. let Σ and Σ′ be semantics and ℓ a location such
that there is no ℓ′ such that (ℓ, ℓ′) ∈ ΣE or (ℓ, ℓ′) ∈ Σ′E; then
Σ[{ℓ} ⊗ ∆] ∼ Σ′[{ℓ} ⊗ ∆′] implies Σ ∼ Σ′, for all ∆, ∆′.

Proof. The reification and binding resolution functions are

not updated by the join operation. Thus it remains to show

that ΣE = Σ′E. We show one direction of the inclusion; the

other is symmetric. Let E+ and E
′
+ be the extension kernels of

Σ[{ℓ} ⊗ ∆] and Σ′[{ℓ} ⊗ ∆′], respectively. Suppose (ℓ1, ℓ2) ∈
ΣE. Since E+ = ΣE ∪ ({ℓ} ⊗Σρ ∆), thus also (ℓ1, ℓ2) ∈ E+.
Since Σ[{ℓ} ⊗ ∆] ∼ Σ′[{ℓ} ⊗ ∆′], it follows that E+ = E

′
+.

Therefore (ℓ1, ℓ2) ∈ E
′
+. Notice that ℓ1 , ℓ since there is

no ℓ′ such that (ℓ, ℓ′) ∈ ΣE. Moreover, by definition 10, all

pairs in {ℓ} ⊗Σ′ρ ∆′ are of the form (ℓ, ℓ′) for some ℓ′. Thus

(ℓ1, ℓ2) < {ℓ} ⊗Σ′ρ ∆′. Since E′+ = Σ′E∪ ({ℓ} ⊗Σ′ρ ∆′) it follows
that we must have (ℓ1, ℓ2) ∈ Σ

′
E. □

We now turn attention to the results of the renaming

theory. Proposition 5 is a corollary of the following property

that holds of our semantics. It is proved by induction on

syntactic structure.

Lemma 10. If Σ; Γ ⊢ σ ↪→ σ ′, with JσKΣ;Γ = (↣′,E′, ρ ′),
then φ (σ ,σ ′) = U ∪ L ∪C , where:
• U ⊆ {ℓ | ℓ↣′ ⊥},
• L = {ℓ | ℓ ∈ δ (σ ,σ ′) ∨ ∃ℓ′ ∈ δ (σ ,σ ′). ℓ↣′ ℓ′}, and
• C ⊆ {ℓ | ∃ℓ′ , ⊥. ℓ′ ∈ decl(Σ) ∧ ℓ↣′ ℓ′}.

From this we can immediately derive proposition 5 by

straightforwardly instantiating it with σ ≡ P and σ ′ ≡ P ′,
and interpreting with respect to Σ = Σ⊥ and Γ = Γ⊥. In this

case, notice that C = ∅.

Proposition 5. Suppose P ↪→ P ′ is a valid renaming, and
let L = {ℓ | ℓ ∈ δ (P , P ′) ∨ ∃ℓ′ ∈ δ (P , P ′). ℓ ↣P ℓ

′}; then
L ⊆ φ (P , P ′) and ℓ↣P ⊥ for all ℓ ∈ φ (P , P ′) \ L.

Proposition 6 is a corollary of the following property of

our semantics. Again, it is proved by induction on syntactic

structure.

Lemma 11. Let Σ1 = (↣1,E1, ρ1), Σ2 = (↣2,E2, ρ2), such
that both JσKΣ1;Γ1 and Jσ ′KΣ2;Γ2 are defined and, moreover,
JσKΣ1;Γ1 ∼ Jσ ′KΣ2;Γ2 ; if D has a partitioning P ⊆ L/ ˆE1

, where
D = {ℓ | ℓ ∈ (domV (ρ1) \ dom(↣1)) ∧ ρ1 (ℓ) , ρ2 (ℓ)},
then also D ∪ δ (σ ,σ ′) has a partitioning P ′ ⊆ L/ ˆE′ , where
JσKΣ1;Γ1 = (↣′,E′, ρ ′).

Deriving proposition 6 from this is done by straightfor-

wardly instantiating it with σ ≡ P and σ ′ ≡ P ′, and inter-

preting with respect to Σ1 = Σ2 = Σ⊥ and Γ1 = Γ2 = Γ⊥; in
this case, notice that D = ∅.

Proposition 6. If P ↪→ P ′ is valid, then δ (P , P ′) has a parti-
tioning that is a subset of L/ ˆEP

.

Proposition 8 is a corollary of the following result.

Lemma 12. Let JσKΣ;Γ ⊆ Σ′, where for Σ = (↣Σ,EΣ, ρΣ)
and Σ′ = (↣,E, ρ), with Σ and Σ′ proper; then for some given
ℓ ∈ decl(Σ′) and v ∈ V not occurring in σ or Σ′, define the
following:
• L = {ℓ′ | ℓ′ ∈ [ℓ] ˆE ∨ ∃ℓ

′′ ∈ [ℓ] ˆE. ℓ
′↣ ℓ′′};

• σ ′ = σ [ℓ′ 7→ v | ℓ′ ∈ L ∩ dom(σ)]; and
• Σ′ = (↣Σ,EΣ, ρΣ[ℓ

′ 7→ v | ℓ′ ∈ L ∩ dom(ρΣ)]).
Furthermore, define Γ′ as follows: if there is (a necessarily
unique) v ′ such that Γ(v ′) ∈ [ℓ] ˆE then Γ′ behaves as Γ except
Γ′(v) = Γ(v ′) and Γ′(v ′) = Γ(v); otherwise, Γ′ = Γ. Then
(Σ, Γ) ∼ (Σ′, Γ′), Jσ ′KΣ′;Γ′ is defined, and JσKΣ;Γ ∼ Jσ ′KΣ′;Γ′ .

