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Abstract

Intersection type systems have been well studied in theegbif the Lambda Calculus and functional
programming over the last quarter of a century or so. Regethtie principles of intersection types have
been successfully applied in abject orienteccontext [5]. This work was done using thebject calculus

of Abadi and Cardelli [1], however we note that this calcukens more towards trabject-basedpproach

to object orientation, and wish to investigate how intetisectypes interact with a quintessentialtiass-
basedapproach. In order to do this, we define a small functionalutat that expresses class-based object
oriented features and is modelled on the similar calculiedtRerweight Java [18] and Middleweight Java
[8], which are ultimately based upon the Java programminguage. We define@redicatesystem, similar

to the one defined by van Bakel and de’Liguoro [5], and shoviestilbeduction and expansion. We discuss
the implications that this has for the characterisationxgiressions in our calculus, and define a restriction
of the predicate system which we informally argue is dedelab






Acknowledgements

| gratefully acknowledge the help and guidance that | hageived throughout the last few months from
my supervisor, Dr. Stéen van Bakel, who was responsible for my interest in inteimedtypes in the first
place.






Contents

1 Introduction

2 Background
2.1 Thea-calculus and Intersection Types . . . . . . . . . . v i i i i e e
2.2 Theg-calculus and Predicates . . . . . . . . . . . . . .. e .
2.3 Featherweight Java and MiddleweightJava . . . . .. ... ... ... ... .....

7

A Class-based Calculus: Lightweight Java

3.1 Language Definition . . .. ... ... ... .. .. .. ...
3.2 Well-FormedContexts . . . . .. ... . ... ... .......
3.3 Reduction . ... ... . ... e
3.4 Remarks on the Nature ofthe Calculus . . . . . ... ... ...

The Type Systems

41 TheClassTypeSystem . . .. .. .. .. .. ... .......
4.2 The Predicate Type System . . . . . . .. .. .. ... .....
4.3 Propertiesofthe TypeSystems . . . . . ... ... ... ....

Subject Reduction & Expansion

5.1 Auxiliary Lemmas and Theorems . . ... ... ........

5.2 SubjectReduction . . .. ... ... ... .. .. ... .. ...
5.3 SubjectExpansion . .. ... ... ... .. oo
5.4 Characterisation of Expressions . . . ... .. .. .. .....

Decidable Restrictions of the Predicate System

6.1 Decidability of Type Assignment . . . . . .. ... ... .....
6.2 The Rank-ORestriction . . .. ... ................
6.3 The Rank-1Restriction . . .. ... ... ... ..........

Conclusions and Future Work

Bibliography

13
13
18
19
20

23
23
25
29

31
31
39
42
45

47
47
49
53

59

61






Chapter 1

Introduction

The relationship between computing theory and computiagtfme is not a straightforward one. At times
theoretical principles are developed first and subsequentlto practical use. At others, practical applica-
tions arise in the industry without the underlying foundasi being well understood.

We see this dynamic at work in the theory of programming laggs and type systems. In the 1930s,
two theoretical models of computation were developed byr&hand Turing, before the first stored-
program computer was even thought of. This work, on the Lar®dlculus {-calculus) [6] and Turing
machines [24], led to a deeper understanding of the fundein@otion of what a computation actually is, as
well as the limits of what can be computed. When the eleatroomputer was invented and programming
languages were developed, it turned out thattealculus provided an ideal framework upon which pro-
gramming languages could be based. This led to the develdprhthefunctionalprogramming paradigm,
so called because it is based on the theorun€tions and exemplified in languages such as ML [19].

In parallel with work on functional programming, tiedject orientedparadigm was being developed.
The first example of this style of programming is the langu8gaula [13], developed in the 1960s in re-
sponse to a need for implementing simulation software. Muosde of programming became widespread
when it was implemented in the language-[23], and its popularity has been maintained by more re-
cent languages such as Java [17] and C# [21]. Despite itemvtactical usefulness, a formal theoretical
framework to describe object orientation had been lackimti tecently, when Abadi and Cardelli carried
out their seminal work on anbject calculus the g-calculus [1]. This calculus is a highly abstract view
of object oriented programming, and describes many featiaund in a multiplicity of programming lan-
guages. This generality notwithstanding, ghealculus was formulated using a particular view of the obje
oriented methodology — thebject-basedariety as opposed to tlbass-basedariety. For this reason, other
work was carried out to develop similar formal models ddseg class-based languages. Notaltents
are Featherweight Java [18] and its successor Middlewdmtd [8]. We will examine the basicftirence
between the two approaches in Chapter 2.

An integral aspect of the theory of programming languagégois theorywhich allows abstract reason-
ing about programs to be carried out, and certain guaraitdss given about their behaviour. Type theory
arose side-by-side with the formal models we have already,sene of the earliest being Curry’s system
for the A-calculus [12]. Thantersection typeliscipline was first developed in the early 1980s [10, 11, 7]
to extend Curry’s system and address certain inadequaneesin. With the advent of thegcalculus, work
was carried out by van Bakel and de’Liguoro to apply the ppies of intersection types to object oriented
programming [5].

In this work, we aim to follow up these latesterts and apply the principles of intersection types, and the
system of [5] specifically, to a formal model aiss-basedbject oriented programming. The formal model
that we use is based on [18] and [8]. We find that we would likesea slightly richer calculus than [18], but
that the collection of features in [8] is too complex for ouwrposes. Therefore we define a new calculus,
which we callLightweight Java Having defined the calculus, we will then prove subject otida and
expansion results. Subject reduction is a standard resulgffe systems leading tgpe soundnessSubject
expansion is a standard propertyirersectiontype systems, thus we demonstrate that our predicate system
is as expressive as [10, 11, 7, 5]. Since intersection typigr@asent is typically undecidable, we look at
two restriction of our predicate system which we beliavedecidable. They are inspired by the decidable



restrictions of the intersection type system for term rémngisystems in [3]. However, our restrictions do
not directly descend from that work, since our predicatéesyglisplays significant ffierences to that one.

This report is organised as follows: in Chapter 2 we survegescelevant work. We first describe in-
tersection types as they have been formulated for the Lar@adtaulus, and then look at thecalculus and
how intersection types have been applied to it in the formhefgredicate system of [5]. We then briefly
touch upon two calculi that have been developed specifitaljescribe the Java programming language,
namely Featherweight Java and Middleweight Java. Chaptezr8builds upon these two calculi, and de-
fines Lightweight Java. In Chapter 4 we formulate both a steshtype system (like those of Featherweight
Java and Middleweight Java), and an intersection typesystsed upon the aforementioned predicate sys-
tem. In Chapter 5, we derive subject reduction and expansisults for the type systems, before defining
two decidable restrictions of the predicate system in Ghrapt Finally, we draw conclusions and look at
future work in Chapter 7.



Chapter 2

Background

In this chapter, we undertake a short survey of some reldeamtal systems in order to place the work
that follows in context. We begin by looking at the Lambdaddals @-calculus) [6], the earliest such
system for studying the formal notion of computation anad &fe first system for which intersection types
were developed. We then move on to look at Cardelli and AbddBbject Calculusgtcalculus) [1], which

is significant as it was the first attempt at placing tiigect orientedorogramming paradigm on the same
theoretical footing as functional programming. Finally examine two other calculi which build upon this
approach to describe class-based object oriented feagpesfically those of Java [17].

2.1 TheA-calculus and Intersection Types

The-calculus was developed in the 1930s by A. Church as a forrodkfrfor studying the notions of func-
tions, computability and recursion. It forms a theoretisasis for thefunctional programming paradigm
and is an extremely well studied system. It is also an exthesienple system, capturing the two basic
notions of function construction and application, yet gisrmously expressive: concepts such as numerals
and arithmetic, Boolean logic and numerical predicatesdkdess than, greater than, etc.) and tuples (or
records), which are all found universally in everyday pesgming, can all be encoded in thecalculus.

We will now define thel-calculus.

Definition 2.1.1 (A-terms). Terms in thed-calculus (ranged over b, N) are defined by the following
grammar:
M, N ::= x| (Ax.M) | (MN)

wherex ranges over a set of term variables. Repeated abstractimnbecabbreviated (i.etx.1y.1zM is
written asixyzM) and left-most, outer-most brackets in function applmadi can be omitted.

The function constructod], is avariable binder So, in a termix.M, A binds (or captures) the variable
X, and any occurrences afin the sub-termM are ‘bound’. We can therefore talk about free and bound
variables in a term:

Definition 2.1.2 (FrRee & BOUND VARIABLES). For al-term M, the free variables dfl, denoted byfv(M), and
the bound variables d¥l, denoted byo\(M), are defined by:

fv(x) = {x} bv(x) = 0
fyMiMz) = fv(Mp)U fv(Mz) buMiMz) = bvM1)UbuMy)
fv(Ax.M) = fv(M)\ {x} bviaxM) = buvM)uU {x}

Replacement of a variableby a termN (calledsubstitutionand denoted byN/x]), forms the foundation
of reduction (or computation). When defining reduction, we refer to aamtdf equivalence on terms
based on renaming of bound variables, calledonversion. This equivalence is defined froay.M) =,
(AzM[z/y]) and is extended to all terms so that, for exampbeyzxzy2) =, 1abcac(bc). If we assume that
bound and free variables of a term are alwayfedént (Barendregt's convention), then substitution can be
defined as follows:



Definition 2.1.3 (SUBSTITUTION).

XN/X] = N

YIN/ =y (fy#X
(MiM2)[N/X] = (M1[N/X] M2[N/x])
(AY-M)IN/X = (y.(M[N/X])

In the last case sincgis bound inty.M, by Barendregt’s convention, it is not freellsoy is not captured
during the substitution.

Using substitution, we define thg-freduction relation-z on A-terms as follows:

Definition 2.1.4 (8-REDUCTION).

(AXM)N  —5 M[N/X]
M'M  —5 M'N
M—-gN = MM” —z NM
AXM -5 (AXN)

During B-reduction, a-conversion takes place automatically in order to avoidatde capture. The
reflexive and transitive closure e$; is denoted by»z. Having defined this notion of reduction, we can
then characterise terms by their structure and reductiopepties:

Definition 2.1.5 (term cuarRAcTERISATION). 1. A term of the form {x.M)N is called areducible expres-
sion, or redex. The ternM[N/x], obtained by performing a single reduction step, is calhexteduct

2. Aterm is inhead-normal formf it is in the form Ax; - - - X,.yMy - - - M. Terms in head-normal form
can be defined by the grammar:

H = x| AXH | XMy --- Mp(n > 0, M)
whereM is anyA-term.

3. Aterm is innormal formif it does not contain a redex. Terms in hormal form can be defioy the
grammar:
N ::= X| AX.N | XNy - - - Np(n > 0)

By definition, a term in normal form is also in head-normahfior

4. A term isnormalisableif it has a normal form, i.e. if there exists a tefshin normal form such that
M -z N. Similarly, a term ishead-normalisablef it has a head-normal form. By definition, all
normalisable terms are head-normalisable.

The definitions above constitute thm-typedA-calculus. Type systems allow us to build a layer of
abstraction over this basic calculus, allowing us to taldlhe properties of terms, and their execution (i.e
reduction), in a more general way. Many varietiedyfe systennave been developed for thecalculus
and its successors. The first type system fortlvalculus was that of Curry [12]. In this system, types are
formed from a set of type variablg@s ({«, 8, 0, 7, . . .}), and the type constructes, which is used to indicate
function abstraction. So, for example, the type- r denotes a function that takes an input of typand
returns an output of type

Definition 2.1.6 (curry TYPES). The set of types in the Curry type assignment system, rangerdby ¢, is
defined by the following grammar:

pi=¢lo—o0¢

whereyp ranges ovem.



Type assignment is represented by a ternary relatiof-mmmsM, types¢ and contexts (or baseB)
Bases are partial mappings from term variables to typesasndritten as a set of statemerits; ¢1,y : ¢,
Z: ¢3, ...}, each one asserting that a variakls mapped to a type. B, x: ¢ will be written for B U {x: ¢}
whereB does not contain a statement abgut

Definition 2.1.7 (curry TYPE ASSIGNMENT). Curry type assignment is defined by the following naturaluded
tion system:

(AX): mx:¢€B

B,X:prc M:7

Brc AXM:i¢p -1
BrcMi:¢p—>7 BrcMa: ¢
Brc MiMy . 7

The statemenB +c M : ¢ indicates that the type can be assigned to the terh under the basi®
using the rules of the natural deduction system above. Gusygtem exhibits aubject reductiomproperty,
thatisifBrc M : ¢ andM —z N thenB rc N : ¢. There arel-terms which cannot be typed in this system,
however. These are the terms that contain some foraelffapplication the simplest example of which is
the termxx In order for this term to be typeable, the variakleust have a both a function tyge— o and
the typeg, which is not possible in Curry’s system. Thntersection typeliscipline addresses this problem
by allowing terms to have more than one type. We will brieflgd@t one variant in particular - the strict
intersection type system.

(— E):

Definition 2.1.8(sTrICT INTERSECTION TYPES). The set of intersection types (ranged ovewf)yand the set of
strict types (ranged over k) are defined by the following grammar:

¢l(o—¢)
(@1n...0¢n) (n=0)

¢

(o

We callg1 N ... N ¢, anintersection and when this type is assigned to a term, it denotes thaethe t
also has each of the individual typgs An intersection type is permitted to be empty={ 0), in which case
we write w.

Definition 2.1.9(STRICT INTERSECTION TYPE ASSIGNMENT). Strict intersection type assignment is defined by the
following natural deduction system:

(E): n>Llien o) B, X:ckM:¢
B.XIg1N...N¢nks X ¢ Bk AXM:0 — ¢
o BrgM:¢1...B|3M:¢nn>o ) BkM:oc—-¢ BrN:o
: > — E):
BeM:g1Nn...N¢y Br MN: ¢
Self-application is now typeable:
(NE) (NE)
Xipoo0onNPsM:¢p—>o (X:pgo0oNptsM: ¢
(= E)

Xipo0onNplsM: o

In fact, the strict intersection system is able to tgdeterms. In addition, it exhibits aubject expansion
property, that is, ifB -c N : ¢ andM —3 N thenB rc M : ¢. A further result of this intersection type
system (and many other variations) is that it is ablehtaracteriseerms by their assignable types:

1. (HEAD-NORMALISATION) If B+ M: o & o # w thenM has a head-normal form

2. (NorMmaLisaTiON) If B+ M: o andB, o arew-free thenM has a normal form

5



This is shown in [7, 4]. From these results, we also see thatstevith no normal form at all (so-called
unsolvableterms) can only be assigned the type These characterisation results are significant, and we
will compare them with our own system in Chapter 5. This ges@ressive power comes at a price, however:
whereas Curry type assignment is decidable, intersegtfmmdssignment is not.

2.2 Theg-calculus and Predicates

Theg-calculus [1] was developed by L. Cardelli and M. Abadi in th&l-1990s as anffort to provide a
theoretical foundation for the object oriented prograngrparadigm, similar to that provided for functional
programming by thel-calculus. Object oriented programming began with the daggs Simula 67 [13]
and Smalltalk [16], and was popularised by the languages [23] and Java [17]. The central concept of
object oriented programming is that of thbject Computation is defined in terms of objects, which pass
messages between one another. Objects are essentialiggasbich encapsulate computational behaviour
by exposingmethodswhich can be invoked by other objects. Objects may also staees in a series of
fields

There are two main ‘flavours’ of object oriented programmittge first is the object-based approach
in which the programmer is free to modify objects (e.g. byiagar removing methods and fields) on an
object-by-object basis. In this form of object orientedgreanming, each object is an independent entity.
Theg-calculus mainly describes this approach to object ortemiaThe alternative approach is thaidiss-
basedobiject orientation, in which each object isiastanceof a particular template, which the programmer
defines in the form of alass Both C++ and Java are examples of this latter form of object orieorati

In its entirety, the object calculus of Abadi and Cardellieistensive and comprises manyftdrent
fragments, which may be combined irfidrent ways. For example, one fragment is itself tbealculus,
and so thes-calculus can be taken to be a superset of that system. Herwjillhattempt to describe the
essence of the calculus by looking at the simplest fragnwemith is calledOb in [1] and deals only with
objects in their most primitive form. Thus, this overviewedaot attempt to be exhaustive. We will also try
to follow the notation in [1] as closely as possible.

Definition 2.2.1(g-caLcuLus syntax). Letl range over a set of (method) labels. Also,xey, z range over
a set of variables. Types and terms in ¢healculus are defined as follows:

Types
AB := [|1:Bl,...,|nZBn]
Terms
abc = x|[ls0qMby, ..., lnis(a"bnl | al |al = g(x*)b
Values

\Y

[1:60¢Mby, ., Inig (") bn]

We use [;:B;' € 1" to abbreviate the type B, ...,I.:By], and ﬂi:g(x’*)bi' c l"n] to abbreviate the term
[12:5041)b, -, Inis(X0")bn].

Thus, we have objectd;fc(x™)b;' © 1"”] which are a sequence of methogl®)b. Methods can be
invoked by the syntas.l, or overridden with a new method using the syngelx= g(x*)b. Notice that
types are embedded into the syntax of tergis. abinder, much liked in the Lambda Calculus, so that the
variablex is bound in the terng(x*)b. Again, as in thet-calculus, bound (or equivalently, free) variables
provide the mechanism by which reduction takes place:

Definition 2.2.2 (rree variaBLES). The set of free variables of a terr&V(a), is defined inductively as
follows:

FV(X) £ {x

FV(s(xMb) 2 FV(b)\ {x)
FV([liig0Mb' M) 2 FV(g(x™by) U ... U FV(s(x*)bn)
FV(al) £ FV(a)

FV(al = g(xY)b) FV(a) U FV(s(x*)b)



Definition 2.2.3 (osiect susstiTuTION). The notationa{x < b} denotes the replacement of all occurrences
of the variablex in a by the termc. It is defined inductively as follows:

X{X « ¢} £ ¢
X{X « c} zy fory # x

s(yYMb{x < ¢} 2 (M (bly « B{x < c}) forz¢ FV(s(y®)b) U FV(c) U FV(X)
[|i:§(XA‘)bi' € 1--”]{x «—c} = [|i1(§(XA)bi){x - C}I € 1..n]

(ah{x « b} £ (a{x « b}l

(al = s(y")b){x < b} (alx < b}).l = ((s(y")b){x < b})

Notice the interesting case of substituion on a meth{@)b. Here, we explicitly choose a fresh variable
that does not occur in eithéror ¢ and rename the bound variable, thus avoiding free variagéuce inc.
Using this notion of substitution, a reduction relation éfided on terms:

Definition 2.2.4(rebuction). 1. An evaluating contexis a term with a hole |, and is defined by the
following grammar:
E[] == _1&[111E[]) = c(xMb

&[a] denotes filling the hole i& with a.

2. The one-step reduction relation on terms is the binaatio#l defined by the following rules:

[iicO™b' <MLl = byix; « [is(M)b' <) jel.n
[i:cOMb P = g0Mb = [lig(EMby, ..., 1M, .., lnig(hba]  j € 1.0
a—b = &[a - &bl

3. The relation—* is the reflexive and transitive closure-6f.
4. If a —»* vthen we say tha convergego the valuev, and writea |} v.

Like the A-calculus, the following type assignment system@dr; has a subject reduction property: if
E+oa: Aanda — bthenE +, b : A. Subject expansion, however, does not hold.

Definition 2.2.5 (osect TYPE ASSIGNMENT). 1. An object environment;, is a sequence of statements of
the formx:A.

2. Object types are assigned to terms using the followingrabtleduction system:

(Val x) (Val Object) (whereA = [l;:B;' € 1)
E,xAto b :Bi Yiel.n
E, XA, E’ Fo X1 A E o [liig(XA)bil € 1~-”] “ A
(Val Select) (Val Update) (whera = [I;:B;" € 1)
Etoa:[li:B' <t Etoa:A EXxArob:Bj
(jel.n A (jel.n
Eroalj: B; Ercalj=g(x)b: A

The work of S. van Bakel and U. de’Liguoro [5] has taken thagiples of intersection type systems,
as outlined in the previous section, and applied it to theabfalculus of Abadi and Cardelli, obtaining
similar results. Here, we will briefly outline the basic ekemts of thepredicatesystem, as it is called in [5].

Definition 2.2.6 (prepicates). 1. The set of predicates, ranged overdyt, ... and its subset ostrict
predicates ranged over yy, . .. are defined by the following grammar:

wl (o —¢) <)
¢l (o A7)

¢

o, T



2. Arelation< is defined on predicates as the least pre-order (reflexivéransitive relation) such that
for any predicater, T and strict predicate, v:

@) o <w;
(b) cAT)<cand g AT)< T
©) (- w)<(w—-w)
dr<o¢<y=(c—->¢)<(-y);
() ¢ <y = (l:¢p) < (liy) for any labell.
The predicate assignment system, then, assigns prediodjgeable terms. Part of that system defined
in [5] is a separate notion of assignment of predicatetypes however for simplicity we will omit this

definition from the discussion (thus slightly modifying ttefinition of predicate assignment), as it is not
immediately relevant to the work that is presented in latepters.

Definition 2.2.7 (prepicaTE AssicNmEeNT). 1. A predicate environment;, is a sequence of statements of
the formx:A:o. T denotes the object environment obtained by discarding itbaigate information
from each statement in.

2. Predicates can be assigned to terms using the followihgalaleduction system, in which we take
A=[li:B'c 1"”]2
(Val x) (w)

Troa:B

, (o <v)
ILxBio,I" e X: By Fr.a' B w
P . .

(Val Object)
X Ao by i Bj:¢ T,x:Ato by : B (Vie l.nsuchthai # j)

j€l.
I e 0P et

1el.n

1A ljio— @)
(Val Updatg) (Val Select)
IF'rpa:A:o T,yATrDb:Bj:¢ F'rpa:Ailljio—¢)

#w,j€l.n jel.n
l“»—p(aljf;g(yA)b):A:<Ij:r—>¢>(O- @] eln) I'rpalj:Bj:¢ (etn

(Val Updats) (Al

Trea:A: ey T,y:Arob:Bj _ Ttea:B:ioj (Yiel.n)
(jel.nk#j)
I (@lj =s(yMb) : A (ko) Trea:BioiA... Aoy

It is clear that the predicate system shares things in comwitbrithe intersection type system §2.1.
For example, we have the rulgl(), which is the direct analog of the)() rule in the strict intersection type
system. There is also a rule) that allows any typeable term to be assigned the predigatehich plays
the same role here as in the intersection type systems fart¢héulus (i.e. to type non-terminating terms).
Indeed, the predicate system is essentially an intersesyistem for the-calculus. As such, we see that it
also shares results in common:

1. (sussect REDUCTION): If T'Hoa: A: ¢ anda— b, thenT +o b: A ¢.
2. (suBsect EXPANSION): If "o b B ¢ andT +, a: Bwitha — b, thenT +.a: B @.