Proof. By induction on syntactic structure. Given in the Coq

formalisation. □

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

Proposition 8. Suppose JPK is defined, ℓ ∈ decl(P), and v ∈
V does not occur in P , then P ↪→ P ′ is a valid renaming, where
P ′ = P[ℓ′ 7→ v | ℓ′ ∈ [ℓ] ˆEP ∨ ∃ℓ

′′ ∈ [ℓ] ˆEP . ℓ
′↣P ℓ

′′
].

Proof. By straightforward instantiation of lemma 12 with

σ ≡ P , interpreted with respect to Σ = Σ⊥ and Γ = Γ⊥.
In this case, the definition of P ′ arises because we have by
lemma 5 that JPK is relevant for dom(P) over Σ⊥ and thus,

by definition 21, it follows that L ⊆ dom(P). □

Adequacy

Here we give the full definition of our denotational model

of behaviour for the OCaml module calculus. We first reiter-

ate the definition of the denotational domain in which we

interpret programs.

We assume an interpretation, using standard results, of

value expressions (viz. lambda terms) in some domain F
containing an element wrong denoting run-time errors. We

interpret modules in a domainM satisfying:

M = D + (M→ M) +wrong
D = (V ⇀fin F) × (T ⇀fin T) × (M ⇀fin M)

where T is the domain (defined below) in which we interpret

module types. For d ∈ D we will write ι ∈ dom(d) to mean

that ι is in the domain of the appropriate component ofd , and
d (ι) to mean the application of the appropriate component of

d to ι. Ford,d ′ ∈ D, we writed+d ′ for the module denotation

(also in D) for which (d + d ′) (ι) = d ′(ι) if ι ∈ dom(d ′),
(d + d ′) (ι) = d (ι) if ι ∈ dom(d) \ dom(d ′), and undefined

otherwise. We define d +wrong to denote wrong. We will

also sometimes describe an element d ∈ D as a (finite) set of

pairs of the appropriate sorts of elements.

We interpret module types as elements in the initial alge-

bra T of the following functor F (in the category of sets):

F (X) = D (X) + (M × X) × X +wrong
D (X) = ℘fin (V) × (T ⇀fin X) × (M ⇀fin X)

For τ ∈ D (T) we abuse notation and write V (τ) for the
first component of τ ; we also write τ (ι) to mean the applica-

tion of the appropriate component of τ to ι, and dom(τ) to
mean the combined domains of the second and third compo-

nents of τ . For τ ,τ ∈ D (T) we write τ + τ ′ for the module

type denotation (also in D (T)) for which domV (τ + τ ′) =
domV (τ)∪domV (τ ′), with (τ +τ ′) (ι) = τ ′(ι) if ι ∈ dom(τ ′),
(τ + τ ′) (ι) = τ (ι) if ι ∈ dom(τ) \ dom(τ ′), and undefined

otherwise. We define τ +wrong to denote wrong. We will

also sometimes describe an element τ ∈ D (T) as a (finite) set
of value identifiers and pairs of appropriate elements.

The denotational interpretation function L·Mθ is defined

in fig. 5. It is parameterised by a denotational environment

θ mapping value identifiers to elements of F, module type

identifiers to elements of T, and module identifiers to pairs

consisting of an element of M and an element of T. This
function interprets value expressions in F, module types in

T, and module expressions as a pair of an element inM and

an element in T. Thus, for a module expression, L·Mθ also

synthesizes (the meaning of) its corresponding module type.

We write LσM to mean LσMθ⊥ , where θ⊥ is the environment

that maps value and module type identifiers to wrong and
module identifiers to the pair (wrong,wrong).
As a notational convenience, for d ∈ D and τ ∈ D (T)

we write θ + (d,τ) to denote the environment θ updated by

the mappings in d , with mappings of module identifiers in

d augmented by the corresponding module types in τ . That
is, if x ∈ dom(d), then (θ + (d,τ)) (x) = (d (x),τ ′) where
τ ′ = τ (x) if x ∈ dom(τ) and τ ′ = wrong otherwise.

The following coercion operation is used to give meaning

to functors and module type annotations.

Definition 23 (Denotational Coercion). The (infix) operator

(:), of typeM×T→ M, is defined inductively on the structure

of module type denotations as follows.

d :τ =




V ∪M ∪T if d ∈ D ∧ τ ∈ D (T)

λd ′.(d (d ′:τ1)):τ2 if d ∈ M→ M ∧ τ = ((x ,τ1),τ2)

wrong otherwise

where V = {(v,d (v)) | v ∈ dom(d) ∧v ∈ V (τ)}

∪ {(v,wrong) | v < dom(d) ∧v ∈ V (τ)}

M = {(x ,d (x):τ (x)) | x ∈ dom(d) ∧ x ∈ dom(τ)}

∪ {(x ,wrong) | x < dom(d) ∧ x ∈ dom(τ)}

T = {(t ,τ (t)) | t ∈ dom(τ)}

We also define an operation to ‘promote’ a module type

denotation to a module denotation. This operation reifies the

structure of the module type denotation, building constant-

valued functors for (sub)modules having a functor type. It is

used to define the meaning of module types in various cases.

Definition 24 (Promotion). We define (·)∗ : T → M by

induction on the structure of module type denotations.

wrong∗ = wrong

τ ∗ = {(v,wrong) | v ∈ V (τ)} if τ ∈ D (T)

∪ {(t ,τ (t) | t ∈ dom(τ)}

∪ {(x ,τ (x)∗) | x ∈ dom(τ)}

((x ,τ1),τ2)
∗ = λ_.τ2

∗

To prove the adequacy result, we must define how the

elements of the set-theoretic semantics of section 3 relate to

those of the denotational semantics defined in section 5. We

first consider how the meanings of module types in the two

semantics are related.

Definition 25. The relation τ |=ρ ∆, for a module type

denotation τ ∈ T and a semantic description ∆ ∈ D w.r.t. a

reification function ρ, is defined inductively as follows.

(1) wrong |=ρ ∆ for all ∆, ρ.
(2) τ |=ρ D, for τ ∈ D (T), if:

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

LxMθ = θ (x)

Lq1(q2)Mθ = let (d ′, _) = Lq2Mθ in match Lq1Mθ with

| (d ∈ M→ M, ((x, τ1), τ2)) → (d (d ′), τ2)

| (d ∈ M→ M, _) → (d (d ′), wrong)

| _→ (wrong, wrong)

Lq.xMθ = match LqMθ with

| (d ∈ D, τ ∈ D (T)) when x ∈ dom(τ) →

if x ∈ dom(d) then (d (x), τ (x)) else (wrong, τ (x))

| (d ∈ D, τ ∈ D (T)) when x ∈ dom(d) → (d (x), wrong)

| _→ (wrong, wrong)

(a) Semantics of (extended) module paths.

LtMθ = θ (t)

Lp.tMθ = let (_, τ) = LpMθ in if τ ∈ D (T) and t ∈ dom(τ)

then τ (t) else wrong

Lfunctor (x :M1) -> M2Mθ = let τ = LM1Mθ in

let τ ′ = LM2Mθ [x 7→ (τ ∗,τ)] in ((x, τ), τ ′)

LM with module x = qMθ = let (_, τ ′) = LqMθ in let τ = LMMθ in

if τ ∈ D (T) then LMMθ [x 7→ τ ′] else wrong

LM with module x := qMθ = let τ = LMMθ in

if τ ∈ D (T) then τ \ x else wrong

Lsig S endMθ = LSMθ

LεMθ = ∅

Lval v : _ ;; sMθ = let τ = LsMθ [v 7→wrong] in {v } + τ

Lmodule x :M ;; sMθ = let τ = LMMθ in

let τ ′ = LsMθ [x 7→ (τ ∗,τ)] in {(x, τ) } + τ
′

Lmodule type t ;; sMθ = let τ = LsMθ [t 7→ ∅] in {(t, ∅) } + τ

Lmodule type t = M ;; sMθ = let τ = LMMθ in

let τ ′ = LsMθ [t 7→ τ] in {(t, τ) } + τ
′

Linclude M ;; sMθ = let τ = LMMθ in if τ ∈ D (T) then

let τ ′ = LsMθ+(τ ∗,τ) in τ + τ ′

else wrong

(b) Semantics of module types.

Lstruct s endMθ = LsMθ
Lfunctor (x :M) -> mMθ = λd . if d = wrong then wrong else

let τ = LMMθ in LmMθ [x 7→ (d :τ ,τ)]

Lm1(m2)Mθ = let (d ′, _) = Lm2Mθ in match Lm1Mθ with

| (d ∈ M→ M, ((x, τ1), τ2)) → (d (d ′), τ2)

| (d ∈ M→ M, _) → (d (d ′), wrong)

| _→ (wrong, wrong)

Lm :MMθ = let d = LmMθ in let τ = LMMθ in (d :τ , τ)

LεMθ = (∅, ∅)

Llet v = e ;; sMθ = let f = LeMθ in let (d, τ) = LsMθ [v 7→ f] in

({(v, f) } + d, {v } + τ)

Lmodule x = m ;; sMθ = let (d, τ) = LmMθ in

let (d ′, τ ′) = LsMθ [x 7→(d,τ)] in

({(x, d) } + d ′, {(x, τ) } + τ ′)

Lmodule type t = M ;; sMθ = let τ = LMMθ in let (d, τ ′) = LsMθ [t 7→ τ] in

({(t, τ) } + d, {(t, τ) } + τ ′)

Linclude m ;; sMθ = let (d, τ) = LmMθ in if d ∈ D then

let (d ′, τ ′) = LsMθ+(d,τ) in (d + d ′, τ + τ ′)

else (wrong, wrong)

(c) Semantics of module expressions.