3. (CHARACTERISATION OF CONVERGENCE): Let a be a term and a value, thera || vif and only ifI" +; a :
A o for someo # w.

In Chapter 4 we will take the ideas of this system and definendagi one for a class-based, rather than an
object-based calculus.



2.3 Featherweight Java and Middleweight Java

Although Abadi and Cardelli show how the class-based aghréa object oriented programming can be
represented in their system, thealculus seems firmly rooted in the object-based appro@bbir syntax
for terms takes independent objects as a primitive, and dliemof ‘class’ is described in terms of these.
Subsequent work ([18, 8]) has followed in the footsteps ddidiland Cardelli, but with the aim of developing
formal calculi specifically modelled on Java - a class-bggegramming language. In these calculi, if the
reader will forgive the unintentional pun, classes are-fitass entities and are built into the calculus at a
primitive level.

Featherweight Java (FJ) [18], so called because of its naihc@mposition, defines eore subset of
the features of the Java programming language. The obgeittidesigning FJ was to produce a formal
model of a class-based language that was simpler than deqgessors [14, 20, 15], allowing a proof of type
soundness to be as concise as possible. The calculus définestion of a class, and expresses inheritance
between classes. Classes contain fields and methods, dndlass has a constructor, which allows field
values to be initialised when a new object is created. lhdkmnethods can be overridden (redefined), but
there is no notion of methoolverloading(multiple methods defined with the same name, but wiffeding
numbers and types of parameters) as there is in full Javae®re five types of expression: variables, field
access, method invocation, new object creation and caskimd assignment is purposefully omitted for
simplicity. Therefore, fields can only be initialised withlues on object creation, making Fduactional
subset of Java. This is equivalent to marking all fields whithftinal modifier in full Java.

We now give the definition of FJ syntax as it is presented i:[18

Definition 2.3.1(rs syntax). FJ programs consist of a sequence of class definitions ancpagssion to be
evaluated (which corresponds to the body ofithén method in a full Java program). These are defined by
the following grammar:

Class Definitions

L == class C extends C {Cf; KM}
Constructors

K == C (C f) { super(?); this.f = Tf; }
Method Declarations

M == CmnCX { return e; }
Expressions

d,e = x]e.f|le.m(e)|new C(e)| (Qe

Values

v = new C(V)

whereC ranges over a set of class namg&ganges over a set of field names, andanges over a set of
variables.

In Definition 2.3.1, the notatiol, £, € and v denote sequences of method definitions, field names,
expressions and values respectively. This notation isdet so tha€ f is shorthand for the sequence
f1, ..., Cn £n. Similarly C ¥ is shorthand for the sequen€exy, ..., Cn x, andthis. f = f represents the
sequencehis. f; = f3, ..., this. f, = f5. We borrow this sequence notation for our calculus, but aim t
use it in a more consistent and transparent manner.

Types in FJ consist of class names, since expressions alt iesnstances of some class. A notion
of subtyping,C <: D, is defined which reflects the inheritance hierarchy. Thiug,dlassC inherits from
classD, thenC <: D. Reduction in FJ is based upon substitution, as inititalculus. However the notion
is loosely defined in [18], with the authors simply statingttthe notationd/x, e/y]eo stands for the result
of replacingx; by dy, ..., x, by dy andy by e in the expressiorg. Reduction takes place in the context of
a program (sequence of class definitions), however sincprbgram does not change, it is assumed to be
constant and so is omitted from the definition.

Definition 2.3.2 (r7 ReEDUCTION). The reduction relation~ on FJ expressions is defined by the following
natural deduction system:



Computation
fields(C) = C£

(R-FELD)
(new C(e)).fi — ¢
mbodym, C) = X.e
= X — ° (R-Invk)
(new C(e)).m(d) — [d/x, new C(e)/this]
C<:D
— — (R-CasT)
(D) (new C(e)) — new C(e)
Congruence
eg — €g
_— (RC-HEeLD)
eo.f g e’o.f
eg — €g

(RC-Invk-REcv)
eo.M(e) — e;.M(e)

ei — €

- (RC-Invk-ARG)
eo.M(...,ej,...) > eoMm(...,ef,...)

ei — ¢
(RC-New-ARG)
new C(...,ej,...) »new C(...,e,...)
eo — €
(RC-Casr)

(©eo — (Oef

wherefieldqC) andmbodym, C) are appropriately defined look-up functions that returistedf fields and a
method body respectively.

A type system is also defined for FJ with a judgemiémte : C, denoting that the expressiencan be
assigned the typ€é under the type assumptions on variables contained in the. ddobwever we omit the
definition here and refer to the reader to [18] for the detailsce it is very similar to the type system that
we will define in Chapter 4.

One point that we will make about the type system, thoughas the presence of casts poses a com-
plication for type soundness. Upcasting is a natural omeranh which we allow an object to be treated
as an instance of one of its supertypes, and so it seems eddasdo permit downcasting, where an object
becomes a subtype of its current type. This is because a @siviay return an object to its actual type
after an upcast. Moreover, an obvious restriction that ooeldvwant to impose is to disallow expressions
that attempt to cast an object to an unrelated type: oneghaither a supertype nor a subtype of the ex-
pression’s current type. [18] calls thisstupidcast. We see, however, that the cast operation is not sound
in the sense that an expression that does not contain arigl sigis may reduce to one that does. Consider
the following example in which classasandB are both subclasses 0bject but are otherwise unrelated:

(A) (Object)new B() — (Adnew B()
The left-hand expression (before reduction) containsid vgcast and a valid downcast, but after reduction
the computation is now stuck because the reduced expressiains a stupid casgB is not a subtype of

A, neither is the converse true. To maintain subject rednctupid castare typeable in FJ. However, a
special property of programs is defined: thatabt-safety An program is said to be cast-safe if none of
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the method bodies or the expression to be executed conthér dbowncasts or stupid casts. It is shown that
reduction preserves cast-safety.

The main result for LJ is a type soundness theorem which, altieet complication introduced by the
cast operation, is stated in two stages:

1. (& TypE sounpness): If O - e : Cande —* e’ with e’ a normal form, ther’ is either a valuer with
0O+ v :DandD <: C, or an expression containin®)new C(e) whereC ¢: D.

2. (NO TYPECAST ERRORS IN CAST-SAFE PROGRAMS): If e is cast-safe and —* e’ with e’ a normal form, then
e’ is a valuev.

Middleweight Java (MJ) [8], inspired by FJ, also defines awalk that is a pure subset of Java. Unlike
FJ however, the authors of [8] were as much interested iropleeationalissues of the Java language as
much as its type system. For this reason they find FJ fasaionalcalculus, too simplistic and define MJ
as animperativecalculus, able to express such concepts as object ideotitygarison), field assignment,
null pointers and sequences of statements (possibly resuitsige-dtects) with local variables and block-
structured scoping. The reduction semantics of MJ are baseohd the concept ofstore(or heap) where
objects persist, and a stack of execution frames. We préisergyntax of MJ so that the reader may get
a feel for the complexity that it introduces over FJ, and bheeawve will borrow some of the notation for
the definition of our calculus. However we will not examine MJny further detail (e.g. its operational
semantics) since we do not use most of its features in ounlcalc

Definition 2.3.3 (ms syntax). MJ programs are defined by the following grammar, wheémanges over a
set of class hames:

Program
p = CO...Cth;S1... S
Class Definition
cd = classCextendsC
{ fdy... fdk
cnd
md;...md, }
Field Definition
fd == Cf;
Constructor Definition
cnd = C(Cy1Xy,...,CjXj)){super(ey...,&);S1... S}
Method Definition
md == TmCiXy,...Chxp){St... !}
Return Type
v = C]|void
Expression
e = X Variable
| null Null
|ef Field access
| (C)e Cast
| pe Promotable Expression
Promotable Expression
pe == em(ey,...,&) Method invocation
| new C(eg,...,&) Object creation
Statement
s = No-op
| pe Promoted Expression
|lif(e==¢e){s1...5% }else{Su1...-S} Conditional
le.f =€ Field assignment
|C X Local variable declaration

11



| x=-¢€ Variable assignment
| return € Return
[{s1...s} Block

We have now completed our survey of calculi relevant to ouresu study, and will begin to define a
calculus in the next chapter to which we can apply the pradsipf intersection types and the predicate
system of [5].
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Chapter 3

A Class-based Calculus: Lightweight Java

In this chapter, we formally define the calculus that we stutis based on aspects of both Featherweight
Java and Middleweight Java, and so to continue with the the@mbave named itightweight JavalLJ).
We retain the functional nature of FJ, but add some featuoss MJ (namely field assignment expressions
andnull objects) which do not conflict with this.

The following notational conventions will be used withirettemainder of this document:

Notation (sequences). We use the following notation for abbreviating and manipotasequences of ele-
ments

1. A sequence ofi elementsay, ..., a, is denoted bya,. The subscript can be omitted when the exact
number of elements in the sequence is not relevant. Both eeemparated and space-separated
sequences may be abbreviated in this way.

2. We writea € @, whenever there exists some {1, ..., n} such thag, = a. Similarly, we writea ¢ a,
whenever there doamtexist ani € {1, ..., n} such thal; = a. Again, the subscript may be omitted
as implicit.

3.8, -@m=a,...,an, a’l, ..., a, denotes the concatenation of two sequences.

4. The empty sequence is denotedeby

5. We use the special sequentc@vheren is a natural number) to represent the list L , n.
Notation (runctions). If F is a partial function defined overarguments, then:

e F(arg,...,arg,)| denotes thaF is defined on the arguments g ., arg,.

e F(arg,...,arg,)! denotes thaF is not defined on the arguments gg.., arg,.

3.1 Language Definition

Definition 3.1.1 (imentiriers). We define the following sets of identifiers:

1. C, D range over a set of class nam&g,ASS-NAME, which includes the distinguished element
Object.

2. f ranges over a set of field identifielS[ELID-ID.
3. mranges over a set of method nambEETHOD-NAME.

4. | ranges over the union of the set of field identifiers and mettaodes, which we call the set ofass
member labels

5. xranges over a set of variablég ARTABILE, which includes the special variabt@is.
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Asin FJ and MJ (and indeed full Java [17]), types are embeddliih the syntax of the language itself,
allowing the programmer to explicitly specify the type othkdield and method. Thus, in order to define
the syntax of our calculus, we must first define types.

Definition 3.1.2(cLass & meTHOD TYPES). 1. The set of types that can be assigned to LJ expressions is
denoted byT'YPEc; and we call the types in this selasstypes, corresponding to the intuition that
each expression results in an object which is an instancerog<lass. The set of class types is
identical to the set of class names and, as such, we will @ls&€and D to range over these types. As
will be seen in the syntax definition below, we also use clgged as annotations in field definitions
since fields are used to store (object) values.

2. We define a set of type®YPE,,, encapsulating information pertaining to the behavioumethods.
Thesemethod typeare defined by the following grammar:

Method type
u == Cq,...,C,—>D

Thus, each method takes a sequence of arguments of types.C C,, and returns a result of type
D.

Definition 3.1.3 (proGraM synTaX). The following syntactic elements comprise LJ programs:

1. We define a set adxpressionsEXIPR. We also define a subset of expressidbBJECT, which is
the set ofobjects

Expression
e == X|(C)null |eflef=¢]
em(e,...,e,) |new C(ey,...,e) (n>0)
Object
0 == X|(C)null|

new C(0q,...,0p) (n>0)

2. Classesre defined by the following grammar:

Field definition

fd == Cf
Method definition
md == Dm(CyXx,...,Ch X)) {e€} (n=0)
Class definition
cd = classCextendsC {fd; ... fdgymd; ... md,} (k,n>0)

3. LJ Programs consist of @&xecution contexwhich is a sequence of class definitions), and an expres-
sion that is evaluated when the program is run:

Execution Context

y = cth ... cd (n>0)
Program
P = (re)
PROGRAM denotes the set of all programs, an®@NTEXT denotes the set of all execution con-

texts.

We now discuss these various syntactic elements. Expressi@y create objects that conform to a
specified class template using thew keyword. They may also invoke methods, and retrieve or ass{l
values. Expressions may also refer to variables (methahpeters) and the null value.

Classes contain a list of fields and a list of methods, thestghevhich must be declared. Methods may
take multiple arguments, and method bodies consist of desgxpression. Classes may also inherit from
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one another, meaning that they share field and method defisitiThere is a lack of symmetry between the
structure of field definitions and method definitions: in adfi@éfinition, the type of the field precedes the
field identifier, whereas the sequence of parameter typeprising the method type is mixed in with the
sequence of formal parameters. However this is an integitidecision, motivated by the desire to have the
calculus conform to its predecessors (LJ and MJ), as welbamimesake language.

Note that the syntax of Defintion 3.1.3 does not disallow rdgkeclarationof any methods and fields
that have be defined in a superclass§ 32 we will specify that for an execution context to be wehnfied
(and so in turn for expressions to be typeable), classes motisedeclare fields in this way. We will also
specify that if methods are redeclared, then the methodrtygst match that of the superclass, although the
names of the formal parameters maffeli. We will not place any restrictions on the body of the réated
method, thus allowing a limited form of methogerride

Unlike in FJ and MJ, and indeed full Java itself, we do notudel object constructor methods in the
language definition. Full Java allows objects to be createttultiple ways, thereby requiring the ability
to define multiple constructor methods. Both FJ and MJ eefarsingle constructor method for each class
to which initial values for all fields must be passed as patarse There is no loss of generality in this
approach and so we adopt it for LJ. However, in FJ and MJ, naetst methods are made explicit and must
appear in the method definition list of each class. This coogir method is distinguished from the other
methods through the use of separate typing rules. Since taeronly be a single constructor, we feel that
this is an unnecessary complication of the language syatakso make the constructor methotplicit by
requiring in the type rule fonew expressions that the types of the sub-expressions apgearihe object
creation construct match the types for the sequence of fildfiised by the class of the object being created.

Furthermore, we have chosen to omit cast expressions frartanguage. It appears that casts were
included in FJ in order to support the compilation of FGJ paogs to FJ [18§3]. Since that is not an
objective of the current work, and the presence of downaasies the system unsound (in the sense that
well-typed expressions can get stuck), they are omitteccabts are replaced by subsumption rules in the
type system. It is necessary to point out at this stage theuatisyntax that we have defined foull
expressions. We have borrowed the traditional syntax foptieg casts but intend it instead to merely act
as a tag indicating the desired type that#lo@1 object should have. This choice has been made in order to
be able to define a simple type inference algorithm, in whitbx@ressions havemost specifitype, in the
sense that any other type assignable to that expressiorgiiea typing environment) will be a supertype
of this most specific one.

Definition 3.1.4 (syntax Look-up FUNcTIONS). We define the following look-up functions to retrieve the
various syntactic elements of a program:

1. The following three functions retrieve the names of ag;lasnethod and a field from their respective
definitions:

>

C where cd= class C extends C' { fd md}
MNAME(md) m  where md= D m(Cy Xq,...,Ch Xn)
NaMe(fd) = f where fd= C f

cNaME(cd)

>

|>

2. The class table), is a partial map from execution contexts and class namdade definitions:
[ cd if cname(cd)=C & cd €
A(x,C) = . .
Undefined otherwise
We specify explicitly that the class table should be undefime the special cla®hject, since this
class should only serve as the root of the class hierarchgamain no fields and methods:
A(y,0bject) £ Undefined
3. Thesupercrass function is a partial map from execution contexts and claases to class names,
returning the direct superclass of a given class within fliergcontext:
(04 if A(x,C) = class Cextends C' {fd md}

SUPERCLASS(y, C) £ . .
Undefined otherwise
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4. The list of fields belonging to a class C in an executionexintis given by the following function:

F(.C)- T, if A(x,C) = class C extends C { fd, md}
F(x, C) 2 and f; = rname(fd;) for eachi e n

€ otherwise

Thus, the sequence returned by this function contains ngttbe fields declared in the specified
class, but all the fields that it inherits from its superatssdNote that we have defined this function to
return a list, rather than a set, since the order of the fisldaportant. When typingew expressions,
we must make sure that values are givendibthe fields belonging to a class, and that they are given
in the correct order so that field selection and update egjnes reduce correctly.

5. The functionM returns a set of method names, corresponding to the metleotlreld and inherited
by a given class. It is defined as follows:

[ M(x.C) U {mxame(md) | md € mad}  if A(y, C) = class C extends C’ { fd md}
M, C) = 0

otherwise

Note that we have defined this function to return a set ratieenr & list since, unlike fields, the order
of methods isnot important. Also, the set returned by this function contaios only the names of
methods defined in the specified class, but the names of dllosethat it inherits from its super-
classes. We allow this set to be notationally referred to sejaence, and its elements to be indexed
and subscripted in the same way, in order to increase thalgiyl of the notation.

6. The functiormeopy, when given an execution contegtclass name C and method namereturns a
tuple (%, e), consisting of a sequence of the method’s formal parasiated the method body:

(Xn, €) if A(x, C) = class C extends C’ { fd md}
& Com(Cy X1, ...,Ch X,) { €} € md

mBopy(y, C,m) = ¢ mBopy(y, C',m) if A(x,C) = class C extends C' { fd md}
& Com(Cy X4,...,Cn X)) {€} ¢ md

Undefined ifA(y, C)

7. The functionvars : EXIPR — ¢(VARIABILE) returns the set of all variables used in a given
expression. Itis defined inductively as follows:

vars((C)null) = 0
vars(X) = ({Xx}
vars(e.f) = vars(e)

vars(€g.f = &) = vars(€y) U vars(ey)
vars(€9.M(€,)) = vars(€y) U vars(e) U ... U vars(&,)
vars(new C(&,)) vaRs(€1) U ... U vars(€n)

We now define look-up functions which allow us to extract ypetinformation that is defined in a given
class:

Definition 3.1.5 (memBeR TYPE LookuP). Thefield tableA; andmethod tableA,, are functions which return
type information about the elements of a given class withiexecution context:

A € (CONTEXT x CLASS-NAME x FIELD-ID) — TYPEc
Am € (CONTEXT x CLASS-NAME x METHOD-NAME) — TYPE,
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These functions allow us to retrieve the types of any givdd fieor methodm declared in a particular class
C in the contexi:

D if A(y,C) = class C extends C’ { fd md}
&D fefd

A%, C, f) =3 As(x, C, f) if A(x,C) = class C extends C’ { fd md}
&D fgfd

Undefined ifA(y, C)t

C,—D if A(y,C)= class Cextends C’ { fd md}
&D m(Cy Xg,...,Cn %) { €} € md

Am(, C,m) =4 Am(x, C,m) if A(x, C) = class C extends C’ { fd md}
&D m(Cy Xg,...,Cn Xn) {€} ¢ md

Undefined  ifA(y, C)f

We also define these lookup functions so that the specia @tgiect does not have any fields or methods.
For all contextgy, field identifiersf and method names:

As(y,0bject, f) = Undefined

Am(x,Object,m) = Undefined

We say that GextendsC’ in the contexty whenA(y, C) = class C extends C’ { fd md}. We say
that C is asubclassof C’ in the contexty when C extends Cor there is a non-empty sequence of classes
Cy,...,Cqin y such that C extendsiCeach Gextends ¢1 foralli € {1,...,n- 1}, and G, extends C
We formalise this notion by defining a family of relations thveach relation representing subclassing in a
particular context.

Definition 3.1.6 (suBcLass RELATION). The function< returns the subclass relation for a given execution
context:

< € CONTEXT — p(CLASS-NAME x CLASS-NAME)

Then, for all contextsy, the corresponding subclass relation is defined as the eshalansitive relation
satisfying the following condition:

supErcLASS(y, C) = C' = (C,C') € <(y)

We will use the abbreviatior, to denote<(y), and use infix notation; thus €, C’ represents that (C’) €
<(0)-

Using the subclass relation, we now define a relation oyees The subtype relation is simply the
reflexive projection of the subclass relation onto types.

Definition 3.1.7(sustypes). As for subclassing, we define a family siibtyperelations, and a total function
from programs to this set of relations:

<. € CONTEXT — o(TYPEc x TYPE()

For each context, its corresponding subtype relatier(y) is defined as the smallest partial order satisfying
the following condition:
C<,C=(C,C)e<(x)

Again, we will use the abbreviatior::, to denote<:(y) and use infix notion; thus &:, C’ represents that
(C.C) e <:(x)

Finally, we definevalidity of a type. We say that a type v&lid with respect to an execution context
writtent, C, when the corresponding class is defined in the context.

Definition 3.1.8 (vaLp Types). We define type validity through the following judgements:

; (A(x, C))
F, Object H, C
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3.2 Well-Formed Contexts

In this section, we define the conditions necessary for aoutiam context to bevell formed Well formed-
ness of a context is itself a necessary condition for theecoreduction (execution) of LJ programs.

Definition 3.2.1 (weLL-FORMED cONTEXT). The notation y denotes a well formed execution context. An
execution contexy is well formed if, and only if, it satisfies the following coidns:

1. There are no duplicate class definitions:

x=Ch= Vi, jen[i # ] = cvamp(cd) # cname(cd;)]

2. The class hierarchy &cyclic that is, there are no two classes defined in the executiotextosuch
that they are both subclasses of one another:

~AC,D[A(,C)\ & A(x,D)l = C<, D&D <, C]

Note that this also precludes a class inheriting from itgedf the subclass relation must aetire-
flexive We require this property to ensure that the field and mettsvdolok-up functions are well
defined for classes that are defined in the class table.

3. All fields defined in a particular branch of the class highgrare uniquely named, so there are no
duplicate field definitions or field hiding:

¥ C[A(LCL & F(3,C)=To= -~Ti,jenifi#|= f = f]]

4. There are no duplicate method declarations within a galass, and the types of any overridden
methods must match.

YCI A(y, C) = class C extends C’ {fd md,}
= -3, jen[i # ] = mnamMe(Md) = mname(md;)] ]
vV C,C,m[ Am(x, C,m) = Cp, = D1 & Am(x, C',m) = C'n, - Dy

& supercLAss(y,C)=C' = m =m&D; =D& Vien [C;=C] ]

5. The special variablehis must not appear as a parameter in any method definition:

¥ C, m[mBopy(y,C,m) = (X,e) = this ¢ X]

6. All types declared in field and method types must be valigsywith respect to the execution context,
as must all classes that are inherited from:

VC f[A(x,C,f)=D = +, D]
VC,m[Am(,C,m=C,—»D = +,D&Viefn[r Cl
¥ C [supErcLass(y,C)=D = +, D]

In other words, this condition ensures that all elementfefigrogram correspond to a well defined
class.