Lmodule x = m ;; PMθ = let (d, τ) = LmMθ in LPMθ [x 7→ (d,τ)] Lp.vMθ = let (d, _) = LpMθ in if v ∈ dom(d) then d (v) else wrong

(d) Semantics of programs and module paths in value expressions.

Figure 5. The denotational semantics of the OCaml calculus.

(i) ∀ℓ ∈ D: ℓ ∈ dom(ρ) and ρ (ℓ) ∈ V (τ); and
(ii) ∀(ℓ,∆) ∈ D: ℓ ∈ dom(ρ), ρ (ℓ) ∈ dom(τ) and

τ (ρ (ℓ)) |=ρ ∆.
(3) ((x ,τ),τ ′) |=ρ ((ℓ,∆),∆′) if:

ℓ ∈ dom(ρ), ρ (ℓ) = x , τ |=ρ ∆, and τ ′ |=ρ ∆′.

When τ |=ρ ∆ holds, we say that the module type denotation

τ models the semantic description ∆ (w.r.t. ρ).

This relation satisfies a monotonicity property.

Lemma 13. If τ |=ρ ∆ and ρ ⊆ ρ ′ then τ |=ρ′ ∆.

Proof. Straightforward induction on the definition of |=ρ . □

The heart of the refinement result that we show below,

from which adequacy follows, is a logical relation asserting

that two module denotations both constitute the same ‘im-

plementation’ of a module description in the set-theoretic

semantics with respect to two given reification functions.

Definition 26. For ∆ ∈ D, d,d ′ ∈ M, and reification func-

tions ρ, ρ ′, the logical relation ∆ ⊢ (ρ,d) ∼ (ρ ′,d ′) is defined
inductively on the structure of descriptions as follows.

1. ∆ ⊢ (ρ,wrong) ∼ (ρ ′,wrong) for all ∆, ρ, and ρ ′.
2. D ⊢ (ρ,d) ∼ (ρ ′,d ′), for d,d ′ ∈ D, if:
(a) ι ∈ dom(d) ⇔ ∃ℓ. (ℓ ∈ D ∨ ∃∆. (ℓ,∆) ∈ D) ∧ ρ (ℓ) = ι
(b) ι ∈ dom(d ′) ⇔ ∃ℓ. (ℓ ∈ D∨∃∆. (ℓ,∆) ∈ D)∧ρ ′(ℓ) = ι
(c) ∀ℓ ∈ D. ρ (ℓ) ∈ V ∧ ρ ′(ℓ) ∈ V ⇒ d (ρ (ℓ)) = d ′(ρ ′(ℓ))
(d) ∀(ℓ,∆) ∈ D:

i. ρ (ℓ) ∈ T ⇒ d (ρ (ℓ)) |=ρ ∆
ii. ρ ′(ℓ) ∈ T ⇒ d ′(ρ ′(ℓ)) |=ρ′ ∆

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

iii. ρ (ℓ) ∈ M ∧ ρ ′(ℓ) ∈ M ⇒
∆ ⊢ (ρ,d (ρ (ℓ))) ∼ (ρ ′,d ′(ρ ′(ℓ)))

3. (ℓ:∆1)�∆2 ⊢ (ρ,d) ∼ (ρ ′,d ′), for d,d ′ ∈ M→ M, if:

∀d1,d2 ∈ M, ρ1 ⊇ ρ, ρ2 ⊇ ρ ′.
∆1 ⊢ (ρ1,d1) ∼ (ρ2,d2) ⇒

∆2 ⊢ (ρ1,d (d1)) ∼ (ρ2,d
′(d2))

This logical relation is also monotone with respect to reifi-

cation functions.

Lemma 14. Suppose ∆ ⊢ (ρ1,d1) ∼ (ρ2,d2), with ρ1 ⊢ ∆ and
ρ2 ⊢ ∆; if ρ1 ⊆ ρ ′

1
and ρ2 ⊆ ρ ′

2
then ∆ ⊢ (ρ ′

1
,d1) ∼ (ρ ′

2
,d2).

Proof. Straightforward, by induction. □

Using these relations we can define when two sets of

semantics with a corresponding (set-theoretic) semantic and

denotational environment, constitute the same context up

to renaming.

Definition 27. We define a relation on tuples of semantics

and environments by (Σ, Γ,θ) ∼ (Σ′, Γ′,θ ′) if and only if:

(1) (Σ, Γ) ∼ (Σ′, Γ′);
(2) for all v ∈ V ,

(i) Γ(v) = ⊥ ⇒ θ (v) = wrong
(ii) Γ′(v) = ⊥ ⇒ θ ′(v) = wrong
(iii) for all v ′ ∈ V , Γ(v) = Γ′(v ′) ⇒ θ (v) = θ ′(v ′)

(3) for all t ∈ T , θ (t) |=Σρ Γ(t) and θ ′(t) |=Σ′ρ Γ′(t)

(4) for all x ∈ M with θ (x) = (d,τ) and θ ′(x) = (d ′,τ ′),
(i) τ |=Σρ Γ(x) and τ ′ |=Σ′ρ Γ′(x)

(ii) ∆ ⊢ (Σρ ,d) ∼ (Σ′ρ ,d
′), where ∆ = Γ(x) = Γ′(x)

The following property holds.

Lemma 15. Let v,v ′ ∈ V be value identifiers, d ∈ F a value
denotation, and ℓ , ⊥ a location such that ℓ < dom(Σρ),
ℓ < dom(Σ′ρ), ℓ < ran(Γ1), and ℓ < ran(Γ2) for ℓ , ⊥; then

(Σ, Γ,θ) ∼ (Σ′, Γ′,θ ′) ⇒

(Σ[ℓ 7→ v], Γ[v 7→ ℓ],θ[v 7→ d]) ∼

(Σ′[ℓ 7→ v ′], Γ′[v ′ 7→ ℓ],θ ′[v ′ 7→ d])

Proof. Suppose (Σ, Γ,θ) ∼ (Σ′, Γ′,θ ′). By lemma 8 it follows

that Σ[ℓ 7→ v] ∼ Σ′[ℓ 7→ v ′] and Γ[v 7→ ℓ] ∼ Γ′[v ′ 7→ ℓ]. By
definition 27, the only extra condition we need to check is

clause 2(iii) for v and v ′, since the additional mapping in

each case gives Γ[v 7→ ℓ](v) = Γ′[v ′ 7→ ℓ](v ′) = ℓ. Notice
that we have θ[v 7→ d](v) = θ ′[v ′ 7→ d](v ′) = d , and so the

condition is met. □

We can now show that the set-theoretic semantics refines

the denotational semantics.

Theorem 16 (Refinement). Suppose σ1 ↪→ σ2 is a renaming,
Jσ1KΣ1;Γ1 = Σ′ ∼ Σ′′ = Jσ2KΣ2;Γ2 with Σ1 and Σ2 proper, and
there are θ1, θ2 with (Σ1, Γ1,θ1) ∼ (Σ2, Γ2,θ2); then:
1. if σ1, σ2 are module types, then DΣ1;Γ1 (σ1) = DΣ2;Γ2 (σ2) =

∆ with Lσ1Mθ1 |=Σ′ρ ∆ and Lσ2Mθ2 |=Σ′′ρ ∆;

2. if σ1, σ2 are module expressions, where Lσ1Mθ1 = (d1,τ1)
and Lσ2Mθ2 = (d2,τ2), then DΣ1;Γ1 (σ1) = DΣ2;Γ2 (σ2) = ∆
with τ1 |=Σ′ρ ∆, τ2 |=Σ′′ρ ∆, and ∆ ⊢ (Σ′ρ ,d1) ∼ (Σ′′ρ ,d2);

3. if σ1 and σ2 are both value expressions or both programs,
then Lσ1Mθ1 = Lσ2Mθ2 .

Proof. By induction on syntactic structure. We show some

of the important cases in detail.

Value Expressions. For value expressions, the result follows
straightforwardly by induction using the standard denota-

tional constructions of lambda calculus; we need only to

show that (qualified) value identifiers have the same denota-

tion. Let σ ≡ p.vℓ and σ
′ ≡ p.v ′ℓ . Then Σ

′ = Σ3[ℓ 7→ (v, ℓ′)]
and Σ′′ = Σ4[ℓ 7→ (v ′, ℓ′)] for some ℓ′, where JpKΣ1;Γ1 = Σ3 =

(↣,E, ρ) and JpKΣ2;Γ2 = Σ4 = (↣,E, ρ), with Σ3 ∼ Σ4. More-

over, by lemma 2, Σ3 and Σ4 are proper. Thus by the induc-

tive hypothesis we have that there is some D = DΣ1;Γ1 (p) =
DΣ2;Γ2 (p) with D ⊢ (ρ,d1) ∼ (ρ ′,d2), where LpMθ1 = (d1,τ1)
and LpMθ2 = (d2,τ2). There are now two cases to consider,

from the definition of the set-theoretic semantics (cf. fig. 4):

(ℓ′ = ⊥): Then we have ρ (ℓ′′) , v and ρ ′(ℓ′′) , v ′ for
all ℓ′′ ∈ D. Thus it follows from clauses (2a) and (2b) of

definition 26 that v < dom(d1) and v
′ < dom(d2). Therefore,

by definition (cf. fig. 5), Lp.vℓMθ1 = Lp.v ′ℓMθ2 = wrong, as
required.

(ℓ′ , ⊥): Then we have that ℓ′ ∈ D with ρ (ℓ′) = v and

ρ ′(ℓ′) = v ′. It thus follows from clauses (2a) and (2b) of defi-

nition 26, respectively, that v ∈ dom(d1) and v
′ ∈ dom(d2),

and from clause (2c) that d1 (v) = d1 (ρ (ℓ
′)) = d2 (ρ

′(ℓ′)) =
d2 (v

′). Therefore Lp.vℓMθ1 = Lp.v ′ℓMθ2 , as required.