Note, that we could have specified that a well formed exenutimtext does not define the cladgiect,
since we reserve this class name as denoting a special etnjptt.orhis condition is not strictly necessary
however, since we have defined the class table to be undefinthe@bject class. Such a condition would
serve merely as a sanity check for the programmer, ensuraighiey had not defined other classes in such
a way as to rely on properties of tbeject class that do not exist.

Property 3.2.2(tyPE consisTENcY). We note that well formed execution contexts exhibit thedfeihg con-
sistency properties:
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1. The type of an inherited field in a subclass is consistetit itd type in the superclass:

oy & A(x.C. f) = C & Af(y,D.f) =D’ &C <, D= C =D’

2. The type of an inherited or overridden method in a subdassonsistent with its type in the super-
class:
% & Am(x, C,m) = Cn, — Co & Am(x,D,m) = Dp, » Do & C <;, D =
Co=Dg&n=m&Vi Eﬁ[Ci =Di]

Proof. From Definition 3.1.6, we see that €, D implies that either C= D or C <, D. The results
then follow immediately, or by induction on the derivatioh® <, D, using the properties of well formed
execution contexts and the definition of the field tablend method tabla,,. We show the case for fields
(2).

From the definitions of\s and¥ we see that ifA¢(y, C, f) = C/, thenf € 7 (y, C). Part (3) of Definition
3.2.1 asserts that each field4(y, C) is unique. Then, if G= D it follows immediately thatAs(y, C, f) =
As(x, D, f) since the types Gand D must come from the same field definition. I1f<G D, then by induction
on the derivation of G, D it follows that there is a sequence of clas€swith n > 2 such that ¢ = C
and G, = D with supercrass(C;j) = Cj;1 for eachi € n. Then, sincef € F(y, D) it follows by the definition
of A¢ (Definition 3.1.4) and part (3) of Definition 3.2.1 that thedid is not defined in any of the classes
C=0_C,,...,Cy1, and so the type returned Iy (y, C, f) is the type declared in the field definition fbrin
class D. Therefore, 'C= D’. O

3.3 Reduction

In this section, we define a reduction relatien, on LJ programs. The reduction rules given below are a
simple modification of those i§2.3 of [18], and are defined through the notiorsabstitution

Definition 3.3.1 (SUBSTITUTION). 1. A substitutionis a construction of the form J&] where e is an LJ
expression, andis a variable. We define thapplicationof a substitution to an expression, (€)]d,
inductively as follows:

(©null)e'/X] = (C)null

XEe/x = ¢
wle/x] =y if y# X
enNe/x = (ele/x).f

(ef =¢e")e/X (e[€/X]).f = (€¢’[€'/X])
(eo.m(ey, . ... en))e’/X] (eole’/x]).m((er[€’/X]), . .., (enl€’/X]))
(new C(ey,...,&n))[€'/X] = newC((e[e'/X]),....(en[e’/X)])

Thus, the result of applying the term substitutiofy j& to expression e is the term e with all occur-
rences of the variable replaced by the expressioh e

2. Asequence af distinct substitutions (.. ((e)[er/x1]) ... )[en/Xn] can be abbreviated by the notation
(e)[er/X1, . .., en/Xn].

3. Avariable substitutions a substitution [¢X] in which the expression e is itself a variable. When such
a substitution is applied to an expression, the result isathaccurrences of one variable are replaced
by another.

Corollary 3.3.2. A corollary of definition 3.3.1 is that ifyf/x] is a variable substitution and g is a term
substitution, withy ¢ vars(€) \ {X} then

ely/Xl[e/y] = €[e/x]

We now define the reduction relation itself.
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Definition 3.3.3 (rebuction). The one-step reduction relatien is a relation between programs:
— € p(PROGRAM x PROGRAM)

Since the execution context remains the same for all prografated by—, to ease readability we again
use a subscript notation, so that-e, € indicates thaty,e) — (x,€). The one-step reduction relation is
defined by the following natural deduction system:

(F(,C)=f,&ien)

[R-FLD] (new C(&n).fi) —, &

F(xC)=f,& jen )
[R-ass] (new C(&)). fj = € —, new C(g/n) Vien[i#|= ¢ =e]

,C,m) = (Xn,
[Rvvk] ew c@)ME ) —, e[€ /X1, ..., €/%,new C(€)/this] (uzopx(y, C. m) = (o, €)

e—, €
[Rc-FLD] —
ef -, é&.f
e _)X e/l
[Rc-ass1]
(ef=¢)-, (¢.f=¢€)
€ —, &
[Rc-Ass?]
(ef=¢)—-, (ef =€)
& —y &
[Re-INVK1] — —
€.M(€) —, €.M(€)
€ —y € jen
[Rc-INVKD] — ( S )
e.M@) —, e.m(Ey) \ Yien[i# | =€ =e]
[Rc-NEW] & elj ( Jen )
new C(€,) —, new C(¢'n) Vien[i#]= ¢ =e]

For two expressions, e and, & e —, €, then we call e theedex and & thereduct We also say that'e
expanddo e. We denote the transitive closure-efby —*, and thus write e~ € if there exists a (possibly
empty) sequence of expressidgssuch that e-, e; —, ... —, ey —, €.

In the next chapter, we will define an intersection type syster LJ, and in Chapter 5 we will derive
some results relating typeability to this notion of redowti

3.4 Remarks on the Nature of the Calculus

Now that we have defined the calculus, and how it operatesyevima position to make a few remarks on
how it compares to the other calculi on which it is based. Butlie fact that method bodies do not include
thereturn keyword, or terminate with the ' character, LJ is a valid subset of full Java (if we also cdasi
the type annotations on null object expressions as cagt®hwimilarly is the case for Featherweight Java
and Middleweight Java. Otherwise, the most prominent featfiLJ is that it iSunctionalin nature. In this
respect, it is similar to FJ and, indeed, thealculus. Furthermore, like the Lambda Calculus, we expéc
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to beconfluent that is, it exhibits theChurch-Rosseproperty [9] that if an expression e reduces to bath e
and e, then there is a further expressionsech that bothg—* € and e —* €.

Middleweight Java, on the other hand, isiemperativecalculus. Method bodies consist of a sequence
of statementsvhich may, and indeed are most often intended to have sidets. MJ defines the notion
of a store, and newly created objects persist in this stotle fuither execution operating onraference
to the object. Thus, the result of the execution of one sufresssion may be visible to another unrelated
sub-expression. This is something which is not possiblelirsince the substitution of an object expression
into multiple sub-expressiondtectively createsopiesof that object expression. MJ also contains other
syntactic elements that our calculus does not: local viridbclaration and assignment, for instance, as
well as conditional statements. It is thus a larger subséaed than LJ.
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Chapter 4

The Type Systems

We now define two type assignment systems for LJ expressidms first directly corresponds to the type
systems found in [18] and [8], which in turn are modelled amfiil Java type system [17]. We call this the
classtype system. The second system is an extension of the firgthwire call thepredicatetype system.
For readability, when we refer to the type system from nowamwill mean theclasstype system, and the
predicate systemwill refer to the predicate type system. When we refetyfmes we will mean class types,
and similarlypredicateswill refer to predicate types.

The predicate system takes after the system of the same mafsg with predicates comprising se-
quences of statements, each of which describes a singleibehaxhibited by the expression to which it is
assigned. It is equivalent to the intersection type systatnmied for the Lambda Calculus [2], and similar
results will be shown to hold.

4.1 The Class Type System

Standard notions of type assignment, which associate awithean expression require @amvironmento
provide assumptions for the types of any (free) variables ticcur in the expression. Our system is no
different, and so we now proceed to formally define this notion:

Definition 4.1.1 (ryee ENvVIRONMENTS). 1. A type statemenis a construction of the form e : C, where e
is an LJ expression, and C is a class type. The expressiora#tad thesubjectof the statement, and
the type C is called theonclusionof the statement.

2. Atype environment, is a set of type statements with term variables as subjsct® that we do not
require the term variables to be distinct. This is only theecforwell formedenvironments, defined
below.

3. We use the abbreviatidn x : C to represent U {x : C}. Similarly, we writeI',I" to represenf UT".

4. We define the functioWA]RSENV, which returns the set of variables used as subjects ofahensénts

in a type environment as follows:
VARSE /(D) = {x| x: CeT}

Definition 4.1.2 (wELL-FORMED TYPE ENVIRONMENTS). We say that a type environmelitis well formed with
respect to some execution contgxivhen the execution context is itself well formed and théesteents in

I' all have distinct variables as subjects. Furthermore, dinelosion of each statement must be a valid class
type with respect tq. This notion is formalised through the following judgensent

FX

XFO

x+T H, C
———— (-AD[x:DeT))
yrI,x:C
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Notice that, by simple induction on the derivationmof T, it is easy to see that+ I'” for anyl” CT.

Definition 4.1.3 (Type ENVIRONMENT SUBSTITUTION). We can perform substitution on a type environment,
which results in the renaming of variables. Given a variaibstitution §/x], we define substitution on
type environments inductively as follows:

0)y/X
T,z: C)ly/¥
(I, z: CO)ly/X

0
(D[y/x],z: C if z# x
(D[y/x,y:C ifz=x

Notice that, ifl" is well-formed with respect to some execution contexdnd there does not exist a class D
such thaty : D €T, then {)[y/X] will also be well formed with respect tp.

Definition 4.1.4 (ryee assioNMeNT). 1. Type assignment is a ternary relation between execution con-
texts, type environments and type statements, writtehh & : C. We say that the type C can be
assignedto the expression e in the contexusing the type environmerit. It is defined using the
following natural deduction system:

x+T H, C
[T-NULL]
g (C)null:C
T
[T-vAR] —— (x:Cel)
rgx:C
rece:D
[T-FLD] —— (A(x,D, f) = C)
reef:C
r'te:D THE€:C
[T-Ass] (At(x, D, f) = C)
reef=
Fr'te:C TEey:Cy ... THe:Cy _
[T-mvvk] (Am(x, Co, M) = Cy — D)
', e0.m(&) : D
ree:Cp ... TEey:Cy F,C)=T
[T-NEW] ’ !
F&—HEWC(én) C Af(X’Ca fl):C]_,...,Af(X,C, fn):Cn
rece:C
[1-suB] —(C <, C)
rece:C

2. We writeD::T' £ e : Cif the judgemenr £ e : C is witnessed by the derivatidD.

Lemma 4.1.5(WELL-FORMED TYPE ENVIRONMENTS). If there exists a type derivation using a type environment
I, thenI is well-formed:
ree:C=y+T

Proof. By easy induction on the structure of type derivations. Thasebcases are instances of the rules
(m~uLp) or (p-var), both of which include the premise that the environmentefi-formedy + I'. The other
cases follow by straightforward induction. m|

Lemma 4.1.6(TyPE GENERATION). The type system given in definition 4.1.4 displays the folfaypgeneration
properties:
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1.TE(C)null:D=C<;, D

2.Tgx:C=3C <, C[x:C eTI]

3.T'fef: C=>3D,D'<;, C[ITfe:D&A(xD,f)=D]

4. Tpef=¢:C=>3ID<,CI'ye:D&A(D,f)=D"&TI'y € :D]

5.T £ e.m(&):D = 3Co,Cy,D' <, D[T L& :Co& Am(y, Co,m) =Cph —» D' & Vi e[l E & : C]
6. TEnewD(®):C=>D<,C&F(y,D)=f, & Vien[A(y,D,f)=Ci&T g :C]

Proof. By easy induction on the structure of type derivations. Wansthe case for method invocation. If
I' £ ep.m(@,) : C then the last step of the derivation must be an instanastloér the ¢-ivvk) rule or the
(r-sus) rule. If it is (T-invk), then we have immediately thatCy andC,, with T Hey:CoandlE g : C

for eachi e n. We also have thad D <:, C, since the subtype relation is reflexive, and we can take®@

If the rule is (-sus), then we have thall C’ <:, C such thal” i} ep.m(&,) : C’, and we can apply the same
reasoning again, since the expression is unchanged. Inajgihere may be any (finite) number of instances
of rule (r-sus) before an instance of-@nvk). Therefore, we will obtain a sequence of tyf@g such that
C| <, Candl' i, eg.m(&y) : C/ with C/ , <, C for eachi € 7, before we have that £ ep.m(&,) : Cl .1 by
ainstance of rulerfinvk). Then, since<:, is transitive we have that/C | <:, C. O

Definition 4.1.7 (TYpPE CONSISTENT EXECUTION CONTEXTS). We say that an execution contextype consistent
o, when the bodies of all methods defined in the context candigresd their declared return type.

ho © Fy&VYC]|
A, C) =Y m[ Am(x C,m) = Dp — Do & MBopy(x, C, M) = (Xn, &)
= {X1 :D1,..., X : Dp, this : C} £ ey : D]
]

4.2 The Predicate Type System

We now define an extension to the class type system: the ptedigpe system. We will see that the
predicate system types exactly the same set of terms asdbe wfpe system. This result is shown in
Theorem 4.3.1.

Definition 4.2.1 (prepicate TYPES). We define a set opredicate typesor simply predicates in the spirit

of the system of van Bakel and de’Liguoro [5]. The BRIED of predicates, ranged over kyandy,
consists of the set ajbject predicates, ranged over loy, and the special predicate constantwhich we

call theuniversalpredicate. Object predicates consist of a (possibly engaglience ofredicate member
statements These are statements of the form 7, wherel ranges over the set of class member labels
(see Definition 3.1.1) and ranges over the set oiembermpredicates. We define these sets of predicates
inductively as follows:

oy = wlo
o = {1:71, ..., IhiT) (n>0)
T = @Y, ... ,¢pn— 0 (Nn=0)
We can abbreviate the object predicéte: 1, ... ,In : ), by writing (l; : 7 €M and we call the object

predicate consisting of the empty sequenreg,theemptypredicate. We calb atrivial predicate; all other
predicates are, correspondinghgn-trivial.

The aim in defining predicates in this way is that they shodscdbe the behaviour of an object. The
predicate member statements that comprise an object pteddach indicate that the object to which it is
assigned behaves in a particular way. The class memberitalbekh statement denotes either a field of
method belonging to the object, and the member predicatedbscribes the result of accessing the field or
invoking the method. In the case of a method member staternientnember predicate also indicates the
requiredbehaviour of the arguments, as well as the receiver. Theergalpredicate is intended to indicate
non-terminating behaviour, as will be discusseg3m.
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Definition 4.2.2 (suserepicates). 1. The relationd is defined as the least pre-order on predicates such
that:
€

(o tem

o <(j:tpforalljen = ¢<di:n'¢™  nx>1

d w
g <|jZTj> Yjien

2. The equivalence relation~ o is defined over member types by:

¢~¢ o oYL

This definition captures the intuition that object predésashould be equivalent up to reordering of
predicate member statements. Thus

Gin My~ (i Py s =& ViemAjen [l =1/ &7 =]

Definition 4.2.3 (prepicate joiN). Thejoin of two predicatesg; LI ¢, is defined as follows:

pUw = ¢
wleg = ¢
. ien . ien . . . .
G S™Mudicr' =™ = riry, oy Tt LI Ty

We also define the following shorthand notation:

Lliendi =11 ... Ugn

The join operation will be used in the proof of the subjectamgion property for the predicate system in
§5.3, and also in the type inference algorithms in Chapter 6.

Definition 4.2.4 (prREDICATE ENVIRONMENTS). 1. A predicate statemeris a construction of the forme : C:
¢, where e is an LJ expression, C is a class typedarsda predicate. The expression e is called the
subject C is called theype conclusionandg is called thepredicate conclusionf the statement.

2. A predicate environmeptl, is a set of predicate statements with term variables agsishjAs for
type environments, we do not require the term variables tdigienct. Again, this is only a property
of well formed environments, defined below.

3. As for type environments, we use the abbrevialipix : C : ¢ to represenil U {x: C : ¢}. Similarly,
we writeII, IT’ to represenitl U IT'.

4. We define the functioWAIRSENV, which returns the set of variables used as subjects ofdhensénts
in a type environment as follows:

VARSE(IT) = {x| x: C: ¢ eI}

5. We say the a predicate environmé&his anobjectpredicate environment when the predicate conclu-
sion of each statemeil is an object predicate that does not contain

6. We extend the subpredicate relation to predicate envieorts as follows:
NI’ &V xe VARSE (D) [x:C:gpell=x:C:¢' eI’ & ¢ < ¢']

Definition 4.2.5 (WELL-FORMED PREDICATE ENVIRONMENTS). We say that a predicate environmdiitis well
formed with respect to some execution contgxiwhen the statements i all have distinct variables as
subjects, and the type conclusion of each statement is é elaks type with respect tp This notion is
formalised through the following judgements:

FX

XFO

26



y 11 F, C
———  (-3AD,¢'[x: D : ¢’ € ))
yFILX:C:¢

Notice that, by simple induction on the derivationyof I1, it is easy to see that+ I1’ for anyIl’ C II.
Definition 4.2.6 (PREDICATE ENVIRONMENT SUBSTITUTION). We can perform substitution on a predicate environ-

ment, which results in the renaming of variables. Given &alée substitutiony[/x], we define substitution
on predicate environments in the same way as for type enmieais as follows:

@My/q = 0
(ILz:C:)y/X] = (ID[y/X],z:C:¢ if z# X
(ILz:C:¢ly/ = (Dly/H.y:C:¢ ifz=x

Notice that, iflT is well-formed with respect to some execution contexdnd there does not exists a type D
and a predicate’ such thaty : D : ¢’ € II, then {T)[y/X] will also be well-formed with respect tp.

Definition 4.2.7 (ENVIRONMENT CONVERSION). The notationlI denotes the type environment obtained by dis-
carding the predicate conclusions from the statemeriik in

~

N2{x:C|x:C:pell}
Notice that the following results are an immediate consegeef this definition:
o 1 - /1'[_7
y F 11
I [y/

nciIr
i
[y/X]

=4

Definition 4.2.8 (prepicaTE ASSIGNMENT). 1. Predicate assignmefits a ternary relation between execu-
tion contexts, predicate environments and predicaterstatts, written adl £ e : C : ¢. We say
that type-predicate pair C ¢ can be assigned to expression e in the contexsing the predicate
environmentl. It is defined using the following natural deduction system:

x k11 F, C x k11
[P-NULL] [P-vaR] —— (x:C:gell)
ITE (C)null: C: (e NEx:C:¢
I ZnewCE):C MMEe:D:(f:¢)
[P-NEWORBJ] [P-FLD] (At (x, D, f) =C)
IT £ new C(€) : C :(e) [meef:C:¢
[Mfe:C:c0 TEE:D:¢
[P-ASS]_] (Af (X’ C, f) = D)
Meef=€:C:(f:¢)
(roxsss] MEe:C:(liir <M ﬁge’:D( fel )
Heef=€:C:(:n'cM Ai(x,C, f)=D
OEPe:D:(m:yig, oy TEg:Ci:¢j (Vien MEe:D:y _
[P-INVK] (Am(x,D,m) = C, - C)
¢ em@e):C:o
Mee:Ci:¢ TLe:C (Vienliz]) F,C)=T. & jefi
[P-NEWFLD] . n
I1 € new C(&,) : C: (fj: ¢) Vien[As(y C, i) = C]

Am(X, C, m) = En’ i D

HinewC@E):C NIEeg:D:c
[P-NEWMETH] - —————— mBoDY (), C, m) = Xy, €)
I1§ new C@&) : C:(m: gy — o) I ={Xy:C1:¢1, ... ,%v : Cr : ¢, this : C:y}
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[Ige:C:¢ Mite:C
[P-suBTyPE] — (C' <, 0) [P-oMEGA]
[MEe:C:¢ Mnée:C:w
Mmee:C:li:ri'sM Mmee:C:li:ri'sM
[P-sEL1] (jen [P-sEL2]
mge:Clj:rp IMEe:C:(e

Mmee:Cily:7y) ... MEe:Cilp:th
MEe:C:(li:ir <M

[P-sEQ]

2. As for type assignment, we wri@::I1 £ e : C : ¢ if the judgementI £ e : C : ¢ is withessed by the
derivation®D.

Lemma 4.2.9(WELL-FORMED PREDICATE ENVIRONMENTS). |If there exists a predicate derivation using a predicate
environmentl, thenIT is well-formed:

Mee:C:p=>yr 1l

Proof. By easy induction on the structure of type derivations. W ntbat the leaves of any predicate
derivation will be instances of the rulesy¥ar) and ¢-NuLL), or type derivations. In the case of the former,
the premise of this rule is that the environment is well-fedyy + II. For the latter, we have by Lemma
4.1.5 thaty + T1, and then by Definition 4.2.7 that+ I1. O

Lemma 4.2.10(prREDICATE GENERATION). The predicate system displays the following generatiopenties:
1L IOEC)null:D:c=C<; D& r C&o =<
2. MMEx:C:o=3ID<, Cydo[x:D:yell
3.MM¢ef:C:o0=3D,C <, Cy <o [A(x,D,f)=C' &Il ¥ e:D:(f: y)]
4. MMfef=€:Cio=Vien[AD; <, CHEef=¢€:D;:(i: )]

5. 1€ e.M@E,):C:o=3D,Cy,C < Cy,4p.0" <o [An(,D.m) =Cp, > C &I Ee:D:
Mm:yigy o) &Il e:Diy&Vien[llye:C: ¢l

6. I1 £ new D(&,) : C: (¢) = D <;, C & TI £ new D(&,) : D
In the following, we taker = (I; 1 7; ' €™ £ (e):
7. MMEnewD(&,):C:o=D<, C&VYien[llfnewD(&,):D:: )]

Proof. By easy induction on the structure of predicate derivatid¥s show the case for new object creation,
and a non-empty object predicate.IIf§ new D(€,,) : C : o, with o = (l; : 7 €M™ andn > 0, then there
are two cases to consider. f = 1, theno = (I : 1) and the last step of the derivation must be an
instance of ruled-susTyre). In general, there will be a number of instancesmfusTyrE), but without
loss of generality, we may assume that there is a singleniostahe premise of which is a derivation of
ITE newD(€&y) : D :(li: ey with D <., C by the side condition of the{susTyrE) rule.

If n > 1, then there will again be, in general, a sequence of inegaot ¢-susTyre) with the premise
ITE newD(&y,) : C : (li i '€y derived by an instance ob-eq), with C’ <: C. Then, it follows that
IT £ new D(&,,) : C' : (l; : 7;) for eachi € N. Then, for each of these, there must be another sequence of
instances ofe-susType) with the premise bein@l £ new D(&,,) : D : (l; : 7;) derived by an instance of rule
(p-xewFLD) if | € FIEILD-TD, and by an instance of rule-§ewMerth) if |; € METHOD-NAME. It then
follows by the side condition of(susTvyrE) that D<:, C’, and so by the transitivity ok:, , we have that D
<, C. o
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4.3 Properties of the Type Systems

We now present some properties of the type systems defirfigdlirand§4.2. We begin by showing that the
set of expressions typeable by the class type system islytlaetsame as the set of expressions typeable
by the predicate system.

Theorem4.3.1.3¢[l1£e:C: ¢]<:>H e:C

Proof. (<) This direction is easy. If e is typeable then there ceryaixists a predicate that we can assign
to e: it is the universal predicate, which we can assign by rule-pmeca).

(=) This direction proceeds by induction on the structure @dprate derivations. The base cases are
(p-NuLL), (P-vAR), (P-NewOBJ), (P-NewMETH) and @-omeca). We show some of these, and also a few
inductive cases.

(p-~uLL) Then e= (C) null with Ny kI andr, C. By Definition 4.2.7 we have thatr I and so by
rule (r-~urp) it follows thatTI £ £ (C)null : C.

(p-var) Then e= x with hyr 10 andr, Csuch thaix : C : ¢ ell By Definition 4.2.7 it follows that
x: C e Il andy + TI. So by rule -var) we have thafl £ B x:C.

(P-NEWOBJ) Then e= new C(€) and the result follows |mmed|ately since the premise if thle is
thatTT £ K new C(€) : C.

(p-Ass1) Then ez e.f =e andg = (f : ¢)WithI1 £ e : C : o for someo andIl §
such thatA¢(y, C, f) = D. By the inductive hypotheS|s it follows thﬁltr € : Cand
Then by rule {-ass) we have thafl £ he.f=e:C.

(p-Invk) Then e= eg.m(E) With T £ ey : D : (m: ¢, — ¢) andIl £ e : D : . We also have that

Am(x,D,m) = C, — C such thafl £ g : C; : ¢; for eachi € fi. By the inductive hypothesis it
foIIows thatT £ ke : D and thafll £ k & : Cj for eachi € N. Then by rule f-invk) we have that

’

Fe:D:g
MK e :D.

k €0.M(En) : C.
(P-NEWFLD) Then e= new C(én) and?(x, C) = f, with ¢ = (fj . ¢’) for somej e N such that
At(x, C, fj)) = Cywith IT ¢ ¢, Also, me Ee: C. with A¢(x, C) = C; for eachi € i such

thati # j. By the |nduct|ve hypotheS|s it foIIows thﬁﬂ:l— gj : Cj and so by ruleitNew) we have
thatTT £ £ new C(&,) : C.

O

A consequence of the preceding theorem is that the followiteyis admissible in the predicate assign-
ment system:

Theorem 4.3.2.

ge:C:y
ﬁi(ww)

e:C:.¢

Proof. We break the proof down by considering the structure:of

(¢ = w) By assumption we have thét £ e : C : ¢ and so, by Theorem 4311 e : C. Then, by rule
(p-omEGA), it follows thatIT £ e : C :w.

(¢ = (e)) By Definition 4.2.2, it must be that = (I; : 7 lEM Ifn=0 theny = (e) and the result follows
immediately since then, by assumption, we hiv& e : C : (e). If n > 0, then we have by rule
(p-seLp) thatII £ e : C : ().

(6= i:7i €™, n> 0) By Definition 4.2.2, it must be that = (Ij : 7; ' €™) with ” > n and for each
kem, 3 jen such thaly = I] andry = T’j. By assumption]1 £ e : C :¢ and so, by ruler(-seL;) it
follows thatII £ e : C (I} : 7;) for eachk € 1. Then, since for alk € i, there is somg € 1 such
thatly = I’ andrk = TJ, we have thafl £ e : C : (I : 7¢) for eachk € . And so, by rule -seq), it

foIIowsthatH Pe:C:li:r'em,
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We also see in the following theorem that the set of predicatesignable to an expression does not
depend on the set @§pesassignable to that expression. In other words, if there isedipate derivation
assigning the type-predicate pair @ to an expression e, and we can also assign the type & then there
exists a predicate derivation assigning the type-preglipair C : ¢ to e also. This result is a crucial part of
the proof for subject expansion.

Theorem 4.3.3.11£e: C: ¢&H e:C=1Ilfe:C:9¢
Proof. By induction on the structure of predicate derivations. iAgere only show some of the cases:

(p-var) Thene= xwithx: C: ¢ €II. By assumptionﬁ x: C' andsobyLemma4.1.6(3C"” <:, C'[x:
C”H] By Definition 4.2.7 it follows thatx : C € II, and so it must be the case that G C and
therefore C<:, C’. Since, by assumption, we halie x : C : ¢ it then follows by rule §-susTypE)
thatTl £ x: C’ L.

(P-FLD) Thene= €.fwithII £ € : D : (f : ¢) such thatA¢(y, D, f) = C. By assumption we have that
i €.f . C" and so by Lemma 4.1.6(3},D’,C” <., C’ such thaf £ I € D’ andAs(y,D’, f) = C”.
By the inductive hypothesis it then follows tHat¥ e’ D : (f: ¢), and by rule §-rLp) we have that
ITg¢e.f:C":¢. Then, since C <, C’, we have by rulex-susTyeE) thatIl £ €. : C’ : ¢.

(p-assy) Thene=e.f =eandg = (i:7' “MHwithIT€e :C: (i '<M andTl £ £ e : D such that
f ¢ I,andA¢(y, C, f) = D. By assumptlon we have thﬂtl— e.f= ez C’ and so by Lemma 4.1.6(4),
3C” <, C’ such thafl £ el C” andII £ i e D" with A¢(y, C”, f) = D’. By the |nduct|ve hypothesis
it then follows thatll £ e; : C” : (| : T) and so by rulertassy) thatIl £ e;.f = e : C” : (f : ¢').
Then, since C <, C’ we have by rulex-sustypE) thatll £ e;.f =& : C' : (f : ¢/ >.

(p-NxewMETH) Then e= new C(§,) and¢ = (m: y::¢, — ¢’). By assumption we have thﬁll—; new C(&,) :
C’ and so by Lemma 41.1.6(6), it follows that<€, C’. We then have by ruler{suTypE) thatII ¥
new C(&) : C' : (m: y:iig, — ¢').

(r-omEcA) Then¢ = w and since, by assumption, we have tﬁa& e : C, it follows immediately by rule
(p-oMmeGA) thatII £ e : C : w.
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Chapter 5

Subject Reduction & Expansion

In this chapter we discuss and prove results relating thedyptems defined in Chapter 4 with the reduction
relation (Definition 3.3.3). Specifically, we see that théugtion relation preserves the types assignable to
terms. The results that we show in this chapter are subjdotction (for both the class and predicate type
systems), and subject expansion (for the predicate typerayanly). We state these results now, and present
their proofs later in the chapter.

Theorem. Both types and predicates are preserved by reduction:
l.io&l'pe:C&e—, & =>T'pe:C
2.0 &IIEe:C:p&e—, &€ =IEE:Ci¢

Predicates are preserved by expansion:
3.00&IEE:C:p&e—, €&INELe:C>MEe:C:¢

Before presenting the proofs of the subject reduction apémesion theorems, we must develop some
other auxiliary lemmas and theorems.

5.1 Auxiliary Lemmas and Theorems

One thing that we notice about the following results is tlsathiat the proofs of many of the lemmas for

predicate assignment are almost identical to their cooredipg proofs for type assignment. Indeed, the
assignment systems are similar enough that we may obtawoéfpr the type assignment system simply by

removing all references to predicates from the proofs feipitedicate assignment system. Notwithstanding,
the situation is not quite as simple as this because in mastscthe proofs for the predicate assignment
system rely on the result holding for the type assignmentegys On closer inspection, this is not so

remarkable since some rules of the predicate system retypieability. Thus, we have that the results for

the type assignment system imply the results for the presligzstem.

Many of the results follow by straightforward induction. donvince the reader of their correctness, we
will show only a few cases in each proof. We first show somedstethenvironment widening and thinning
lemmas. These hold for both type assignment and predicaignasent. These lemmas are used to show
substitution results for both subject reduction and exjoans

Lemma 5.1.1(WIDENING FOR TYPE ASSIGNMENT). If I"andI” are both type environments such thiat I with
y + Tandy + T”, then
rte:C=Ir"ge:C

Proof. By straightforward induction on the structure of type dations. We show only a few cases.

(r-var) Then e= xandx: C e I'with y + I'. Sincel’ C I, it follows thatx : C € I”. Also, by assumption
we have thay + I” and so it we have by rule-yar) thatl” £ x: C.
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(t-ass) Thene= e.f = e andl' ¥ e : Candl § & : D such thatA¢(y, C, f) = D. By the inductive
hypothesis it follows thak” £ el :Candl” £ & : D. Then, by rule f-ass) we have thal” § e;.f =
e : C.

(r-suB) ThenI' ; e : C with C’ <:, C. By the inductive hypothesis it follows thEt f; e : C. Then, by rule
(T-suB) we have thai” ¢ e : C

O

Lemma 5.1.2(WIDENING FOR PREDICATE ASSIGNMENT). If IT andIl’ are both predicate environments such that
IT C IT" with i + IT andy + IT’, then

Fe:C:¢g=>I"Ee:C:¢
Proof. By straightforward induction on the structure of predicdéeivations. We show only a few cases.

(p-NuLr) Then e= (C)null and¢ = (e) with x + IT andr, C. By assumption, we have that I1" and so it
follows by rule ¢-~uLt) thatIT” £ (C)null : C: (e).

(p-assy) Thene= ep.f = epandg = (lj: i ' €™ such thatf ¢ [, withTT £ ey : C: (7'M andTl b

er : D such thatA¢(y, C, f) = D. By the |nduct|ve hypothesis we have thHtE e : C: (I. 7€M,
Also, by Definition 4.2.7 we have th&t ¢ IT’, and so by Lemma 5.1.1 it follows that & Ee :D.
Then, by rule -assy), we have thafl’ £ ep.f = e : C:(lj: 7' €™,

(P-oMEGA) Then¢> wwithTI £ 1 e : C. By definition 4.2.7 we have thet C T, and so by Lemma5.1.1it
follows thatTT’ £ re:C. Then by rulertomeca), we have thail’ £ e : C :w.

(p-skL1) Theng = (I : 7) and there is a sequence of class member ldpelsd a sequence of member types
Towithn > 1 such thatll £ e : C : (l;: 7i V€M with | = l; andr = 7; for somej € n. By the
inductive hypothesis it foIIows thdl’ £ e: C :(li:1 hemy and then by rulerfser;) we have that
IIge:C:j:1.

o

The following thinning lemmas show that typeable exprassican be typed using environments con-
taining only statements about the variables that appeheiexpression.

Lemma 5.1.3(THINNING FOR TYPE ASSIGNMENT). If I" andI” are type environments such tHat= {x : D €
I' | X € vars(e)} then
r'tre:C=rI"fe:C

Proof. By straightforward induction on the structure of type dations. We show only a few cases.

(r-var) Then e= xandx : C € T" with yx + T. SinceVA]RSENV(F) = {x} we have by definition that
x: CeI". Also, we have by Definition 4.1.2 that- I'” sincel” C I'. Then, by rule f-var), it follows
thatl” £ x: C.

(t-ass) Thene=e.f = e andl' £ e : Cwith[ £ e : D such thatA¢(y, C, f) = D. By the inductive
hypothesis, it follows thal'; £ e; : C andl' £ ez :Dwherel'; = {x: CeI'| xe vars(ey)} andl'; =
{x:CeI|xe vars(e)}. By Definition 3.1.4, we can see thairs(e;. f = &) = vars(e;) U vars(e),
and so it follows thal” = {x: C e I'| x € vars(e;.f = &)} =I'1 UT,. Itis clear that botli’y C I'” and
I'; C I, Also, since by assumption we hale e;.f = e, : C it follows by Lemma 4.1.5 that + T
Also notice thaf” C T" so by Definition 4.1.2 it also follows that+ I”. Then, by Lemma 5.1.1, we
have thaf” £ e; : Candl” £ & : D. So, by rule {-ass), it follows thatT” £ e;.f =& : C.

(m-New) Then e= new C(€,). This case is a generalised version of that for rulesg) above. By ruleft-New)
we have thaf (x, D) = f,, andl" £ g : C; such thatA¢(y, D, f;}) = C; for eachi € 7. By the inductive
hypothesis it follows thal“I he: CI withTj = {X: CeI'| x € vars(g)} for eachi € n. By Definition
3.1.4we have thadt’ =T, U ... UuT,. By Lemma 4.1.5 it follows thag + T" and so by Definition
4.1.2 thaty + I"". Also, sincel’; C I for eachi € N, by Lemma 5.1.1 we have thBt £ g : C; for each
i € N. Then, by rule t-new) it follows thatI” £ new C(&,) : C.
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Lemma 5.1.4(THINNING FOR PREDICATE ASSIGNMENT). If IT andIl’ are predicate environments such thiat=
{x:D:y elIl| xe vars(e)} then
[Ife:C:¢p=>I"Ee:C:¢

Proof. By straightforward induction on predicate derivations. $klew only a few cases.

(p-~uLL) Then e= (C) null and¢ = (e) with x + IT and+, C. By Definition 3.1.4 we have that
vars((C) null) = 0. By Definition 4.2.5 it follows immediately that+ 0, and so by rules~uir) we
have that) £ (C) null : C: (e).

(p-NewOsj) Then e= new C(€) and¢ = () with il . new C€) : C. By Lemma 5.1.3 it fOIIOWS/K\&lT’ B
new C€) : C wherd” = {x: C € I | x € vars(new C(€))}. By Definition 4.2.7 we have thal’ =I"
and so we havél’ £ new C(€) : C. Then, by ruletnewOgy), it follows thatIl’ £ new C(€) : C :(e).

(p-rLp) Then e= €.f andIl £ € : D : (f : ¢) such thatA¢(y, D, f) = C. By the inductive hypothesis
it follows thatTT” £ € : D : (f : ¢) whereIl” = {x : C : ¢ | x € vars(€¢/.f)}. By Definition
3.1.4,vars(€'.f) = vars(€') and so it follows thafl’ = II”. Then by rule ¥-rLb) we have that
Iree.f:C:o.

(p-nvk) Then e= ep.m(€,) and¢ = o with T € eg : D : (M : yii¢, — o) andIl £ e : D : ¢ such
that Am(x,D,m) = C, — C andIl £ g : C; : ¢ for eachi € . By the inductive hypothesis
we have thaflly £ ey : D : (m: yu¢, — oyandllg £ e : D : y withIT; £ g : C : ¢
for eachi € nwherelly = {x: C : ¢ € I1| x € vars(g)} for 0 < k < n. By Definition 3.1.4,
vars(€9.M(€,)) = vars(€y) U... U vars(e,) and so it follows thafl’ = I U ... UII,. Also, by Lemma
4.2.9, we have that + I1, and so by Definition 4.2.5 it follows that+ IT” sincell’ € I1. Then, by
Lemma 5.1.2 we have th@l' £ ey : D : (m: ¢, — oyandll’ £ ey : D :ywithIl' £ g : C; : ¢;
for eachi € N. So, by rule ¢-ivvk) it follows thatIl” £ eg.m(€y) : C : o

O

We now show that variable substitution (the substitutioomd variable for another in both an environ-
ment and an expression) isaundoperation. That is, substituting variables in a type or [wage derivation
preserves the assignable type or predicate. This resulbgilised to fectively ‘alpha-convert’ type and
predicate derivations in order to show general substiugiod expansion results for sequences of expres-
sions (Corollaries 5.1.9 and 5.1.12).

Lemma 5.1.5(SOUNDNESS OF VARIABLE SUBSTITUTION FOR TYPE ASSIGNMENT). If [y/X] is a variable substitution
andr is a type environment such thalD [y : D € I'], then

rtLe:C=rI[y/Xkely/x:C
Proof. By straightforward induction on the structure of type dations. We show only a few cases.

(r-~uLp) Then e= (C)null with ¢ + T" and+, C. Since, by Definition 3.3.1(1), (Gull[y/X] = (C) null,
it follows trivially by rule (r-~uit) thatI'[y/X] £ (C) null : C.

(r-var) Then e= zwith z: C € T andy + I'. Notice that the substitution does not introduce a dugicat
statement withy as the subject since, by assumption, no statementyaththe subject exists in.
Therefore, we have thgt+ T'Ty/X]. There are now two possibilities:

1. If z = x, then by Definition 4.1.3 it follows thag : C € I'[y/x]. Then, sincex[y/x] = y by
Definition 3.3.1(1), we have by rule-gar) thatI'Ty/x] £ y: C.
2. If z # x, then by Definition 4.1.3 it follows that : C € I'[y/x]. Then, sincey/x] = z by

Definition 3.3.1(1), we have by rule-¢ar) thatI'Ty/x] & z: C.
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(r-wk) Then e= e.m(&,) andl” £ & : D such thatAy(x,D,m) = C, » CwithT £ g : C; for each
i € n. By the inductive hypothe5|s it follows th&fy/x] £ ep[y/X] : D and F[y/x] ely/¥] : C; for
eachi e n. Then, by rule finvk), we have thaiTy/x] & (eo[y/x]) m(eu[y/A], ... ,en[y/x]) C. By
Definition 3.3.1(1) we have thatde/X]).m(ei[y/A], ... ,en[y/X]) = eo.m(&,)[y/X] and so it follows

thatI'Ty/x] | e0.m(&)[y/X] : C.

(-suB) ThenI' i e : C with C’ <:, C. By the inductive hypothesis it follows thBly/X] & e[y/x] : C" and
so by ruIe t-sus) we have thai[y/x] ¥ e[y/x] : C.

O

Lemma 5.1.6(SOUNDNESS OF VARIABLE SUBSTITUTION FOR PREDICATE ASSIGNMENT). If [y/X] is a variable substi-
tution andIT is a predicate environment such thaiD, ¢’ [y : D : ¢’ € II], then

he:Cip=Tly/xFely/x]:C:¢

Proof. By straightforward induction on the structure of predicd&ivations. The base case of rute (
vAR) is identical to the corresponding case in the proof of Lenfnda5 but for the presence of predicate
information. We therefore omit it in this proof, and showysbme inductive cases.

(p-rp) Then e= €.f andIl £ € : D : (f : ¢) such thatA¢(y, D, f) = C. By the inductive hypothesis it
follows thatIl[y/X] £ & [y/x] D : (f : ¢), and so by rulexrLp) we have thafl[y/x] £ (e’ [y/X]).f :
C : ¢. Then, since by Definition 3.3.1(1)(g/X]).f = €.f[y/x], it follows thatII[y/x] £ €.f[y/X] :

C:o.

(p-assp) Then e= e.f = e andg = (i : 7 ' €™ with 11 e :C:(liiT €My andTl ¢ £e :D such
that f ¢ I, andA¢(y, C, f) = D. By the inductive hypothesis it follows that]y/x] ﬁ’ ely/X :
(i : 7 "¢M. Also, by Lemma 5.1.5 we have thH{y/x] ei[y/X] : D. By Definition 4.2.7 it foIIows
thatH[y/x] I[y/x] and so we have thaﬁ[[y/x] el[y/x] D. Then, by rule §-assy) it follows
thatTI[y/x] £ (eo[y/X]).T = (e[y/X]) : C: (l; : 7 e ”). Finally, by Definition 3.3.1(1) it follows that
((eoly/X))-f = (ealy/X])) = (eo.f = en)[y/¥] and o we have thal[y/x] € (eo.f = el)ly/x] : C
iyt EMy,

(p-oMEGA) Theng = w andIl £ r e C. By Lemma 5.1.5 it follows thaﬁ[y/x] ely/X] : C. By Definition
4.2.7 it follows thaf[y/ x] TI[y/x] and so we have th&t[y/x] X £ ely/X] : C Then, by rule -omeGA)
it follows thatII[y/x] £ e[y/X] : C : w.

(p-seL1) Theng = (| : ) and there is a sequence of class member ldhelsd a sequence of member types
Towithn > 1suchthafl £ e : C :(li:7 ' €™ with | = l; and7r = 7j for somej € N. By the
inductive hypothesis it foIIows thal[y/x] £ e[y/x] : C: (i : 7 ' €My and so by ruler:seL;) we have
thatII[y/x] £ e[y/x] : C : (Ij : 7).

O

We now come to the result that forms the basis for the subgsiation theorem. This substitution
lemma states that types are preserved when expressiongatitiged for variables where the type assumed
for the variable matches the type of the expression beingtisuted. This holds for both type assignment
and predicate assignment.

Lemma 5.1.7(rype susTiTuTioN LEMMA). I, X: DE e: C&T'E € :D=THe[€/x:C
Proof. By straightforward induction on the structure of type dations. We show only a few cases.
(var) There are two cases to consider:

1. If e = x, then by rule t-var) C = D. From definition 3.3.1(1x[e’/xX] = € and so this case
follows immediately since, by assumption, we h&vé € : D.
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2. lfe=zy# x thenbyruletvar) I, x: D y:Candy: Cel,x:Dwithy+I. Sincey # x,
it follows from definition 4.1.2 thay : C € F Then, since by definition 3.3.1(Y)e’/X] =y, we
have by rule{-var) thatI' £, y : C.

(r-rLp) Thene= €.f,andl,x: D ¢ €.f : C. By rule (-rLp) we have thal,x : D ¥ € : D’ such that
As(y,D’, f) = C. By the |nduct|ve hypothesis, it follows thati e[e’/X] : D’ and so by {-rLp)
K €[e’/x].T : C. Since, by definition 3.3.1(1),’(e’/x]).f = €.f[e’/X], we have thal'€¢.f[e’/x]C.