Programs. If σ1 and σ2 are value expressions, then the result
follows immediately from that for value expressions. When

σ1 ≡ let xℓ = m1 ;; P1 and σ2 ≡ let xℓ = m2 ;; P2, then
there are semantics Σ3 = Jm1KΣ1;Γ1 and Σ4 = Jm2KΣ2;Γ2 and
descriptions ∆1 = DΣ1;Γ1 (m1) and ∆2 = DΣ2;Γ2 (m2) such that

Σ′ = JP1KΣ3[ℓ 7→x];Γ1[x 7→∆1]
and Σ′′ = JP2KΣ4[ℓ 7→x];Γ2[x 7→∆2]

. By

lemma 2, both Σ3 and Σ4 are proper. It thus follows triv-

ially from definition 19 that Σ3[ℓ 7→ x] and Σ4[ℓ 7→ x] are
proper, since the only difference in the updated semantics is

in the reification function. Therefore, by lemma 5, we have

that Σ3[ℓ 7→ x] ⊆ Σ′ with Σ′ \ Σ3[ℓ 7→ x] ⊆ dom(P1) and
dom(P1) fresh for Σ3[ℓ 7→ x], as well as Σ4[ℓ 7→ x] ⊆ Σ′′

with Σ′′ \ Σ4[ℓ 7→ x] ⊆ dom(P2) and dom(P2) fresh for

Σ4[ℓ 7→ x]. Hence, by lemma 6, Σ3[ℓ 7→ x] ∼ Σ4[ℓ 7→ x].
Moreover notice that, by lemma 5, we have that Σ1 ⊆ Σ3

and Σ3 \ Σ1 ⊆ dom(m1) with dom(m1) fresh for Σ1, and also

Σ2 ⊆ Σ4 and Σ4 \ Σ2 ⊆ dom(m2) with dom(m2) fresh for Σ2.

Therefore, given that neither ℓ ∈ dom(m1) nor ℓ ∈ dom(m2),
and Σ3[ℓ 7→ x] ∼ Σ4[ℓ 7→ x], it is then immediate from

definition 16 that Σ3 ∼ Σ4. Now, since σ1 ↪→ σ2 is a re-

naming, so is m1 ↪→ m2. So, by the inductive hypothesis,

∆1 = ∆2 = ∆ with τ1 |=ρ3 ∆, τ2 |=ρ4 ∆ and ∆ ⊢ (ρ3,d1) ∼
(ρ4,d2), where Lm1Mθ1 = (τ1,d1) and Lm2Mθ2 = (τ2,d2), with

Characterising Renaming within OCaml’s Module System PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Σ3 = (↣3,E3, ρ3) and Σ3 = (↣4,E4, ρ4). Thus, according to
definition 27, we straightforwardly obtain

(Σ3[ℓ 7→ x], Γ1[x 7→ ∆],θ1[x 7→ (d1,τ1)])

∼ (Σ4[ℓ 7→ x], Γ2[x 7→ ∆],θ2[x 7→ (d2,τ2)])

since (Σ3[ℓ 7→ x], Γ1[x 7→ ∆]) ∼ (Σ4[ℓ 7→ x], Γ2[x 7→ ∆]) is
a precondition to the definedness of JP1KΣ3[ℓ 7→x];Γ1[x 7→∆] and

JP2KΣ4[ℓ 7→x];Γ2[x 7→∆]. Finally, this allows us to obtain from the

inductive hypothesis that LP1Mθ1[x 7→(d1,τ1)] = LP2Mθ2[x 7→(d2,τ2)],

whence the result follows from the definition of the denota-

tional semantics.

Value specifications. So σ1 ≡ val vℓ : _ ;; S1 and σ2 ≡
val v ′

ℓ
: _ ;; S2, with JS1KΣ′

1
;Γ′
1

= Σ′′
1
and JS2KΣ′

2
;Γ′
2

= Σ′′
2

where Σ′
1
= Σ1[ℓ 7→ v] and Σ′

2
= Σ2[ℓ 7→ v ′] with Γ′

1
=

Γ1[v 7→ ℓ] and Γ′
2
= Γ2[v

′ 7→ ℓ]. Then, let D1 = DΣ′
1
;Γ′
1

(S1)
and D2 = DΣ′

2
;Γ′
2

(S2). So, Σ
′ = Σ′′

1
[{ℓ} ⊗ D1] and Σ′′ =

Σ′′
2
[{ℓ} ⊗ D2]. Since Σ1 and Σ2 are proper, we have by lemma 7

that Σ′
1
and Σ′

2
are also proper. Moreover, since Σ1 ∼ Σ2, we

have by lemma 8(1) that Σ′
1
∼ Σ′

2
. Similarly, since Γ1 ∼ Γ2,

we have by lemma 8(2) that Γ′
1
∼ Γ′

2
. Now, take θ ′

1
= θ1[v 7→

wrong] and θ ′
2
= θ2[v

′ 7→ wrong]. Thus, by lemma 15,

we have (Σ′
1
, Γ′

1
,θ ′

1
) ∼ (Σ′

2
, Γ′

2
,θ ′

2
). Since ℓ ∈ dom(σ1) =

dom(σ2), it follows from definition 15 and the fact that Γ1
and Γ2 are well-behaved w.r.t. Σ1 and Σ2, respectively, that

ℓ < ranD (Γ1) and ℓ < ranD (Γ2). Thus ℓ < ranD (Γ′1) and
ℓ < ranD (Γ′2), also. Notice too that ℓ < dom(S1) = dom(S2).
Therefore, by lemma 3, ℓ < D1 and ℓ < D2. Furthermore, since

ℓ does not appear in Σ1 or Σ2 (by definition 15), it follows

from lemma 4 that there is no ℓ′ such that (ℓ, ℓ′) is contained
in the extension kernels of Σ′′

1
or Σ′′

2
. Thus by lemma 9 we

have Σ′′
1
∼ Σ′′

2
. So, by the inductive hypothesis, we obtain

D1 = D2 = D with LS1Mθ ′
1

|=ρ′
1

D and LS2Mθ ′
2

|=ρ′
2

D, where ρ ′
1

and ρ ′
2
are the reification functions of Σ′′

1
and Σ′′

2
, respectively.