(r-wvk) Then e= eg.m(§,) andI', x : D £ ep.m(&,) : C. By rule (-mvk) we have thal’,x : D £ e : Cp
andAm(x, Co,m) = C, — D for some G. Also,I,x: D & i & : C; for eachi € . By the mductlve
hypothesis it follows thall £ ey[e’/X] : CoandT £ g[e’/X] : C; for eachi € 0. Then, by rule f-invk),
we have thatl™ i ep[e’/X]. m(el[e /X, ..., el€ /x]) C. It then follows from definition 3.3.1(1) that

i €0.m(€n)[e’ /><] C.

(r-~ew) Then e= new C(&,) andI', x : D £ new C(€,) : C. By rule (-~ew) we have thatF (y,C) = Tn
with I',x : D § g : Cj such thatAf(X,C f)) = C; for eachi € n. By the inductive hypoth-
esis it follows thatl' £ g[e’/x] : C; for eachi € n and so, by ruleit~ew), we have thal" £
new C(e[€’/X], ... ,en[e /X]) : C. Then from definition 3.3.1(1) it follows th&t ¥, new C(€y)[€'/X] :
C.

O

Lemma 5.1.8(PREDICATE SUBSTITUTION LEMMA). [I,X: D :¢' £ e:C:¢p & IIE € :D: ¢ = 11 £ e[€/X] :
C:o

Proof. By straightforward induction on the structure of predicaégivations. Again, the base case of rule
(p-var) is exactly the same as in the proof for type substitutionfwuthe addition of predicate information.
Therefore we will omit it. We show some other base cases apd&niductive cases.

(p-~uLL) Then e= (C) null and¢ = (e) with x + IT andr, C. From Definition 3.3.1(1) we have that
((C)null)[e’/X] = (C)null and so the result follows immediately from rulexuLL).

(p-NEwOB)) Then e= new C(é) andg = (e) with I, x: D : ¢’ & new C(€) : C. By Definition 4.2.7 we have
thatll,x: D : ¢ = II, x : D and so we havél, x: D £ ¢ new C(€) : C. Since, by assumption, we have
H ﬁ’ € . D: ¢ it follows from Theorem 4.3.3 thdﬁ 7 € : D. Then, by Lemma 5.1.7, we have that
£ new C(€)[€/X] : C, and by rule §-xewOgy) thatIT ﬁ’ new C(€)[€/X] : C : (e).

(p-oMEGA) Theng = w andIl,x: D : ¢’ £ e : C. By Definition 4.2.7 we have thaL, x: D : ¢’ = I,x:D
and so we havél,x : D & I e : C. Since by assumption we hallef € : D : ¢/, it follows from
Theorem 4.3.3 thalil £ e’ D. Then by Lemma 5.1.7 we have tHﬁtr e[€/X] : C, and by rule
(p-oMmEGA), We have thaﬂ Felg/X]: C: w.

(p-ass1) Thene= e.f = e andg = (f : ¢”), soIl,x: D : ¢ £ ep.f =1 : C:(f : ¢”) for somegy”.
By rule (p-ass1) we have thafl,x: D : ¢’ £ g : C : o for someo andIl,x: D : ¢’ £e; : C' : ¢”
with A¢(y,C, f) = C’. Since, by assumption, we have that#£ e’ : D : ¢, it follows by the
inductive hypothesis thdll £ ep[e’/X] : C o andH £ ele/X : . ¢. SO0 by rule $-assq) it
follows thatIl £ eye’/x].T = e[e’/x] : C: o). Then by Deflnltion 3.3.1(1), it follows that

ITE (eo.f =e)[e’/x]: C:(f:g).

(p-assy) Thene= ep.f =e;andg = (I :7;'€™, soll,x:D: ¢/ Eep.f =€ : C:(li:7' €™. By rule
(p-assp) we have thall,x : D : ¢" £ eg : C : (lj : 7 FeMy with f ¢ 1, andTL X : D:¢' £ e :C
such thatA¢(y, C, f) = C'. Since by assumption we haVef € : D : ¢/, it follows by the inductive
hypothesis thakl £ egle’/X] : C: (I : 7 ' €™). Also, by Definition 4.2.7]1,x: D : ¢ = =TI, x: D and
sowe havél,x: D r e : C. By Theorem4.3.3we have £ r € : D, and so it follows by Lemma5.1.7
thatTI £ b efe/x: C’ Then, by rule §-ass») we have thall £ eye’/x].f = ei[e’/X] : C : (f’ : ¢),
and by Definition 3.3.1(1) we have thatg (ep.f = er)[e’/X]: C: (f": ¢).
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We now show how the results in Lemmas 5.1.7 and 5.1.8 can bergjmed to sequences of substi-
tutions. That is, substituting a sequence of appropridighed expressions for all the variables in a given
expression preserves typeability. This corollary will lsed in the case for method invocation in the subject
reduction proofs. Referring to Definition 3.3.3, we see thabking a method amounts to substituting the
expressions passed as arguments for the variables in tygobttht method. Thus, the following corollary
shows that this process is type (and predicate) preserving.

Corollary 5.1.9 (suBsTITUTION SEQUENCE). Substituting a sequence expressions for a sequence oblegria
preserves typeability:

1.TVEe:C&Vien[TEg:Cl=TEele/x,....,en/X]:C
2 II'te:C:p&Vien[ll€g :C: ¢l =>TEele/X1,....en/%]:C:¢
wherel” = {X; : Cq,..., %1 : Cpl,andIl’ = {X1: C1 : ¢1,..., % : Cn: ¢1}.

Proof. In the following proof we will only deal with the case for typessignment. The case for predicate
assignment follows by symmetry, using the correspondirgtsution results for predicate assignment.

We begin the proof by first ensuring that the two type envirents,I" andI”, aredisjoint from one
another. That is, the sets of variables used as subjecte atdatements in each of the two respective envi-
ronments are disjoint from one another. We achieve this Bydonstructing a sequencerofubstitutions,
[Vi/X1,...,Yn/X%n], Where each variablg; is a fresh variable not occurring in eithEror I if the corre-
sponding variableg € VA]RSENV(F) N VA]RSENV(F’), or is equal tox; otherwise. By the soundness of
variable substitution (Lemma 5.1.5) we have thqyi/Xa, ..., Yn/Xn] & €y1/X1,...,Yn/X] : C. Further-
more, we now have th& ARS[,, (I') N VARSL,,, ("' [y1/Xa, .. . ,yn/xn]) = 0 since all shared variables in
I” have been renamed with fresh variables. In the remainddreoprtoof, for brevity we will writel™; for
'[ya/Xa, ... Yn/%] = {y1: C1,...,¥n 1 Cp}, and g for ey1/Xq, . . ., Yn/Xn]-

We now proceed apply Lemma 5.1.7 for each variapleFirst, notice that sincé; i e : C and

h & : Ci for eachi € 7, it follows from lemma 4.1.5 that botp + I'; andy + I'. Then, smce the two
enwronments are dISjOInt we haye- I',T'L. Itis also clear thal'y € I',I's. So, by the widening lemma
(5.1.1) it follows thatl",I'; ¥ es : C. We now construct the type environmerhﬂ"g \ {y1 : C1} which, since
it is strictly smaller tharT', I';, is also well-formed with respect o Then, by Lemma 5.1.1 again, we have
thatl', I'; \ { Cl} e : C;. We are now in a position to apply Lemma 5.1.7, from which lofes that
LT\ {y1: Cal iy ré[el/)’ﬂ : C.

We now foIIow a similar process on each subsequent varighle < k < n. We construct the type
environmentl, T \ {y1 : C1,y2 : Co} which is well-formed and by widening obtain thBfI \ {y; :
C1,¥2 : Gy} £ e 1 Cp. So, using the previous substitution result and the suwitistit lemma it follows that
[T\ {ys : Cl,yz Co} £ efe1/y1, €/y2] : C, and so on such that we obtain a sequence of results e/l

LT\ {y1: Cry2: Ca,y3: C3 es[e1/y1, e/y2,e3/y3] : C

LTS\ {yr: Cl,...,yn:Cn}%es[el/yl,...,en/yn]:C

Sincel,T'5\ {y1 : Ci,...,¥n : Cy} =T we have thal i es[e1/yi, ..., en/yn] : C. Finally, since by Corollary
3.3.2 we have thatsfe1/y1, ..., en/Yn] = e[e/Xq, . ..,en/xn] it follows thatI" §; e[e;/X1,...,en/Xn] : C. O

the predicate join operation (Definition 4.2.3) displays thllowing two properties. They are necessary
for demonstrating subject expansion since in a predicaigati®n a sub-expression may occur more than
once, with a dfferent predicate assigned to it each time. During expansiensub-expression will be
replaced by a variable, which may only be associated withgleipredicate. We generate this predicate by
combining the predicates for each occurrence of the sutesgjpn using the join operator. The following
lemma shows us that, once we join a number of predicateshiigdbr each occurrence of a variable we
are able to able to give the predicate originally assignatig¢garticular occurrence of the sub-expression
which has been replaced.

Lemma 5.1.10(prEDICATE JOIN LEMMA). 1. A, [VieRN[IIEe:C ¢l = M Ee: C:| i di

2.3y, jen[ILx:D:yjEe:C:g] > ILX:D: | ficn¢i £e:C:¢
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Proof. 1. We first discard ally = w, sincew is the identity element for the predicate join operation.
We are then left with a subsequence of predicafgssuch thaigx € ¢, for all k € 1, with each
¢k = (IK: 7K' ™). By Definition 4.2.3, we note thatlic; ¢ = ¥ = (Ii : T}, LI ooy So, for
eachk € 7, by rule ¢-seL;) we have thail £ e : C '<I : T1> fe:C .<I N - Tﬁk>. Then, it
follows by rule ¢-seq) thatIT £ e : C :y, and thus thaﬂ fe:C: |_|Ien ¢|

2. This result follows by induction on the structure of peade derivations. The only non-trivial case
is that for the variablex. We note that, whenevdi, x : D : ¢ ¥ x : D : ¢’, we can also derive
ILX:D: | i ¥i £ x: D :¢'. There are three cases to consider:

(¢’ = w) By Definition 4.2.7, we have that: D € I, x: D : | |iz i and so we have by rulae- (VAR)
thatIL, x: D : | Jicn¥i £ X : D. Then, by rule §-omeca), it follows thatIT,x : D : | |icq i £
D: w.

(9" = (e)) By rule (p-var) we have thall, x : D : | Jicq i £ X: D : |icq ¥i- Then, by rule €-seLp) it
follows thatll,x: D : | licn%i £ X: D : (e€).

(¢ = o # (e)) We first note that it must be the case thigt<d o. Then, by rule £-var) we have that
ILX:D: |ien%i € X: D Liea¥i- Then, since by Definition 4.2.3 iy < yj < o, it
follows by Theorem 4.3.2thdl,x: D : | liq¥%i € X: D : 0.

O

The following lemma forms the key step in the proof for subjexpansion in the same way that the
substitution lemmas (5.1.7 and 5.1.8) form the basis of tlefpgfor subject reduction. It states that if
we can assign a type-predicate pair to an expression e irhvehgub-expression’ éas been substituted
for a variablex, then we can also assign that type-predicate pair to thénafigxpression in which the
sub-expression has not been substituted, under an aggepasumption about the type of the variable.

Lemma 5.1.11(EXPANSION LEMMA).
Peld/X]:C:¢&TEE:C&ILXx:CEe:CoAY[IEE:C:y&ILX:C  yLe:C:¢
Proof. We deal with the cases whege= w and¢ = o separately:

(¢ = w) This case follows immediately since we can take w: by assumptio onll i € : C and so by rule
(p-oMmEGA) it follows thatIl £ € : C' : w. Similarly, since by assumptiof, x : C’' £ e : C and by
Definition 4.2.7T1, x : C’ = H, X :C': w, rule f-omeca) gives us thafl, x: C’ : |§’e C:w.

(¢ = o) This case proceeds by induction on the structure of e. Wer she cases for variables, and field
assignment. We also show method invocation, since it showdlne predicate join lemma (5.1.10) is
used. The base case for the null object follows easily byntaki= w since the substituted expression
€ does not appear. The case for field access follows straigtafdly by induction, and the case for
object creation is similar to that for field assignment.

(e=x) Then by Definition 3.3.1(1) we have that &gl = €, and sdll £ € : C : ¢. Since we also
have by assumption that r € C, it follows by Theorem 4.3. 3 thad £ € : C' : ¢, and
SO we can takey = ¢. Slnce e= x, and by assumption we ha¥& x : C' T £ e : C,itfollows
by Lemma 4.1.6(2) that 'C<:, C. Furthermore, by Lemma 4.1.5 it foIIows that- Ox:c
and so by Definition 4.2.7 that + TI,x : C’ : ¢. Then, by rule £-var) it also follows that
IL,x:C :¢ Kk x:C : ¢, and by rule §-susTyee) thatll, x: C' : ¢ £ x: C : ¢.

(e=y# X) Then by Definition 3.3.1(1) we have that &g =y, and soll £ y : C : ¢. Then,
by Lemma 4.2.10(2), |t follows thal C” <:, C and¢’ < ¢ such thaty C’ . ¢ €ell
Since, by assumptlorH £ € : C, we can takey = w by rule ¢-omeca). Then, since by
assumption we also have tfﬁlx : C' £ y:C,itfollows from Lemma 4.2.9 that - ,x: C,
and so by Definition 4.2.7 that + II,x : C' : w. Therefore, by rulerfvar) we have that
ILx:C :wfy:C": ¢ Then by rule §-susTypE) it follows thatIl,x: C' : wEy: C: ¢  and
by Theorem 4.3.2 thdli,x: C' : w £y : C: ¢.
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(e=e.f =e) Then by Definition 3.3.1(1) we have that &[g] = e[e'/X].T = ex[e’/x] andII £
elfe’/¥.f = e[e’/X] : C : ¢. By assumption we also have tHatx : C’ £ he.f=e:Candso
by Lemma 4.1.6(4) it follows thall D <:, C such thall, x : C' & re :D wrth As(y, D, f) = D’
andIl, x: C’ & i e : D’. Then, since by assumptlon we ha‘\@ e’ C’, by Lemma5.1.7 it also
follows thatH i el[e’/x] : D andl £ reole’/x] : D
If o = (e, then by rule g-ass2) we have thall £ e [e /x] : (&) with A¢(y,C, f) = C”
andTl & E ele’/x] : C”. As shown above, we also have £ ; el[e’/x] : D and so by The-
orem 4 3.3 it follows thall £ ej[e’/x] : D : (e). Then by the inductive hypothesis, y
such thatll £ € : C : yandIl,x : C : ¢ £ e : D : (¢). Now, since by Defini-
tion 4.2.7,1,x : C = II,x:C :y, andIl,x : C' £ e : D’ from above, it follows that
I, x:C' : ¢y £ e : D’. Then we have by ruler{assy) thatIl,x : C' : ¢ £ e;.f =& : D : (e).
Then, since D<:, C we have by rulertsusTyrE) thatIl, x : C' : y £ €1.f =& : C : (e).

If o = (i:7'€™ 2 (e), then by Lemma 4.2.10(4}d Dy, such that B <:, C andIT £
ei[e'/X].T = e[e’/X] : Dij : (lij : 7i) for eachi € Nn. Now, take anyi € n; there are two

possibilities:
(f =1;) Thent; = ¢’ and by rule é-Assl) it foIIows thatIl £ e[e’/x] : D; : ¢’ for someo”,
W|th At(y, D, f) = Cj andIl £ ex[e’/X] : C 9. Slnce we also have, from above, that
refe’/x] : D andIl ez[e /X : D, it foIIows by Theorem 4.3.3 thdl £ e[e’/X] :
D o’ andIl £ e[e /x] . ¢’. Then by the inductive hypothesiby andwz such

thatIl £ € : C’ : z//landl‘[ € :C i ypwithI,x: C :y1 £ e :D: ¢ and
I, x : C’ Yo £ e i D1 ¢’ We takey; = 1 U o, By lemma 5.1.10 we have that
Mg e :C :yjinadditiontol,x: C' :yi ke :D:o’andl,x: C ¢ £ e : D' : ¢'.
So, by rule ¢-ass;) it follows thatTl,x : C' : ¢ £ e;.f = e : D : (f : ¢'), and by rule
(p-suBTyeE) thatll, X : C" 1 ¢ Eer.f = e : C:(f:¢).

(f #1;) This case proceeds in exactly the same fashion as thecaséef) above. So we have
thatd ¢ suchthall £ € : C' :yjandll, x: C 1y Ee.f =& C: (i ).

Since the choice dfwas arbitrary, we have thaty,, such thafll £ & : C' : y; andIL, x : C’ :

Ui £ e.f =6 :C:(: 1)foreachi e n. We takey = | |ics w, Then by Lemma 5.1.10 it

foIIows thatll£ € : C' :yandIl,x: C : ¢y £ e.f =e : C:(: 1) for eachi e n. We then

have by rule - SEQ) thatll,x: C' :y Fe.f =e:C: (T Peny,

(e = e.m(&y,)) Then by Definition 3.3.1(1), we have e[&] = eg[e’/xX].m(e1[e'/X], ... ,en[€/X])
and therefore thdl £ ep[e’/X].m(es[€’/X], ... ,en[€'/X]) : C: . Then, by Lemma 4.2.10(5) it
follows thatd D. Cnl,C”< C,vo, ¢nl, Qo suchthall £ egle’/X] : D : <m wo ¢n1 - 0o’)
andIl £ eyfe’/X] : D : o with Ap(yx, D, m) = Crll — C” andIl £ gle'/X] : . ¢y for each
k € n;. By assumption, we also hai& x : C’ E €.m(&y,) : C, and so by Lemma 4.1.6(5) it
follows that3 D’ Cy,, C”” such thaflT, x : C' & e : D’ with Am(x, D’,m) = T’y — C” and
I,x:C ¢ i & C, foreachk e = M. Furthermore since we have by assumption Ih&te’ C,it
follows by Lemma 5.1.7 thail £ T eple’/X] : D’ andIl £ 7 &[€'/X] : C, for eachk € ny. Then, by
Theorem 4.3.3, we have tthrl;’ eole’/X] : D’ : {m: yo: ¢n1 — o’ andH Eeple’/x]: D’ :
with IT £ efe’/x] : C| : ¢>k for eachk € n;. Now, by the inductive hypothesis it foIIows that
Ay’ and:ﬁ” such thatl‘[ P e C lﬁ andIT € € : C ¢y withIl,x: C : ¢/ £ e : D :
{m: yo: ¢’n1 - g’ andH x:C - /S = D’ l//o We also have by the inductive hypothesis
that 3 :ﬁn such thatll £ € : C" @ yy andIl, x : C' : Yy k; & : C : ¢k for eachk € ny. Let
us now takey = ¢’ U l//" U | lien; ¥i- By Lemma 5.1.10(1) we have thet ¢ € : C' : y, and
by Lemma 5.1.10(2) it also follows thdt,x : C' : ¢ £ € : D’ : (m: yoli¢, — o’) and
ILx:C 1y ¥e:D yowithIl,x: C ¢k e: C : ¢ foreachk e ny. Then, by rule
(p-nvvk) we have thafl, x : C' : ¢ £ e.m(&,,) : C”” : ¢’. Since C” <:, C it follows from rule
(p-suTveE) thatIl, x : C" : ¢ £ ep.m(&,,) : C : o’. Further more, since’ < o we have by
Theorem 4.3.2 thdll, x: C' : ¢ £ eg.m(€,)) : C : 0.

O

Just as we were able to generalise the substitution lemmaequence of expressions, we can do the
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same thing with the expansion lemma. This is necessary,sinaggeneral, methods take a sequence of
arguments. The proof is very similar to the proof for Congll®.1.9. We again use the widening and

thinning lemmas, and combine them with the expansion lemrmmeed above to make the generalisation to
sequences of expressions.

Corollary 5.1.12 (expansioN sEQUENCE). We now show how the result in Lemma 5.1.11 can be generalised
to a sequence of substitutions. That is

ITE e[er/X1,...,en/%] : C: ¢&V|en[1'[ g:Cl&Il"te:C
=3¢, [l Ee:C:p&Vien[lIfeg :C: ¢l

wherel” = {X; : Cq1,..., % : ColandIl’ = {X1 : C1 : ¢1,..., % : Cn: én}.

Proof. We begin the proof by ensuring that the two type environmBhendII are disjoint, as in the proof
of Corollary 5.1.9: we refer to that proof for the details. Wes construct the new expressiqaad the
new type environmerit, such that™, § e, : C andIl £ e[y1/X1,....¥n/*%n] : C: ¢.

In the proof of Corollary 5.1.9, we demonstrated how to dervseries of (intermediate) results as
follows: I, {yn : Cn} ; &f€1/Y1.....€n-1/Yn-1] : C, IL {Yn-1: Cno1.¥n : Cn} £ €f€1/y1.. ... €n2/¥n2] : C,

IL{y: : C1,....¥n: Co} £ & : C. We will also use these results in the following proof, @fhproceeds
by expanding each variable in turn, in reverse order. Thatadirst expangy, by substituting the expression
e, and end by expanding .

We start with the derived resdl, {Vn : kelei/yi,...,en-1/¥n-1] : C from Corollary 5.1.9. By as-
sumption we also havé i ey ChandIl £ [el/yl, ..,en/¥n]: C: ¢ =11 F ele1/y1,...,en-1/Yn-1ll€n/Yn] :
C : ¢. So, by Lemma 5.1.11 it foIIows that ¢, such thatll ¥ e, : C, : ¢, andILy : C, : ¢n £

ele1/y1,....en-1/¥n-1] : C: ¢.
We now expand the variablg_;. Notice that the last result is equivalent to the followirgy : C; :
es[el/yl,...,en 2/yn ollen-1/Yn-1] : C : ¢. By assumptlon we have h €1 . Cy-1. Since both

X F H andy + I',, with il andTI” disjoint, we have thag ~ 1, Vn @ Cn, andH cTl, Vn . Ch. Then, by
Lemma 5.1.1 it follows thafl, y: Ch £ en-1 : Ch1. By Definition 4.2.7,H,y Ch = ILYh:Ch:dn
and so we have thal,y: C,: ¢, £ ey-1 : Ch-1. We now use another derived result from Corollary 5.1.9:
(ﬁ, Vn Cn),yn_l : Cn_l helei/yi,...,en2/Y¥n-2] : C. From Lemma5.1.11 it foIIows that ¢_1 such that

ILyn:Chion € 1:Cho1 i dnr@andIL{yn : Cn @ énYn-1 - Cho1 @ dn-1) £ &f€1/Y1, ..., €0-2/Yn-2] :
C:o. Now it remalns to show that from these results we can obilaf e,_; : Cn 1: ¢n1. By Lemma
5.1.4 it follows thatl‘[n 1Een1:Chi1: dnoa, Wherel'In 1={X:C:¢ellyy: . @n | X € vars(en_1)}

and also thal',-1 | €1 : Cn 1, wherel'h_1 = {x:Ce i | X € VARs(en 1)} It foIIows by definition, then,
that VA]RSENV(F,] 1) = VARSE,, (IIr-1) and so also thaf,_; = = TI,_,. Sincel’,; € TI we have that
,_, c T, and then by Definition 4.2.7 thék,_; C I1. So, by Lemma 5.1.2 th&i £ e,-1 : Cp-1 : dn-1.

We repeat this process of expanding each variahle, . . ., y;. We thus obtain a sequence of predicates,
¢n, suchthafl £ e, : Cy : ¢, ..., [1 £ & : Cq : ¢1, as well as the final result @1,{y1 : C1 : ¢1,...,Y¥n :

Dont E e C ¢. The last step is to use the process of thinning and wideninthis final result, in
an identical manner as for each of the expressigndMe have by Lemma 5.1.3 that’ £ e, : C where
I'” = {x:CeTl’|xe vars(e)}, and by Lemma 5.1.4 thal” £ e, : C : ¢ whereIl” = {x: C : ¢ €
IL{y1 : C1 : ¢1,....¥n : Cn : ¢n} | X € vars(&)}. Again, we have thal? = 1”7 and sincel™” C {y; :
Ci,...,¥n : Cylitfollows thatIT” C {y1 : C1 : ¢1,...,¥n : Cn : én}. Then, by Lemma 5.1.2 we have that
{y1:C1:61,....¥n:Cn:¢n} E e :C:¢. Wecan now construct a variable substitution returnindngac
to its original x;, and so by Lemma 5.1.6 we have thEt[X1/y1, ..., Xn/Yn] £ &[X1/Y1,-.., % /Yn] : C
which by Corollary 3.3.2 is equivalent i@ £ e : C : ¢. m|

5.2 Subject Reduction

We are now in a position to prove the subject reduction theererhich we stated at the beginning of the
chapter.

Theorem 5.2.1(SUBJECT REDUCTION FOR TYPE ASSIGNMENT).

ho&T'fe:C&e—, &€ =>Tge:C
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Proof. By straightforward induction on the derivation of-e, €. We show the base cases of field access,
field assignment and method invocation, and some inductisesc

(R-FLD) Then e= (new D(&)).f; and & = e; with ¥ (y, D) = f,andj e n. By assumption, we have that
i (new D(&y)).f; : C and so, by Lemma 4.1.6(3),D’, D” <:, C such thal” i; new D(&,) : D’ with
Af(X, D’, f;) = D”. Also, by Lemma 4.1.6(6), Bx:, D" withT'; & : C; such thatAf(x, D, fj) = C; for
eachi e n. In particularI" i; ; : C;. By assumptlon we have th@& and so it follows from Definition
4.1.7 that- . Then, since Dx:, D’, it follows by Property 3.2.2(1) that;C= D" and therefore that
I'; e : D”. Therefore, since D<:X C, by rule {-sus) we have thal" i, g; : C.

(R-ass) Then e= (new D(&)).f; = e’J and é = new D(&,) with 7(D) = f,, such thatj € A. Also, g = g for
alli e nsuch thai # j. By assumption we have thBt (new D(&,)).f; = €j : C and so by Lemma
4.1.6(4),A D’ <, Csuch thal” i new D(€,) : D" andI i, e’ C’ such that¢(y, D’, f;) = C". Also,
by Lemma 4.1. 6(6) we have that<D D’andl'£ g : C. such thatA¢(y, D, i) = Ci for eachi € n.
Then, since = g for all i € n'such thai # ], it foIIows thatI" ; € : Cj for eachi € N'such thai # |.
By assumptlon we have thés¢, and so it follows from Deflnltlon 4 1.7 thaty. Then, since B<:, D’,
it follows by Property 3.2.2(1) that’C= C; and therefore thdt e Cj. Then, by rU|e'(NEW) we

havel £ new D(¢/,,) : D and since D<:, D" <, C it follows by rule (r sus) thatI" £ new D(&/y,) : C.

(rR-INvK) Then e= (new D(&,)).m(e/vy) and é = eol€)/X1, ..., €, /Xy, new D(€,)/this] with meopy(D, m) =
(X, €p). By assumption we have thBte (new D(en)) m(e’y) : C and so by Lemma 4.1.6(5) D’
such thal” § new D(€,) : D" andAm(x, D", m) = Cy — Co with Cy <:, C. Furthermorel i € : C;
for eachi € n’ By Lemma 4 1.6(6) it follows that Bx:, D’ and?—'(D) = f withT £ g : DI where
Af (D fi) = Dj for eachi € ., so by rule t-New) we have thal™ ¢, new D(eh) D. By assumption
we have that ¢, and so it foIIows from Definition 4.1.7 thaty. So, by Property 3.2.2(2), we have
thatmeopy(y, D, m) = C, — Cp, since D<:, D’. It also follows from the definition of type consistent
execution contexts (Definition 4.1.7) thgty : Cq,..., X%y : Cy,this : D} £ e : Cp, and so by
Corollary 5.1.9 we have thatr, e[€]/X1, ..., €, /Xy, new D(&,)/this] : Co. Then since g<:, Cit
follows thatl™ i} eg[€] /X1, . .., €, /Xy, new D(&y)/this] : C.

(rc-FLp) Then e= e.f and & = €. f with &g —, €. By assumptior” ; &.f : C. So, by Lemma 4.1.6(3),
3 D,C’' <;, Csuchthal i e : D andAf(X, D, f) = C'. By the inductive hypothesis we have that
b€ D and so by rule1(1:LD) it follows thatT" § €.f : C'. Then, by rule {-sus), we have that

Te.f:C.

(Rc-ass1) Thene= e.f =g and é = €. = e with ey —, €. By assumption]" ;; e.f = e; : C. So, by
Lemma 4.1.6(4)d D, C' <;, Csuch thal” §; g : C" andI" i; & : D with Af(x, C,f) = D. By the
inductive hypothesis we have that; e : C’ and so, by ruIeTGAss) it follows thatI' ;; €).f = e : C'.
Then, by rule {-sus) we have that ; e,.f = ¢, : C.

(Rc-NEw) Then e= new D(&,) and é = new D(€',)) with g — e for somej € 0, and ¢ = g for eachi e ¢

such thai # j. By assumptiord” £ new D(€,) : C. So, by Lemma4 1.6(6) B:, C and¥ (x,D) = f,
W|th I' & g : Cj such thatA¢(y, D, f;) = C; for eachi € n. By the inductive hypotheS|s we have that
e CJ and we also have thaty; € : C; for eachi € i such that # j since ¢ = g for eachi e i

such thau # j. So, by rule t-New) it follows thatT" £ new D(€¢'n) : D. Then by rule f-sus) we have
thatI" £ new D(e') : C.

Theorem 5.2.2(SUBJECT REDUCTION FOR PREDICATE ASSIGNMENT).
ho& IIFe:Cip&e—, &€ =IEE:C:g

Proof. We consider the cases whefe= w and¢ = (I; : 7; ' € ") separately:

(¢ = w) By assumptionH £ e: C:wand so by Theorem 4.3.1 we have tﬁbﬂ} e : C. By Theorem 5.2.1
it then follows thaflT £ I € : C and by rule §-omeca) we have thall £ € : C : w.
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(p=0=:

7 ' €M) This case proceeds by induction on the derivation ebg€. Again, we show the

base cases of field access, field assignment and methodtiovp@nd some inductive cases.

(r-rLp) Then e= (new D(&,,)).f; and & = e; with F(D) = 7n1 andj € n;. By assumption]I £

(new D@nl)) fi: C:¢. So, by Lemma 4.2.10(33 D’, C’ <:, C,y < ¢ such thatA¢(y, D', f;) =
C andII § new D(&y,) : D’ : (fj : ¢). Then, by Lemma 4.2.10(7), B, D" andIl £ new D(enl).
D:(fj: r,b) and by rule §-xewFrp) it follows thatIl £ e; : C” : wwrth A (¥, D f;) = C” for
some C. By assumption we have that>, and so it follows from Definition 4.1.7 that y.
Then, since D<:, D’, it follows from Property 3.2.2(1) that’'C= C” and so we have that
IT £ ¢ : C :y. Then, since C<:, C, we have by rulertsusTyrg) thatIl ¥ € : C : .
Furthermore, sincg < ¢ it follows by Theorem 4.3.2thdll £ ¢; : C 'q)

(r-ass) Then e= (new D(&y,)).fj = e’ and é = new D(&'n,) with (%, D) = n, Such thatj € n;. Also

€, = & for eachk € Ny such thak .

If o = (€), then by rule ¥- ASSz) we have thafl £ new D(&,) : C : (e). So, by Lemma 4.2.10(6)

we have that D<:, C andIl £ i new D(&,,) : D. So by rule t-Nxew) it follows thatTT £ ke - Ck

such thatAs(x, D, f) = Cx for eachk € ;. By Theorem 5.2.1 it follows thall £ e’ Cj,
since ¢ —, e’J Also, we have that,e= e for eachk € n; such thatk # |, and so it fol-
lows thatH i € : Ck for eachk € My such thatk # j. Now, by rule {-nxew), it follows that

e £ new D(e’nl) D and so by rule-xewOsj) we have thall £ new D(€,) : D : (e). Then,

since D <:, C it follows by rule ¢-susTvpE) thafll £ new D(€'p,) : C : ().

If o = {i:7' €™ # (), then by Lemma 4.2.10(45 D, such that <, CandIl ¢

(new D(&y,)).fj = eg : Di : (lj : 7j) for eachi € N. Now, take anyi € n; there are three

possibilities:

(li = f e FIELD-ID, f = f;) Thent; = ¢’, and by rule §-ass1), IT £ new D(&,,) : D; : o’ for
someo- andIT £ e’J D’ . ¢ with A¢(y, Dj, fj) = D’. By Theorem 4.3.3 it follows that
me i new D(&,,) : Dj and so by Lemma 4.1.6(6) we have thakQ) D; andIl £ k& : Cx with
Af(X, D, fi) = Cx for eachk € ny. Since ¢ = g for eachk € Ny such thak ;é ], it follows
thatTT i € . Ck for eachk € Ny such thatkk # j. By assumption we have that, and
so it follows from Definition 4.1.7 that x. Then, since D<:, D; it follows from Property
3.2.2(1) that D = Cj and therefore thafl ef Cj:¢. So, by rule §-NewFLD) we have

thatTl £ new D(€'n,) : D : (f; : ¢’). Then, srnce B<:, Dj it follows by rule ¢-susType) that
I1 € new D(€n,) : Dj : (fj : ¢').

(li = f e FIELD-ID, f # f;) Thent; = ¢’ andl; = fJ for somej’ € M S such thatj # .
By rule (p-ass2) we have thafll £ new D(&y,) : CA(fp gl andTl £ e’ . D’ with
At(y, Di, fj) = D’. By Lemma 4.2.10(7) D<:, D; andH £ new D(&y,) : <fJ ¢').
By rule (-newFLp) we then have thall £ ey : Cj : ¢" with A¢(y, D, f,-/) = Cy, and
il B e : Cx with A¢(y, D, fx) = C for all k € Ny such thak # j’. Sincej = g for each
k e N7 such thatk # j, it follows thatIT £ ef . Cj : ¢' and also thall v, € : C for
eachk € ny such thak # j” andk # j. By assumptron we have thap, and so it follows
from Definition 4.1.7 that y. Then, since D<:, D, it follows from property 3.2.2(1)
that D = C; and so we have thdl £ e Cj. Then by rule £-NewFLD) we have that

I £ newD(e'n,) : D : (fy 2 ¢"). Furthermore since B, D; it follows by rule ¢-susTypE)
thatTl £ new D(€'n,) : Dj : (fj : ¢").
(I € ]M]ETIH(D]D-]NA]M]E) Thenl; = mandr; = ¢n2 — ¢’. Byrule (-assp), I £ new D(€,) :
s(m T ¢n2 — ¢') andTl & e’ D’ with A¢(y, D, fj) = D’. By Lemma 4.2.10(7)

D <y Di andIl § new D(&,,) : dm ooy ¢n2 — ¢’). By rule p-NewMETH) We
have thatll” £ e : Do : ¢ With Am(x, D,m) = Enz — DgandIl’ = { X : C1 :
1, ... Xy, : Cn, 1 ¢ny, this 1 D 1 ¢ } such thatvsopy(y, D, m) = (xnz,eo) We also

have thafll £ k new D(&,) : D. Then, by rule t~xew) it follows thatTI £ b & @ C, with
Af(X, D, fi) = C, for eachk € n;. Since ¢ = & for eachk € Ny such thaik # j, it foIIows
thatI £ b€ 1 Ck for eachk € nj such thak # j. By assumption we have thi&t, and so it fol-
lows from Definition 4.1.7 that . Then, since Dx:, D; it follows from Property 3.2.2(1)
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that D = C’ and soll & e’ C’ So, by rule t-xew) we have thatl £ ¢ new D(€y,,) : D and

by rule (p-NEwMETH) it follows thatIl £ new D(€/y,) : D : (m: y: ¢n — ¢’). Furthermore,
since D<:, D; it follows by rule ¢- SUBTYPE) thatTT £ new D(€'n,) : Dj : (m: ¢ ¢n2 — ¢').

Since our choice of was arbitrary, we have that £ new D(e'nl) Di:(:T)forallien.
Then, since eachB<:, C we have by I'U|EP€SUBTYPE) thatTl £ new D(€/y,) : C : (l; : 7;) for
eachi € nand by ruleé seQ) it then follows thafll £ new D(e’nl) cCilin e,

(rR-mwk) Then e= (new D(&n,)).m(€'n,) and also &= eo[el/xl, .-+, €,/ Xn,, new D(&y,)/this] with
mBopy(D, m) = (X,,,€). By assumption we havH ¥ (new D(&,))-m(€n,) : C : ¢ and so
by Lemma 4.2.10(51 D’, an, C” <, C,y, ¢n2 and¢> < ¢ such thatll £ new D(&,,) :
D" 1 (m: yig, — ¢')andIl £ new D(&,) : D’ : ¢ with Ap(y,D’,m) = C, - C”.
Furthermore, we have thét £ e : Ci : ¢k for eachk € ny. By Theorem 4.3.1 it follows that
TI £ new D(&,) : D’. Then, by Lemma 4.1.6(6) we have that &, D’ and# (3,D) = f,,
with TT £ ho& ! Dy such thatAs(y, D, fx) = Dy for eachk € ny. Therefore by ruleitnew) it
follows thatH f new D(enl) D and so by Theorem 4.3.3 we have tha€ new D(€,,) : D : ¢
andIIl £ new D@nl) : s(m ooy ¢n2 — ¢’). Then, by rule §-NewMETH) it follows that
Il" £ e : C : ¢ with H’ ={x¢:C]d1,....%, : C, ! ¢n,this : D : ¢} such that
An(x,D,m) = an — C’. Since, by assumption we haye, it follows from Definition 4.1.7
thatr- y and so from Property 3.2.2(2) that & C’ and G = C, for eachk € N, since D<:, D".
Thus,IT" = {x1 : C1 : ¢1,..., %X, : C, : ¢, this : D : ¢}, and by Corollary 5.1.9(2) it follows
thatIl £ ep[er/xq, .. .,enz/xnz,new D(&y,)/this] : C" : ¢’. Then, since C= C” <:, C we have
by ruIe (-susTyeE) thatIl £ eo[el/xl,...,ehz/xnz,new D(€y,)/this] : C : ¢’. Furthermore,
since¢’ < ¢ it follows from Theorem 4.3.2 thdll £ eg[e1/X1, .. ., €n,/Xn,, new D(&y,)/this] :
C:o¢.

(Rc-assp) Thene=ep.f =e and & = ey.f = € with ey —, €. By assumption]1 § ep.f =€, : C:
o. By Lemma 4.2.10(4) C, such that (,:< C andH Fe.f=e:Ci:(l:m)foreachi en.
Now, take any € n; there are two possrb|llt|es
(f =1;) Thent = ¢’. By rule (-ass1), or ke :CandIl £ e : D: ¢ with As(y, Ci, ) =

By the inductive hypothesis we have that? e : D : ¢ and so by ruler-ass;) it foIIows
thatH k e.f =€ :C:(f:¢). Then, since €<, C, by rule ¢-susTyre) we have that
K €. = e :C:(f:¢).
(f ;&I) By rule (p- ASSz) MEe:C:(: T,>andH £ e : Dwith A¢(y, Ci, f) = D. By Theorem
5.2.1 we have thdt £ e’ D and so by rulex- ASSz) it follows thatIT &; ep.f = €] : Cj : (I :
7i). Then, since €<:, C we have by ruleptsusTyrE) thatll f ep.f =€) : C: (I. Ti).

Since our choice afwas arbitrary, we have thél i; ep.f = € : C : (li : 7j) for all i € i, and by
rule (p-seq) thatII ¥ ep.f = € : C: (lj : 7 [ hemy

(Rc-INvKp) Then e= eg.m(&,) and é = ep.m(€'n,) with j —, eg for somej € ng, and ¢ = g for
eachi € My such thai # j. By assumptiordl £ ep.m(&,,) : C : ¢. So, by Lemma 4.2.10(53 D,
Cn, C <y C,¥, 6y, ¢’ <psuchthall £ € :D:(m:y:g, — ¢)andIlE € : D : y with
ITE g : Ck : ¢ for eachk € Ny such thatAm(y, D, m) = Enl — C’. By the inductive hypothesis
we then have thdi £ eg : Cj 1 ¢j, and we also have thaL € : C; : ¢; for eachi € Ny such that
i # j since, in each case; e &. Thus, by rule ¢-ivvk), it follows thatIT i e0.M(€n,) : C : ¢'.
Then, since C<:, C we have by rulettsusTyeg) thatIl £ eg.m(€’y,) : C : ¢. Furthermore,
since¢’ < ¢, by Theorem 4.3.2 it follows thal £ ep.m(e’n,) : C : ¢.

5.3 Subject Expansion

As is the case for the-calculus [1], subject expansion does not hold in genenatyjoe assignment. We
can, however, show that subject expansion for predicaigramsnt holds under the assumption that both the
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redex and the reduct have the same type. This extra assumiptiecessary, since predicates are assigned
to typeableterms (see Theorem 4.3.1). This is also a requirement ofubga expansion result for the
predicate system in [5]

Theorem 5.3.1(SUBJECT EXPANSION FOR PREDICATE ASSIGNMENT).
ho& MIEE:C:p&e—, g&lite:C=>TEe:C:¢

Proof. We consider the cases whefe= w and¢ = (I; : 7; ' € ") separately:

(¢ = w) This case is trivial, since by assumption we havefhéte : C and so, by ruleefomega), it follows
thatlT£e: C:w.

(¢ = (i : 7i "¢™) This case proceeds by induction on the derivation ef,e€. As for the proofs of subject
reduction, we show the base casesrefip), (r-ass) and g-ivvk), and some inductive cases.

(r- FLD) Then e= (new D(&,)).f; and € = e with ¥(x,D) = fnl andj € n1 By assumption,
i (new D(&,,)).fj : C. So, by Lemma 4.1.6(33 D’,C’ <:, C such thatl & £ new D(enl) D’

and As(y,D’, f) = C’. Then, by Lemma 4.1.6(6) it foIIows that B:, D’ andH g oex @ Ck
with A¢(y, D, f) = Cy for eachk € ny. Also by assumption we have thEt £ eJ C: ¢,
so by Theorem 4.3.3 it follows thal £ e; : . ¢. Then by rule §-NewFLp) we have that
IT £ new D(&y,) : D : (fj : ¢), and by ru|e1(FLD) thatIT ¥ (new D(&,,)).f; : Cj : ¢. By
assumption we have thgte, and so it follows from Deflnltlon 4.1.7 that x. Then, since
At(yx, D', fj) = C andA¢(y, D, fj) = C; with D <:, D’, it follows from Property 3.2.2(1) that
Cj =C/, and sdl £ (new D(&,,)).f; : C' : ¢. Then, since C<:, C, by rule ¢-susTypre) we have
thatIT ¥ (new D(&,,)).f; : C : ¢.

(R-ass) Then e= (new D(&y,)).fj = e’J and é = new D(€',)) with 7 (3, D) = Tnl such thatj € n;. Also
€, = & for eachk € Ny such thak # j.
If o = (e) then we need to show thalt £ (new D(&,)).f; = e’ : C : (e). By assumption we
have thaf £ i (new D(&y)).fj = e’ C, and so by Lemma 4.1. 6(4) we have tHdd” <:, C such
thatTT i new D(&,) : D’ andTl £ e’ C’ with A¢(y, D', fj) = C’ By Lemma 4.1.6(6) is also
follows that D<:D’ andII £ hoex: Ck Wlth Af(x, D, fy) = Ck for eachk € Ny. So, by ruletNEw)
it follows thatTI £ f new D(enl) D and so by ruley-~newOpi) thatIl £ new D(&,) : D : (e).
By assumption we have thak, and so it follows from Deflnltlon 4, 1 7 that y. Then since
D <:, D', it follows from Property 3.2.2(1) that’C_ Cj, and soll £ e’ Cj. So, we now have
by rule ¢-assy) thatll £ (new D(&,)). fj = e D (e). Lastly, smce D< D’ <:, C, it follows
by rule @-susTyeE) thatIl £ (new D(&,)).fj = e’ :Ci(e).
If o =i :7i"¢™ # (e), then by Lemma 4.2. 10(7) it follows that®, C andIl £ new D(€'n,) :
D : (lj : 7j) for eachi € n;. Now, take any € ny; there are three possmllmes

(= fe]F]I]E]L]D ID, f = f;) Thent; = ¢’, and by rule §-xewFip), IT ¥ e’ . Cj . ¢’ and
i € 1 Ck with A¢(y, D, fx) = Ci for eachk e Ny such thak # j'. By assumptlonH

(new D(enl)) fj = e’ C. So by Lemma 4.1.6(4y D’ <:, C such thafl £ i new D(&,,) : D’
andIl £ e’ (04 W|th At (x, D', f;) = C'. By assumptlon we have that, and so it follows
from Def|n|t|on 4.1.7 that y. Then since by Lemma 4.1.6(6) we have thakf) D’, it
follows by Property 3.2. 2(1) that’G= Cj, and so also thdt £ e C’ : ¢’. Therefore, by
rule (p-assq) we have thall £ (new D(€y,)).f; = e D . (fJ ¢ ) and since D<:, Cit
follows by rule ¢-susTyPE) thatH F (new D(&,)). fJ = e’ C:(fj:¢).