Then DΣ1;Γ1 (σ1) = {ℓ} ⊕Σ′ D and DΣ2;Γ2 (σ2) = {ℓ} ⊕Σ′′ D.
We also have, by lemma 5, that Σ′

1
⊆ Σ′′

1
and Σ′

2
⊆ Σ′′

2
. Let

Σ′′
1
= (↣′,E′, ρ ′) and Σ′′

2
= (↣′′,E′′, ρ ′′). Then

• Σ′ = (↣′,E′ ∪ ({ℓ} ⊗ρ′ D), ρ
′); and

• Σ′′ = (↣′′,E′′ ∪ ({ℓ} ⊗ρ′′ D), ρ
′′).

We now need to show the following.

1. DΣ1,Γ1 (σ1) = DΣ2,Γ2 (σ2), i.e. {ℓ} ⊕ρ′ D = {ℓ} ⊕ρ′′ D.
By definition 11, it suffices to prove ∃ℓ′ ∈ D. ρ ′(ℓ) = ρ ′(ℓ′)
if and only if ∃ℓ′ ∈ D. ρ ′′(ℓ) = ρ ′′(ℓ′). We show the ‘only

if’ direction; the other is symmetric. Assume ℓ′ ∈ D with

ρ ′(ℓ) = ρ ′(ℓ′). Then by definition 10 (ℓ, ℓ′) ∈ {ℓ} ⊗ρ′ D.
Therefore, since Σ′ ∼ Σ′′, we have by definition 16 that

also (ℓ, ℓ′) ∈ E′′ ∪ ({ℓ} ⊗ρ′′ D). The result is then obtained

immediately from definition 19 since, by lemma 2, Σ′′ is
proper and so ρ ′′(ℓ) = ρ ′′(ℓ′).

2. Lσ1Mθ1 |=ρ′ D
′
and Lσ2Mθ2 |=ρ′′ D

′
, for D ′ = {ℓ} ⊕ρ′ D =

{ℓ} ⊕ρ′′ D. We show that Lσ1Mθ1 |=ρ′ D
′
; showing the other

is similar. We distinguish two cases.

– If there exists some ℓ′ ∈ D such that ρ ′(ℓ′) = v then D ′ =
{ℓ} ⊕ρ′ D = D and, by clause 2(i) of definition 25, Lσ1Mθ1 =
{v} + LS1Mθ ′

1

= LS1Mθ ′
1

since v ∈ V (LS1Mθ ′
1

). Therefore the

result follows, by lemma 13, from the fact that LS1Mθ ′
1

|=ρ′
1

D
and ρ ′

1
⊆ ρ ′, the latter entailed by Σ′

1
⊆ Σ′′

1
.

– Otherwise, then ℓ ∈ D ′ = {ℓ} ∪ D and v ∈ V (Lσ1Mθ1) =
{v} ∪ LS1Mθ ′

1

. Since Σ′
1
⊆ Σ′′

1
, and thus ρ ′

1
⊆ ρ ′, we have

by lemma 13 that LS1Mθ ′
1

|=ρ′ D. Notice that we also thus

have ρ ′(ℓ) = v since ρ ′
1
(ℓ) = v . The result then follows

straightforwardly by definition 25.

Value definitions. This is similar to the case for value spec-

ifications above. Here we have σ1 ≡ let vℓ = e1 ;; s1 and
σ1 ≡ let v ′

ℓ
= e2 ;; s2 with Je1KΣ1;Γ1 = Σ3, Je2KΣ2;Γ2 = Σ4,

Js1KΣ′
3
;Γ′
1

= Σ′′
3
, and Js2KΣ′

4
;Γ′
2

= Σ′′
4
where Σ′

3
= Σ3[ℓ 7→ v],

Γ′
1
= Γ1[v 7→ ℓ], Σ

′
4
= Σ4[ℓ 7→ v ′], and Γ′

2
= Γ2[v

′ 7→ ℓ],
Moreover, let D ′

1
= DΣ′

3
;Γ′
1

(s1) and D ′
2
= DΣ′

4
;Γ′
2

(s2). So, Σ
′ =

Σ′′
3
[{ℓ} ⊗ D ′

1
] and Σ′′ = Σ′′

4
[{ℓ} ⊗ D ′

2
]. Since ℓ ∈ dom(σ1) =

dom(σ2), it follows from definition 15 and the fact that Γ1
and Γ2 are well-behaved w.r.t. Σ1 and Σ2, respectively, that

ℓ < ranD (Γ1) and ℓ < ranD (Γ2). Thus ℓ < ranD (Γ′1) and
ℓ < ranD (Γ′2), also. Notice too that ℓ < dom(s1) = dom(s2).
Therefore, by lemma 3, ℓ < D1 and ℓ < D2. Furthermore,

since ℓ does not appear in Σ1 or Σ2 (by definition 15), nor

in dom(e1) = dom(e2), it follows from lemma 5(2) that ℓ
does not appear in Σ3 or Σ4. Then, by lemma 4, we have that

there is no ℓ′ such that (ℓ, ℓ′) is contained in the extension

kernels of Σ′′
3
or Σ′′

4
. Thus by lemma 9 we have Σ′′

3
∼ Σ′′

4
.