(Ii = f e FIELD-ID, f # f;) Thent; = ¢’, and by rule (—NEWFLD) we have thaff = fj with
j € My such thatj” # j. So,ITE e . Cj 1 ¢" with A¢(y, D, fj) = CJ andIl & i € - Ci with
As(y, D, f) = Cy for eachk € nl such thatkk # j’. By assumptlonl'[ (new D@nl)) fj =
e C. So by Lemma 4.1.6(4j D’ <:, C such thafl & f new D(enl) D’ andli & e (04
W|th At(yx, D', fj) = C'. Then, by Lemma 4.1.6(6), Ia D’ andIl & Eoex : Cx such that
Af(X,D fk) = Ck for eachk € ny. Now, since ¢ = €, |t follows |mmed|ately thatl £

. ¢’. So, by rule ¢-xewFLp) we have thall £ new D(&,) : D : (fj : ¢'). By
assumption we have thab, and so it follows from Definition 4.1.7 thaty. Then, since
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D <:, D/, it follows from Property 3.2.2(1) that'G= Cj, and sdl £ ef Cj. Then by rule
(p- ASSz) we have thall £ (new D(&,)).f; = e’ D:(fj:¢). Furthermore since B, C
it follows by rule ¢-susTypE) thatIl £ (new D(enl)) fj = e’J CCi(fy 9.

(I = me METHOD-NAME) Thenti = (m : l,l/..gbnz — ¢’), and by rule §-NewMETH) We
have thafl £ T new D(€'n,) : D andIl’ £ ey : C’ : ¢’ such thatAm(y, D, m) = Enz — C’"and
MBopY (¥, D, m) = (an, ep) wherell’ = {x1 : C1 : ¢1, ... ,Xn, : Cn, © &n,, this : D : ).
By assumptlonH (new D(enl)) fJ eg . C. So by Lemma 4.1.6(41 D" <:, C such
thatTT f new D(enl) D’ andII £ ef . C" with A¢(x,D’, fj) = C'. Then, by Lemma
4.1.6(6), D<:, D’ andTl £ b8 : Ck such thatA¢(y, D, fx) = Ck for eachk € ng, and by
rule (-new) it follows thatH i new D(&,,) : D. By rule p-NewMerth) it now follows that
IT € newD(&,,) : D: (m:y: ¢n2 — ¢'), and since D<:, D" we have by rulei-supTypE)
thatH £ new D(&,) : D’ : (m: 1//::5,]2 — ¢'). Now, by rule ¢-assy) it follows that

£ (new D(&n)).fj = e’ D (m: L//"En — ¢’> Furthermore, since Dx:, C we have by

rule (-susTyeg) thatll £ (new D(&,,)).fj =€ : C . (m: y: ¢>n2 — ¢> ).
Since the choice afwas arbitrary, we have thﬁ[ t (new D(&y,)).fj = € : C : (lj : 7j) for each
i € . Then by rule €-skq) it follows thatIl £ (new D(&y,)).fj = €] : C: (I. cri €M,

(r-Nvk) Then e= (new D(&,)).m(€n,) and é = el€]/X1, . .., €,/ %n,, new D(&,, )/ this] with meopy
(D, m) = (Xn,, €)- By assumption, we have thht £ eg[€] /Xy, ..., €,/ %,, new D(€y,)/this] :
C : ¢. Also, by assumption, we have trﬁtﬁ (new D(&,,)).m(€¢'n,) : C. So, by Lemma 4.1.6(5),
3 D’ Cny» and €’ <, C such thafl £ new D(&,,) : D’ and Am(x, D’,m) = Cp, — C” with

a< Cy for eachk € n,. Also, by Lemma4 1.6(6), it follows that x:, D" and¥ (y, D) = fnl
W|thH i e : Dg such thatAs(y, D, fx) = Dk for eachk € n;. Therefore, by rulerftnew) we have
thatTI £ i, new D(&,,) : D. Since, by assumption, we haye it follows from Definition 4.1.7
thatT” £ e : C’ whereAp(y, D,m) = C'n, - C andI” = {x; : C},..., %, : Cj,. this : D}.
We also have from Definition 4.1.7 thaty and so from Property 3.2.2(2) thatG C’, and
Ck = C| for eachk € Mz, since D <:, D’. Then it follows thafll £ i € 1 C for eachk € M.
It also follows, then, that C <:, C and so by ruleisus) we have thal” & T £ e : C. Now, it
follows from Corollary 5.1.12 thafl Enz andy such thatl’ £ e : C : ¢ whereH’ ={x:Cy:
A1, %, - Cp, @ ény, this 1 D 1y}, with IT £ (new D@nl)) D:yandll § & : C : ¢ for
eachk € ny. SO by rule $-NewMETH) We have thafl £ (new D(&y,)) : D : (m: y: ¢n2 — @),
and by rule ¢-mvk), thatTl £ (new D(€n,)).m(€n,) : C’ : ¢. Then, since C<: C we have by rule
(p-susTypE) thatTl £ (new D(€,)).m(€n,) : C : ¢.

(rc-FLD) Then e= e.f and é = €).f with &g —, €. By assumption we have that £ ) : C : ¢
and so by Lemma 4.2.10(3},D,C’ <;, C andv;g ¢ such thatA¢(y, D, f) = C" andIl & €] :

s (f ). Also, by assumption we have thHt £ e.f : C and so by Lemma 4.1.6(3}
D’ C” <, Csuch thafl £ i € : D" andA¢(y, D', f) = C”. Since @ —, €, by Theorem 5.2.1 it
follows thatH 7 €1 D Then by Theorem 4.3.3 we have that eo D’ : (f : y). Now, by
the inductive hypothesrs it follows that £ ey : D’ : (f : ¢) and so by rulex-rLp) we have that
ITE e.f : C” :y. Then, since C <., C it follows by rule ¢-susTyrE) thatIl £ ep.f : C : .
Furthermore, since¢ < ¢ we have by Theorem 4.3.2 thAatf ep.f : C : ¢.

(Rc-NvKp) Then e= ep.m(€,,) and é = eg.m(€',) with €j —y eg for somej € n; and ¢ = & for each
k € Ny such thak # j. By assumption we have that ¥ €,.m(e/y,) : C : ¢ and so by Lemma
4.2.10(5)3 D, Cy,,C' <y C, ¢, ¢y, ¢’ < ¢psuchthalll £ e : D : (m: yg, — ¢') and
ITE e :D:ywithIl § € : Cy: ¢ for eachk € Ny such thatAm(y, D, m) = Cnl — C'. Also
by assumptron we have tthr €.m(€y,) : C and so by Lemma 4.1.6(5),D’, C’nl, Cc”" <, C

such thafl i he:D andTl £ i &« C, for eachk € Ny such tharAm(x, D’,m) = C'nl — C”. Since
b€ C and e —y € it foIIows by Theorem 5.2.1 thdl & 7 € C] and so by Theorem 4.3.3
we have thaH e’ C’ ¢j. Then by the inductive hypothesrs it follows tHat? e; : C’ : ¢;.
Also, since g = e{< for eachk € Nz such thak # |, it follows thatlIl £ e : Cy : ¢ for eachk en
such thak # |, and then by Theorem 4.3.3, tHatf & : C, : ¢ for eachk € Ny such thak # |.
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Lastly, sincdI £ e : D :(m: L//::Enl — @) andl i e : D’ italso follows by Theorem 4.3.3 that
Mfe:D :(m: ¢’315n1 — ¢’). So, by rule §-invk), we then have thdl £ eg.m(€,,) : C” : ¢’
and since C <:, C it follows by rule ¢-susTypg) thatIl £ eg.m(€,,) : C : ¢’. Furthermore,
since¢’ < ¢ we have by Theorem 4.3.2 thEtE eg.m(€y,) : C : ¢

5.4 Characterisation of Expressions

As with the intersection type system for thecalculus, the subject expansion result for the predioattem
allows us to characterise the behaviour of LJ expressioribdpredicates that we can assign to them. We
can investigate this property of the predicate system bypesimg similar results from th&-calculus. It is
important to note that we have not proved these charadiensasults for the LJ predicate system, however
we believe that they will hold due to the similarity betwehbistsystem and the intersection type systems for
the A-calculus.

We first see that (using an object predicate environmentlLdrgxpression that terminates in an object
can be assigned a non-trivial predicate ttaes notinclude w. To see this, we first notice that such an
expression has a reduction sequence of the formjeo = e -, e, -, ... -, e —, o for some
(possibly empty) sequence of expressi@js It is easy to see that the object o can be assigned such a
non-trivial predicate (using an object predicate envirenth Then, using the subject expansion theorem,
we can see that the same predicate is assignable to eachexfftessions;eén turn, and so then also to e.
Such expressions corresponditéerms which have a normal form (a term on which no furtheuctidn
is possible). Any term in normal form may be assigned an $eigtion type without using, and by the
expansion result for the intersection type assignmenesysso can any term which reduces to it.

We now turn our attention to expressions which are non-teativig. These correspond tderms which
do not have a normal form. An example of such a termisxX)(Ax.xx), whichg-reduces to itself in a single
step, and thus has neither a normal form, nor a head-normmal fdonsider the following program:

¥ = classC extendsObject
{
C m() { this.m() }
}

(new C()).m()

The expression e also runs to itself, thuss>¢ e —, ... ad infinitum. Notice thad ¢ e : C, and so by rule
(r-omeGA) We haved £ e : C : w. However,w is theonly predicate that we can assign to e. This is also the
case fora-terms without a normal form or a head-normal form.

Finally we look at LJ expressions that correspond to thosaden thea-calculus that have a head-
normal form. These terms correspond to computations tleah@n-terminating, yet still return some form
of meaningful result. An example of suclderm is the fixed point operatarf.(Ax. f (xX))(Ax. f(xX)). This
term has the following sequence of reductions:

e

Af.(AX T (X)) (X T (XX))
—g  Af F(Af.(AX F(XX) (X f(XX)))
—pg  AfF(F(Af.(AX F(xX)) (X F(xX))))
—p  AFF(F(F(AF.(AX F(xX))(AX F(XX)))))

—p

Now, consider the following LJ program:
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¥ = <classC extendsObject

{
Cf
C m() { this.f = thism() }

}
e = (new(C()m()

which results in this sequence of reductions:

e = (newC((C)null)).m()
—y (new C((C) null)).f = (new C((C) null)).m()
—, € = newC((new C((C) null)).m())
-y new C((new C((C) null)).f = (new C((C) null)).m())
—, €& = newC(new C((new C((C) null)).m()))
- € = new C(new C(new C((new C((C) null)).m())))

Thus, this expression constructs an ever increasinglyedesdtject. Observe théte e : C and so by rule
(p-oMmEGA) it follows that® £ e : C : w. Given this, we can assign the following predicates to tlygisace of
expressiong,:

e .C.{f:w)
& C.{f: {f:w))
& C.{(f:{(f:{f:w))

SSREESSEE ST
Xy <My Xy

Then, by subject expansion, we can assign all of these @tedito the expression e itself. Thus, we can
assign a non-trivial predicate to e, but it must contajindicating that there is non-termination somewhere.
Again, this is the case for the intersection type assignmagstem for thel-calculus.

A final point that we can make concerns the expressivenese piredicate system over the type system.
A result of the type system (and similarly of the type systefits], MJ and Java itself) is that if an expression
is typeable, then executing the expression will not resudiny illegal field accesses or method invocations.
In other words, whenever a field is accessed, or a methodéayakuch a field or method will always exist
in the receiving object. One thing thaiayhappen, however, is a null reference exception. This oaelien
a field is accessed or a method invoked on a null object. Theedyptem does not distinguish between the
types of null objects and the types of non-null objects; thaannot determine when such a mismatch will
occur. The predicate system, on the other halogsmake such a distinction: the only non-trivial predicate
that null objects may be assigned is the empty predi@ateAs such, a field access or a method invocation
on a null object cannot be assigned any predicate other ¢hasince the premise for such a predicate
assignment is that the receiver have an appropriate nomyeompect predicate. Thus, again by subject
expansion, it follows that the execution of any expressitiicivcan be assigned a non-trivial predicate will
not result in a null reference exception.
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Chapter 6

Decidable Restrictions of the Predicate
System

In Chapter 5 we showed a subject expansion result for thegatedassignment system. This suggests
that predicate assignment is undecidable, as is the caggdosection type assignment systems for the
calculus and the predicate system for ¢healculus in [5] (which also display subject expansion jemips).

In this chapter, we define a two-tier restriction of the pcatk system which we beliei@decidable. That is,
there exists an algorithm which will terminate resultingaipegno answer indicating whether a non-trivial
predicate can be assigned to that expression. We will preseh an algorithm, which takes as input an
execution context, a (type) environment and an expresaiwhargue that it is terminating. If the algorithm
terminates in thefirmative, then it also returns a predicate. We conjecturetiigalgorithm issoundin
that whenever it returns a predicate, there exists a priedarivation which assigns that predicate to the
input expression.

6.1 Decidability of Type Assignment

Since expressions are annotated with type informatiore tagsignment is decidable, and collapses to the
simple process of type checking. That is, in order to infeqpe tfor an expression, we need only look at the
types declared in the syntax when a new (possibly null) eligecreated, and then subsequently look up the
types of its fields and methods (checking that objects asdigmfields or passed as arguments to methods
have an appropriate type).

What we notice, however, is that open terms do not necegdaaite a unique type: the type of an
expression will depend upon the types of the variables. &dlsat this is the case, consider the following
execution context:

¥ = classA extendsObject class C extends Object

{ {
B f D f

} }

class B extends Object {}
classD extends Object {}

Then, when we come to assign a type to the expressifirthe type that we can assign depends upon the
type ofx . So,bothof the following are valid statements:

x.f:B
x.f:D

{x: A}
{x:C}

XM+ =T

Thus, an open expression does not, in general, havegaietype. Finding each possible type environment
and assignable type for an expression is still a decidalolel@gm, however such an algorithm would need to
utilise back-tracking techniques and would necessarilynbee complex than one which is constrained to
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find a single solution. Therefore, to simplify the type irfiace algorithm, we require that a type environment
is provided. This will also be the case for the predicater@riee algorithms 0§6.2 and$6.3.
We now present the type inference algorithm itself:

Definition 6.1.1 (TYPE INFERENCE ALGORITHM). The class type inference algorithifiype takes an execution
context and a type environment, and returns the type of trengixpression. It is defined as follows:

Type ¥ T (Cnull = C

Type ¥ T X = C if x:Cel

Type ¢y T ef = D if Ai(y,C,f)=D
where C= Type(y,T,e)

Type ¥ T' e.f=e = C if D < At(x.C, f)

where C= Type(y. T, e1)
D = Type(X, F’ eZ)
it Ci<,Cl Vien
where C= Type(y, T, )
Ci = Type(x.,T.&) Vien

Am(x, C, m) = C,n e D

Il
O

Type yx I' ep.m(en)

Type ¥ T newC(E) = C if Ci<:, C Yien
where 7 (x,C) = f,
At(x.C, f)) =C Yien

Ci = Type(y. T, &) Yien

The algorithm fails whenever any of the side-conditionsraremet, that is any of the following:

e Variable look-up in the type environment fails (i.e. no staent with the specified variable as the
subject exists in the type environment),

e Type lookup fails to return a type from the field talfie or method table\n, (i.e. no such field or
method exists in the given class),

e The number of arguments to a method call does not match tigghleri the sequence of argument
types returned by the method taiflg,

e The number of sub-expressions in the sequ@&ncd a new object creation expressinew D(€,) does
not match the length of the sequence returned by the fielbti&tup functions,

e A subtype check C<:, C fails (i.e. G is nota subtype of Q.

This algorithm illustrates the rationale behind the chdxeefine null object expressions with a type
annotation. Since the algorithm is defined inductivelyhwiit such type annotations we cannot know, at the
point where we must assign a type to a null object expressibich object it must behave as (i.e. which
fields and methods will be called on it). Therefore, we woudgléhto incorporate back-tracking techniques
into the algorithm in order that we could reassign the cdrtgae once we have examined the context in
which the null object appears, and the correct type can leerad.

Itis not difficult to see that this algorithm terminates, and we now angicemally to this €fect. Firstly,
we note that the algorithm operates recursively, i.e. bingpltself. At each recursive call, however, the
size of the expression on which it operates becomes smdilleerefore, the recursion is limited by the
length of the expression upon which the algorithm operatahien remains for us to check that the other
elements of the algorithm are terminating, namely the typgrenment look-up, the checking whether one
type is a subtype of another, the looking up of types in thel ffgld method tables, and the looking up of
field lists. The type environment look-up procedure is dietarminating if the type environment contains
a finite number of statements. As we will explain in a momems, termination of the other operations is
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dependent upon the well formedness of the execution copsesded to the algorithm, and one property of
well formed contexts in particular: the acyclic nature a thhass hierarchy. This property ensures that there
are no cycles in the inheritance hierarchy of each classatkfim the execution context. Since the field
list look-up function, and the field and method tables are d&fined recursively (see Definitions 3.1.4 and
3.1.5 respectively), the acyclic nature of the class hafiyameans that there will be no infinite looping in
the implementation of these functions. Then, since therst ineia finite number of classes in the execution
context (and there are a finite number of fields and methodadh elass), the level of recursion is limited
by the number of classes defined.

To check whether the class hierarchy is acyclic is also addéte problem, since the maximum length
of an acyclic inheritance hierarchy is bounded by the nurobelasses defined in the context. To construct
the inheritance hierarchy for a class, we extract the namts auperclass from the class definition, then
look up the definition of the superclass and extract the ndrite superclass, etc. We do this until we obtain
a class name which is not defined in the contextye have obtained a sequence whose length matches the
number of classes defined in the context. Since we boundrigéhlef the sequence in this way, we are sure
that our look-up operation will terminate. Then, to checktttine hierarchy is acyclic, we simply check that
each class name in the sequencengue which again is a terminating operation, bounded by the rermb
of class names in the sequence.

We assert that the type inference algorithm is lsmiindandcompletewith respect to type assignment:

Property 6.1.2 (souNDNESs OF TYPE INFERENCE). % + ' & Type(y,I,e)=C=>THLe:C

Property 6.1.3 (cOMPLETENESS OF TYPE INFERENCE). I'; € : C= 3D <, C [Type(y,T',e) = D]

6.2 The Rank-0 Restriction

At a conceptual level, the undecidability of predicate gissient stems from the fact that non-terminating
expressiongannotbe assigned non-trivial predicates (see the discussidib.#). Thus, a terminating
algorithm which is complete (in the sense that if some natiatrpredicate can be assigned to an expression
then the algorithm will find it) would be a solution to the lradf problem. A decidable system, therefore, can
only be complete with respect to some subset of (non-tlipieddicates. We choose to define such subsets
in terms of the number of nested method invocations, whatdvioel termed ‘stack depth’ in conventional
programming.

In this section, we definRank-Opredicates, which can only be assigned to object, field aameBeld
assignment expressions. In other words, we restrict augsdb only being able to assign predicates to
expressions in which no methods are invoked.

Definition 6.2.1 (rRank-0 preDICATES). 1. The set of Rank-0 predicates, denotedMRED and ranged
over by, is defined by the following grammar:

a = ¢

whereg ranges over a set @iredicate variables We say that a Rank-0 predicated®sedwhen it
does not contain any predicate variables. Conversely,digatie is said to bepenif it doescontain
predicate variables. Notice that the set of closed Ranle@ipates is a subset of the set of predicates,
PRED.

2. A Rank-0 predicate environment is a predicate enviroririmenhich the predicate conclusion of each
statement is a Rank-0 predicate.

Note that we have now introduced predicate variables. Theseequired by the inference algorithm,
and are used to construct the predicates that are assigmneddbles that occur in expressions. Since the
algorithm is defined inductively, we will not know at the ptwhen we must assign a predicate to a variable
what substructure that predicate will be required to havéerafore, we assign a predicate containing
variables, and bring a more detailed structure to the pa¢elivhen the context requires such. As usual, we
do this through unification.
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Since we have introduced predicate variables, we will noedn® define a method for transforming
these variables into the predicates that they representachieve this, we define a notion pfedicate
substitution

Definition 6.2.2 (PREDICATE SUBSTITUTION). 1. The predicate substitutiop (» @) : PREDg — PRED,
wherey is a predicate variable ande PREDyy, is defined inductively as follows:

()¢ = o
o) = i #p
pra)fiia'"h = (fii(eraar....fai (g a)an)

2. If 81, S, are predicate substitutions, then so is the composBipnS,, whereS; 0 Sy a = S1 (S22 @)
3. SMN={:C:Sa|x:C:aclll

4. Iffor ay, a there is a predicate substitutighsuch thatS a; = a», thena» is a(substitution) instance
of a;.

5. If @ is an open Rank-0 predicate afds a substitution such tha& « is a closed predicate, then we
say thatS is aclosing substitutiorior a.

We now define a notion ainification similar to Robinson’s notion of unification, as also usedhi@
principal type algorithm of Curry type assignment for thealculus [22]. Our notion of unification is not
completely analogous to that of Robinson, however. Rolissagorithm will fail if there is no substitution
that maps both its arguments to a common instance. Our tdgokiill not fail in this situation, rather it
will return the identity substitution (i.e. the substituti that maps each predicate variable to itself). The
objective of our notion of unification is simply to combinddra single predicate the information contained
in two separate ones. The fail cases of our inference atgorérise out thenatchingoperation (defined
below).

Definition 6.2.3 (prepicaTE UNIFICATION). Let Idgs be the substitution that replaces all predicate variable by
themselves.