Now, by lemma 5 we have that Σ′
3
⊆ Σ′′

3
and Σ′

4
⊆ Σ′′

4

(properly), as well as Σ′′
3
\ Σ′

3
⊆ L and Σ′′

4
\ Σ′

4
⊆ L with

L fresh for both Σ′
3
and Σ′

4
, where L = dom(s1) = dom(s2).

So, by lemma 6, it follows that Σ′
3
∼ Σ′

4
and therefore, by

lemma 8(1), that Σ3 ∼ Σ4. Thus, by the inductive hypothesis,

we have Le1Mθ1 = Le2Mθ2 = d . Furthermore, by lemma 2, both

Σ3 and Σ4 are proper. Thus, by lemma 7 it follows that Σ′
3

and Σ′
4
are proper too. We also have, by lemma 8(2) that

Γ′
1
∼ Γ′

2
. Now, take θ ′

1
= θ1[v 7→ d] and θ ′

2
= θ2[v

′ 7→ d]. It
then follows from lemma 15 that (Σ′

3
, Γ′

1
,θ ′

1
) ∼ (Σ′

4
, Γ′

2
,θ ′

2
).

Thus, another application of the inductive hypothesis de-

rives that D ′
1
= D ′

2
= D ′ with τ ′

1
|=ρ′ D

′
, τ ′

2
|=ρ′′ D

′
, and D ′ ⊢

(ρ ′,d ′
1
) ∼ (ρ ′′,d ′

2
), for (d ′

1
,τ ′

1
) = Ls1Mθ ′

1

and (d ′
2
,τ ′

2
) = Ls2Mθ ′

2

,

where Σ′′
3
= (↣′,E′, ρ ′), and Σ′′

4
= (↣′′,E′′, ρ ′′). We must

now show three things.

(i) DΣ1;Γ1 (σ1) = {ℓ} ⊗ρ′ D
′ = {ℓ} ⊗ρ′′ D

′ = DΣ2;Γ2 (σ2).
(ii) {v} + τ ′

1
|=ρ′ {ℓ} ⊗ρ′ D

′
and {v ′} + τ ′

2
|=ρ′′ {ℓ} ⊗ρ′′ D

′
.

(iii) D ⊢ (ρ ′,d1) ∼ (ρ ′′,d2), whereDΣ1;Γ1 (σ1) = DΣ2;Γ2 (σ2) =
D with d1 = {(v,d)} + d

′
1
and d2 = {(v

′,d)} + d ′
2
.

The first two properties hold by the same reasoning as shown

in the case for value descriptions above. To show that the

last property holds, we consider two cases.

(D = D ′): So there is ℓ′ ∈ D ′ such that ρ ′(ℓ′) = v and ℓ′′ ∈
D ′ such that ρ ′′(ℓ′′) = v ′. Thus, since D ′ ⊢ (ρ ′,d ′

1
) ∼

(ρ ′′,d ′
2
) we have by definition 26 that v ∈ dom(d ′

1
)

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Reuben Rowe, Hugo Férée, Simon Thompson, Scott Owens

and v ′ ∈ dom(d ′
2
). Therefore, {(v,d)} + d ′

1
= d ′

1
and

{(v ′,d)} + d ′
2
= d ′

2
, whence the result follows directly.

(ℓ < D ′, D = D ′ ∪ {ℓ}): Since D ′ ⊢ (ρ ′,d ′
1
) ∼ (ρ ′′,d ′

2
) it fol-

lows from definition 26 that v < dom(d ′
1
) and v ′ <

dom(d ′
2
). Thus, we have that dom(d1) = dom(d ′

1
)∪{v}

and dom(d2) = dom(d ′
2
)∪{v ′}. Moreover, d1 (v) = d =

d2 (v
′). From these properties, we can derive the result

by definition 26. □

Proposition 10 (Adequacy). LPM = LP ′M if P ↪→ P ′ is valid.

Proof. By straightforward instantiation of theorem 16 with

σ ≡ P and σ ′ ≡ P ′, interpreted with respect to Σ1 = Σ2 = Σ⊥,
Γ1 = Γ2 = Γ⊥, and θ1 = θ2 = θ⊥, for which it is straightfor-

ward to show that (Σ⊥, Γ⊥,θ⊥) ∼ (Σ⊥, Γ⊥,θ⊥). □

	Abstract
	1 Introduction
	2 An OCaml Module Calculus
	2.1 Renaming Operations

	3 A Static Semantics for Renaming
	3.1 Semantic Elements
	3.2 Semantic Descriptions
	3.3 Semantic Environments
	3.4 Semantics of Programs

	4 Characterising Renaming
	5 Adequacy of the Semantics
	6 Rotor: A Refactoring Tool for OCaml
	6.1 Implementation
	6.2 Rotor in Practice

	7 Related Work
	8 Future Work
	9 Conclusion
	Acknowledgments
	References