1. Unification is defined over Rank-0 predicates by:

unify ¢ a = (pa)

unify (fiza'€™ o = unifyp(fira '™

unify  (e) (firei' <™ = Ids

unify (f:a) (€) = Idg

unify (f :a) (f': ') = { :Jdr;ifyaa’ icf)tr:e:r\/\ri’se

unify (f : a) (fioar ' €™ = unify(S(f:a))(S{fiiai ' €™))  ifn>1

whereS = unify (f : a) (fy : an)

unify (fiiai €™y (f/ e/ '€™) = S;081 ifm>1 |
where 81 = unify (fn : an) (f’ 12/ ' ™)
Sz = unify (S1(fi i 1<) (S 1o ' €T))

2. The unification operation can be extended to Rank-0 pagglienvironments as follows:
UnifyEnv 0 I = ldg

UnifyEnv (I, x: C:aq) Il = UnifyEnvIl; [, if x¢ VARSE,, (I12)

S$208;
where S1 = unify g a»
Sy = Uninynv(Sl Hl) (81 Hz)

UnifyEnv (T, Xx: C:a1) (T, X: C:a)
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When searching for an appropriate predicate for an exmestie inference algorithm must be able
to check that the predicate inferred for a sub-expressiaichma some expected form. For example, when
inferring a predicate for an expression of the form,ave must check that the inferred predicate for the
sub-expression e has the fofh : ¢). Similarly, when we extend this system to be able to handléhatk
invocation in the following section, we will need to checltlthe predicates inferred for expressions passed
as arguments to method invocations match the correspopdéatticates in the method type of the receiver.
For this purpose, we definenaatching operation

Definition 6.2.4 (prepicatE MATCHING). The predicate matching operation is defined as follows:

, 3 TRUE If ¢ = ¢’
match ¢ 14 B { FALSE Otherwise
match (fi:ai' €™ (e = TRUE
match (fi:a; ' €™ (f:a) = { TRUEif 3 ] €n [f = 1 & matcha; o]
FALSE Otherwise

match (fi:ai"€™) (f/:a/' ™) = match(fi:ai' ™) (f]: a})
A match(fi i "€ (f/ 1o 1M
We now define aioverrideoperation, which takes an object predicate and overwiitepitedicate with
which a given (field identifier) label is associated. This trhes done when inferring a predicate for field

assignment expressions, since in field assignment theopievalue is overwritten with the new one.
Definition 6.2.5 (prepicaTE OVERRIDE). The predicate override operation is defined as follows:

override f (e a = (f:a)

. o (f'iay iff =1
override f (f':a) @ {(f’:a/’) otherwise

(override f(f; : q; iEm) a) U (override f(f, : an) )
wheren > 1

override f (fiiaqi' €™ «

In the algorithm, when we infer a predicate for a variable fitll access expression, we must construct
a predicate that contains as much information as possilrlee sve do not know at that point the exact
structure that the predicate should have. That is, we cabp@aure which fields will be accessed and
assigned to, and which will not. For readability purposes,de&fine the following function, which returns
a Rank-0 predicate assignable to a given type, which is naheiigsense that all fields are assigned a fresh
predicate variable.

Definition 6.2.6 (rresH PREDICATE (RANK-0)). The functionFreshPredicatg : CONTEXT x TYPEc —
PRED( returns a Rank-0 predicate containing all fields in a givas<IC, with each field associated with
a fresh predicate variable:

FreshPredicatg(y,C) = (fi:i¢' €™ where ?(X,C):Tn, ¢, fresh

The final operation we will define is that pfedicate mergeThis operation allows us to combine the
predicate information inferred about a variable occurimgultiple sub-expressions to be combined into a
single predicate.

Definition 6.2.7 (prepicatE MERGE). 1. Themergingof two Rank-0 predicatesy; + a», is defined induc-
tively as follows:

¢ + ¢ = ¢ ifp=¢

(e) (firai '€ (fiiai'€

+
=]

)

- (friag,....fjraj+a,..., fhian) =
. . .len _ . _ —
(fra) + (fitq ) = {(f:a/)l_l(fi:a/i'en>

(o €™ + (i €™y = (fiiai "D+ (Faian) +(F 1ol €M)

wheren > 1
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2. We extend the merge operation to predicate environmertsiraightforward manner:

0 + II = II
M,x:C:a + I = (1+1Ilp),x:C:a if x¢ VARSE,,,(IT2)
I, Xx:C:a1 + Ip,X:C:iapx = ([[I1+1I),X:C:a1+ay

3. We use the notatioBs «; to represent a sequence of consecutive mergesta + a2) + ...) + an.
Similarly we useXs I; to denote (.. (II1 + I1p) +...) + I,

We now give the Rank-0 predicate inference algorithm. Itrafes in two stages. Firstly, a Rank-0
predicate is inferred for the given expression, using tigergdhm K. This predicate will be open if the
expression contains variables. Thus, to ensure that weratualid predicate, that is, a (closed) predicate
belonging to the sPRED, the predicate variables are eliminated by applying a epsubstitution. The
closing substitution that we use is, in fact, the least suneh @ replaces all predicate variables by the empty
predicate.

Definition 6.2.8 (RaANK-0 PREDICATE INFERENCE ALGORITHM). LetS; be the predicate substitution that replaces
all predicate variables bi). We define the algorithmisify andR as follows:

Infp (T, e)

S, (I, C:a)
where (I, C:a)=Ro (T,e)

Ro x I' (Cnull = (0, C:(e)
Ro x I' x = (x:C:a}, C:a) if x:Cel
where «a = FreshPredicatg(y, C)
Ro y [ ef = (SIL D:(Sa)) it match(S o) (S (f : ¢}))
where (I, C:a)=Ro (% T,e)
A(,C.f)=D |
a’ = FreshPredicatg(y, D) = (fi : ¢i ' <™ such thatf = f
S = unify a o/
Ro x I ef=e = ((S21I1) +(S2112), C:Sz0) if D < At(x. C, )

match(S; a@) (S2 (f : ¢))

where (11, C:a1) = Infy (%, T, er)

(T, D:ap) = |nf0 (T, e)

a = override faq as

S1 = UnifyEnvIl; I,

Sy = (unify (S1 1) (f : ©)) 0 Sy ¢ fresh
En(SnIl), C:Sn(fizai' €M) if Ci<, C/ Vien
where 7 (x,C) = f,

Ro % I newC(e)

As(x, C, i) = C Yien
(ITi, G : aj) = Infy (x.T, &) Vien
Sy = ldg

Si = (UnifyEnv(Si—1 Ii-1) (Si-1 1)) 0 Si-y 1<i<n

As for the type inference algorithm §6.1, the Rank-0 predicate inference algorithm will fail wbeer
any of its side-conditions does. These conditions are thwesas for the type inference algorithm, with
the addition of thematchoperation. When considering the termination of the Rankg@rahm, we must
consider the termination of the extra operations that weetdafined. Thd-reshPredicatg function is
defined using the field list look-up functigfh, the termination of which we have already discussed in
the context of type inference. Notice that the substitytiemification, matching, overriding and merging
operations are defined recursively over the structurpreflicates At each recursive call, however, the
length of the predicate being operated on is reduced ancedevhl of recursion is bounded by the size of
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the predicate. The substitution operation is technicdlg defined over the number of predicate variables
that it acts upon. Thus, an argument for the termination efsthibstitution operation will also have to take
this into account. It is clear, however, that terminatiogusranteed for substitutions defined over a finite
number of predicate variables. Moreover, the extensionthefinification and and merging operations to
predicate environments are defined recursively over thetstre of the environment itself. However, again,
at each recursive call the size of the environment is reduaed therefore the level of recursion is again
bounded. Two final points to deal with are the special casd¢leoidentity and closing substitutiontsl s
andS,. Formally, these are defined over the entire (infinite) s@reflicate variables. However, in practice
they only operate on the (finite number of) predicate vagsigresent in the predicate that they act upon.
An implementation of these substitutions can then cleaglynlade to terminate by defining them to tratht
predicate variables that they encounter in the same manner.

We make the proposition that the Rank-0 predicate inferaiggrithm of Definition 6.2.8 is sound with
respect to predicate assignment. We also assert thatdiipletewnith respect to predicate assignment using
only Rank-0 predicates. However, due to time constrainthawe not been able to construct a proof for
this.

Conjecture 6.2.9(sounpness oF RANK-0 PREDICATE INFERENCE). If the Rank-0 inference algorithm returns
a predicate environment and a type-predicate pair for ang@secution context, type environment and
expression, then there exists a predicate derivationrangighe type-predicate pair to the expression using
the execution context and predicate environment:

T & Infy(x,T,e)=(I1, C:¢)=>11Ee:C:¢

Conjecture 6.2.10(coMPLETENESs OF RANK-0 PREDICATE INFERENCE). If D::IT £ e : C :a such thatD contains
only Rank-0 predicates, then there exists a Rank-0 predicahnd a predicate substitutia$l such that
Ro (x, I, e)= (IT",a’) andSTI" < TTwith S o’ < a.

6.3 The Rank-1 Restriction

A restriction that precludes assigning predicates to esgipes using method invocation is undoubtedly
too severe. Method invocation is at the heart of LJ, and so a mgaurisystem should be able to deal
with it. For this reason, we now generalise the Rank-0 systebre able to type expressions with method
invocations. The Rank-1 system, however, still placesiotisins of the type of method invocations that
those expressions can contain. The methods that may becihanie restricted to those whose bodies can
be typed with Rank-0 predicates. Thus, the Rank-1 systeoncalsnot type expressions in which a method
is invoked on the return value of another method invocatitva.first define Rank-1 predicates:

Definition 6.3.1 (rank-1 preDICATES). 1. The set of Rank-1 predicates, denotedHREID1 and ranged
over byg, is defined by the following grammar:

B = ¢

| 1:71e, ....Ihimhy (n>0)
T = f

|  agilan— a (n>0)

Again, we say that a Rank-1 predicateclssedwhen it does not contain any predicate variables.
Also, as for closed Rank-0 predicates, the set of closed Ramiedicates is a subset of the set of
predicates. Notice thdfRREDg c PRED1.

2. A Rank-1 predicate environment is a predicate enviroririmenhich the predicate conclusion of each
statement is a Rank-1 predicate.

We must now extend the notion of predicate substitution &raie over Rank-1 predicates, as well as
extend the definition of the unification, matching and ow#ng operations:
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Definition 6.3.2 (RANK-1 PREDICATE sUBSTITUTION). (¢ — f8) : PRED1 — PRED1, wherey is a predicate
variable ang8 € PRED1, is defined inductively as follows:

(P ¢ = B

(B¢ @ it #¢

(¢ > B) agiian — @ ((p = B) @0):((p = B) 1), ... .((¢ = B) an) = ((¢ = ) @)
=B di:n'sN = dii(@e=PB)te,....ln: (@ B) )

This extends to Rank-1 predicate environments in a simikay as for Rank-0 substitution (see Definition
6.2.2).

We now present modifications to the unification, matching eraging operations so that they can
handle Rank-1 predicates. The extensions are straighafdrand minor, amounting to extra cases in each
operation for handling method predicate types, and gdaeamglthe cases for object predicates so that they
may contain both field identifiers and method names. We doivetige extension for the override operation,
since the definition is identical to the Rank-0 version, @tdbat Rank-1 predicates are used instead of
Rank-0 ones.

Definition 6.3.3 (untrication). Unification is defined over Rank-1 predicates by:

unify ¢ B = (pmp) o
unify {i:ni'€™ @ = unifye (7'M
unify agilan — a aé::yn —»a = 8So08,0...08)

whereS = unify a o’
Si = unifyaj o forall0<i<n

unify  (e) JiiniteMy = Idg
unify <l :71) (€) = ldg
. . , ., B unifyr 7’ ifl =1
unity (I 7) (=7 B { Ids otherwise
unify (I : 7) Qi €™ = unifySA: ) Sn €Ty ifn>1

whereS = unify{l : 7) (I, : n)

unify (i€ (i t€®) = 8081 ifmp>1 |
whereS; = unify (In : ) (17 1 7/ ' € ™)
Sz = unify (S i s 7i S MH) (Sa (1 1o ™))

This modification extends to tHgnifyEnvfunction in the same way as the Rank-0 version. The definition
is identical, but for the obvious fact that the Rankxify is used.

Definition 6.3.4 (marcuinGg). We extend thenatchoperation as follows:

TRUE if ¢ = ¢’
match ! = .
L4 L4 { FALSE Otherwise
match ag:ian — « aé::?n —a’ = matcha o’ A matchag ag A
... A matchay ap,
match (i 7' €™ (e = TRUE

A TRUE if 3jen [l =1; & matchr; t
match {li:7i' <) (=) { FALSE otheJrWise[ J il

match (i< (7<% = machdiin S iy
A match({lj : 7 ien_1> <||/ :Ti, S n2—1>

54



Definition 6.3.5 (prepicATE MERGE). The predicate merge operation is extended to Rank-1 ptedics
follows:

¢ o = ¢ ife=¢
agilan > a  + afidn—a = (ao+ap)i(er+a)),...,(en+ap) = (@ +a)
© + in'EN = e
Cem (ETHE S TR [ T TR P YR Il

. e~ 1 EN — L -
(I:7) + T ) = {<|2T>I_I<|iZTi|En> lel,
T S (e T S R S S (( RER R SR Y

wheren > 1

This definition of merging extends to Rank-1 predicate emriments in exactly the same way as the Rank-0
merge operation does. We also retain Izenotation.

The extension of thereshPredicatg function is also straightforward. To generate a fresh Rhpked-
icate, we must also include the (Rank-1) methods for thengilass.

Definition 6.3.6 (FresH PREDICATE (RANK-1)). The functionFreshPredicate : CONTEXT x TYPEc —
PRED; returns a Rank-1 predicate containing all fields in a givas<IC, with each field associated with
a fresh predicate variable. It also contains all methodsngihg to the class with member predicates
constructed from fresh variables:

FreshPredicatg(y, C) = (fi:gi'€™Myu(m <)
where 7 ((,C) = f,, @n, fresh
M. C) =My,
Am(x,C,m) =Cly — G Viem
Ti = @0y ¢ ©, 90, @, fresh Viem

Note that this construction assumes that all the methoasbelg to the class can be assigned Rank-1
predicates. This does not present a particular problemehenysince such fresh Rank-1 predicates will only
be generated as part of a variable predicate. Then, thetalgosimply asserts that given an environment
in which the variable satisfies such a predicate, the finaltresvalid. Any predicate inferred for an object
constructed via aew expression will contain only those methods whose bockede typed with a Rank-0
predicate. We do not perform this check for variables sirar&ables may represent objects afubtypeof
their decared type. Therefore, we cannot be sure which rddibdy will actually be executed when the
method is invoked on an object substituted for the variable.

We must now define one extra operation on Rank-1 predicafesebgresenting the Rank-1 predicate
inference algorithm itself. This operation is thafflattening or converting a Rank-1 predicate into a Rank-
0 predicate by discarding all the information regardinghrods. This operation is hecessary when defining
the case for method invocation in the predicate inferengerdhm. In the full predicate assignment system,
as well as having a method predicate type, the receiver ofthadenvocation must also satisfy the self
predicate of that method type. Since, in the Rank-1 systeesdlf predicate must be Rank-0, the algorithm
takes the Rank-1 predicate that has been inferred for tleéverexpression, and flattens it before matching
it against the self predicate of its inferred method type.

Definition 6.3.7 (PrepIcATE FLATTENING). If 8 is a Rank-1 predicate, then we define the flattening operation
L8], which returns a Rank-0 predicate, as follows:

Le] = ¢

1(e)) = (&

KB = (f:18))

L{m: agiian —» )] = () o
KUY = Win =Y U n )l
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We now present the Rank-1 predicate inference algorithre.ri&jor diferences between this algorithm
and the Rank-0 algorithm are the extra case for method itieogaand an extension of the case for object
creation in which types for its (Rank-0) methods are alserieid as well as fields.

Definition 6.3.8 (RaNk-1 PREDICATE INFERENCE). Again, letS; be the subsitution that replaces all predicate
variables withe). We define the algorithmisif; andR; as follows:

Inf, (x,T,€) S, (IT, C: p)

where (I, C:B)=R1(x,T,€)

R1 x I' (Cnull = (0, C:<e)
Ri x T x = ({x:C:p},C:pB if x:Cel
where B = FreshPredicatg(y, C)
Ry 3 T ef = (SIL D:(SB)) if match(Sg) (S (f : 7))
where (I, C:B)=R1(x.T,e€)
At(x.C. ) =D |
B’ = FreshPredicatg(y, D) = (li : 7; ' €™ such thatf = I
S = unifyg g’
Ri x I enf=e = ((S2M1)+(S20I2), C:S2p8) if D <, A%, C, f)

match(Sz2 B) (Sz2(f : ¢))
where (11, C:B1) = Infy (x. T, &)
(HZ’ D :ﬂZ) = Infl (X’ L, eZ)
B = override 81 82
S = Uninyanl 11,
Sz = (unify (81 1) (f 1 ¢)) 0 S1 ¢ fresh
(SHp) + X7 (STLj), D:S¢) if Ci<, CVieh,
match(S B8) (S (M: ¢o::g, — ¢)),
match(S [B]) (S o),
match(S a;) (S¢i) Vien
where (o, Co:B) =R1 (x.T, &)
(I, Gt ai) =Ro (x.T', &) Yien
Am(x, Co, M) = 6n - D
So = Uninyano 111
Si = (UnifyEnv(Si_1 1) (Si—1 Tit1)) 0 Si1 1<i<n
Sn = (UNify (Sn-1 8) (Sn-1 {M: ¢0::¢n = ¢))) ©Sn1 @, vo, Py, fresh
Sy = (unify (Sn 18]) (Sn ¢0)) © Sn
S = (unify (§]_; @i) (Si_; ¢i)) o Si_, Yien
S = (unify (S}, ¢) FreshPredicatg(y, D)) o Sy,

Ri ¥

—

€0.M(€n)

. J— ien
Ri x T newC@E) = Er(Sall), C:Salfiip'“MuUimiagidy »ai ) .
if C; <:XCi’Vieﬁ,C]’<:XCJVjen’
where  F(x.C) = T, M(x.C) = My

At (x,C, f) =C Yien
(I, G : Bi) = Infy (3. T, &) Yien
S1=1ds

Si = (UnifyEnv(Si_1 IT;_1) (Si_1 IT;)) 0 Sj_1 1<i<n
Am(x,D.,my) = Ciy - C View
MBopY(y, D, my) = (Xy, €) Vien
Ii=1{x:Cy,.... %, : C,,this : D} Yien
(I, C : @) = Ro (1. T, €) Vien

suchthat X, :Cl:al,....x, :Cl ‘e, this:D:a} eIl Yien
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As for type inference and Rank-0 predicate inference, we tuov our attention to the termination of
the Rank-1 predicate inference algorithm. Firstly, notltat the extensions to the substitution, unification,
matching and merging operations are such that they arelsfitied recursively over the structure of (Rank-
1) predicates with each recursive call reducing the sizé®foredicate. It therefore remains the case that
they are terminating over finite predicates. This arguméstt applies to the newly defindthtteningoper-
ation. TheFreshPredicate function is extended to create Rank-1 predicates (i.e.iqatas with member
statements about methods as well as fields), and so is desnagithe method list look-up function. How-
ever, in the same way that the field list look-up function isrti@ating (see the discussion §6.2), we can
see that the method list look-up function is also termirmatirastly, a similar argument holds for theethod
bodylook-up functionMmeoby, which is used in the case for method invocation in the majorithm.

Again, we make the proposition that Rank-1 predicate imfeeessound and also that it iomplete
with respect to predicate assignment using only Rank-1iquaess:

Conjecture 6.3.9(sounDpNESs OF RANK-1 PREDICATE INFERENCE). If the Rank-1 inference algorithm returns
a predicate environment and a type-predicate pair for ang@secution context, type environment and
expression, then there is a predicate derivation assighmtype-predicate pair to the expression using the
execution context and predicate environment:

x T & Infy (x,T,e)=(IL, C:¢)=>11Ee:C:¢

Conjecture 6.3.10(cOMPLETENESS OF RANK-1 PREDICATE INFERENCE). If D::I1 £ e : C : 8 such thatD contains
only Rank-1 predicates, then there exists a Rank-1 predfatnd a predicate substitutiai such that
Ri1(x,I,e)= (IT,8)andSTI' <TTwithS B I
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Chapter 7

Conclusions and Future Work

We have developed a formal model of a class-based objecitedgrogramming language, inspired by
other similar calculi. The motivation for doing this was tendonstrate that an intersection type assignment
system can be applied to the class-based flavour of the objectted paradigm, as well to the object-
based variety. We have indeed shown that this is possiblakiyg the predicate system of van Bakel and
de’Liguoro, as described in [5], and modifying it to applydor calculus, LJ. We have demonstrated the
success of this approach by proving subject reduction apdreston theorems.

Our calculus was inspired by two previou$asts: Featherweight Java and Middleweight Java. It incor-
porates features from both systems, although it is closaaiare to the former. Both Featherweight Java
and our calculus, LJ, are functional in nature, while MJ dess a humber of imperative features. This
makes our calculus a great deal less complex that MJ, hovitedees mean that we have not been able to
investigate how the intersection type system interacth imiperative features. We note that this is not a
feature of the system in [5] either.

We feel that LJ, even though it is very similar to Feathenlei#ava, is more elegant than that calculus.
We have chosen to omit casts from our system, and in doing w® &aided complications in proving
subject reduction. Additionally, the reduction of LJ cahbecome stuck with ‘class cast exceptions’ (stupid
casts) in the way that FJ expressions can. We have also addetjects and field assignment capabilities
to our calculus with what we feel is very little additionalsplexity.

We have also examined the characterisation capabilitidsegiredicate system that we have defined for
LJ. We have seen that convergent expressions are chasadiéy the assignability of non-trivial predicates,
and we have also seen how expressions that can be assign#éidvizbrpredicates will not result in ‘null
reference exceptions’. Although not rigorously proved,hepe the reader is convinced that such properties
are likely to hold, given the similarities between our sgsteand the intersection type systems for the
Lambda Calculus. Finally, we have defined two restrictiamshe predicate assignment system that we
assert are decidable.

There are many directions that future research in this asallgo. A number of extensions are im-
mediately obvious. Firstly the soundness and completeniett® Rank-0 and Rank-1 predicate inference
algorithms remain to be proven. A general definition for alRamestriction would also be useful. Another
possible avenue of investigation that would further centlattheoretical foundations of the class-based
object oriented paradigm is to define an encoding of the Lan@alculus in LJ. This has been done for the
g-calculus in [1], and would demonstrate the expressive p@amd equivalence of LJ with th&calculus.

On a broader note, semantic models for LJ, as well as othss-based calculi, could be developed. [5]
addresses this issue for thesalculus, so it seems likely that a similar approach coelddaken for LJ.

We have discussed above how LJ lacks imperative featurels,asithe ones expressed in MJ. A further
step might be to add these features to LJ, and also extenddtieate system to handle them. It would be
interesting to see if they can easily subsumed into the pagglisystem, or whether the presence of side-
effects will necessitate more drastic changes. Taking anddhdrfrom [8], we could also incorporate an
effects system into our calculus. Again, one would hope thatdkiension would dovetail easily with the
predicate system.
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