
Approximation Semantics and Expressive Predicate
Assignment for Object-Oriented Programming

(Extended Abstract)

R.N.S. Rowe and S.J. van Bakel
{r.rowe,s.vanbakel}@imperial.ac.uk

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

Abstract. We consider a semantics for a class-based object-oriented calculus
based uponapproximation; since in the context ofLC such a semantics enjoys
a strong correspondence withintersection type assignment systems, we also de-
fine such a system for our calculus and show that it issoundandcomplete. We
establish the link with between type (we use the terminologypredicatehere) as-
signment and the approximation semantics by showing an approximation result,
which leads to a sufficient condition for head-normalisation and termination.
We show the expressivity of our predicate system by defining an encoding of
Combinatory Logic (and so alsoLC) into our calculus. We show that this encoding
preserves predicate-ability and also that our system characterises the normalising
and strongly normalising terms for this encoding, demonstrating that the great
analytic capabilities of these predicates can be applied toOO.

1 Introduction

Semantics is a well established area of research for both functional and imperative
languages; for the functional programming language side, semantics is mainlydeno-
tational, based on Scott’s domain theory [25], whereas for imperative languages it is
mainlyoperational[24]. In this paper, we present the first results of our research in the
direction of denotational, type-based semantics for object-oriented (OO) calculi, which
we aim to extend towards semantics-based systems of abstract interpretation.

Over the years many expressive type systems have been definedand investigated.
Amongst those, theintersection type discipline(ITD) [14, 15, 11, 2] stands out as a sys-
tem that is closed underβ-equality and gives rise to a filter model; it is defined as an
extension of Curry’s basic type system for the Lambda Calculus (LC) [10], by allow-
ing term-variables to have many, potentially non-unifiabletypes. This generalisation
leads to a very expressive system: for example, termination(i.e.normalisation) of terms
can be characterised by assignable types. Furthermore, intersection type-based models
and approximation results show that intersection types describe the full semantical be-
haviour of typeable terms. Intersection type systems have also been employed success-
fully in analyses for dead code elimination [17], strictness analysis [20], and control-
flow analysis [9], proving them a versatile framework for reasoning about programs.
Inspired by this expressive power, investigations have taken place of the suitability of

intersection type assignment for other computational models: for example, van Bakel
and Fernández have studied [6, 7] intersection types in the context of Term Rewriting
Systems (TRS) and van Bakel studied them in the context of sequent calculi[4].

Also theobject-orientedprogramming paradigm has been the subject of extensive
theoretical study over the last two decades.OO languages come in two broad flavours:
the object(or prototype) based, and theclassbased. A number of formal models has
been developed [13, 12, 21, 18, 1, 19]; for example, theς-calculus [1] and Featherweight
Java (FJ) [19] give elementary models for object based and class-basedOO respectively.
In an attempt to bring intersection types to the context ofOO, in [5] van Bakel and
de’Liguoro presented a system for theς-calculus; it sees assignable types as anexecu-
tion predicate, or applicability predicate, rather than as a functional characterisation as
is the view in the context ofLC and, as a result, recursive calls are typed individually,
with different types. This is also the case in our system.

In the current paper we aim to define type-based semantics forclass-basedOO, so
introduce a notion of intersection type assignment for suchlanguages (we will use the
terminologypredicateshere, to distinguish our notion of types from the traditional no-
tion of class types). In order to be able to concentrate on theessential difficulties, we
focus on Featherweight Java [19], a restriction of Java defined by removing all but the
most essential features of the full language; Featherweight Java bears a similar relation
to Java asLC does to languages such as ML and Haskell; in fact, we will showit to be
Turing complete. We will show that the expected properties of a system based on in-
tersection predicates (i.e. soundnessandcompleteness) hold, opening up the possibility
to define a predicate-based semantics forFJ. In future work, we will look at adding the
normal programming features, and investigate which of the main properties we show in
this paper are still achievable.

We also define a notion ofapproximantfor FJ-programs as a finite, rooted segment
– that cannot be reduced – of a [head] normal form; we go on to show anapproxima-
tion resultwhich states that, for every predicate assignable to a term in our system, an
approximant of that term exists which can be assigned the same predicate. Interpreting
a term by its set of approximants gives anapproximation semanticsand the approxima-
tion result then relates the approximation and the predicate-based semantics. This has,
as far as we are aware, not previously been shown for a model ofOO. The approximation
result allows for a predicate-based analysis of termination.

As is also the case forLC andTRS, in our system this result is shown using a no-
tion of computability; since the notion of reduction we consider is weak, as in [7] to
show the approximation result we need to consider a notion ofreduction on predicate
derivations. We illustrate the expressive power of our calculus by showing that it is
Turing complete through an embedding of Combinatory Logic –and thereby also the
embedding ofLC. We also recall the notion of Curry type assignment, for which we
can easily show a principal predicate property and show a predicate preservation result:
types assignable toλ-terms in Curry’s system of simple type assignment correspond to
predicates in our system that can be assigned to the interpretedλ-terms. This is easily
extended to the strict intersection type assignment systemfor LC [2]; this then implies
that the collection of predicate-ableOO expressions correspond to theλ-terms that are
typeable using intersection types,i.e.all semantically meaningful terms.

In [8] we presented a similar system which here has been simplified. In particular,
we have removed thefield updatefeature (which can be modelled using method calls1),
which gives a more straightforward presentation of system and proofs. We have decou-
pled our intersection predicate system from the existing class type system, which shows
that the approximation result does not depend on the class type system in any way.

For lack of space, proofs are omitted from this paper; we refer the interested reader
to http://www.doc.ic.ac.uk/~rnr07 for a version of this paper with detailed proofs.

2 The CalculusFJ¢

In this section, we will define our variant of Featherweight Java. It definesclasses,
which represent abstractions encapsulating both data (stored in fields) and the opera-
tions to be performed on that data (encoded asmethods). Sharing of behaviour is ac-
complished through theinheritanceof fields and methods from parent classes. Com-
putation is mediated byinstancesof these classes (calledobjects), which interact with
one another bycalling (or invoking) methods and accessing each other’s (or their own)
fields. We have removed cast expressions since, as the authors of [19] themselves point
out, the presence ofdowncastsis unsound2; for this reason we call our calculusFJ¢. We
also leave the constructor method as implicit.

Before defining the calculus itself, we introduce notation to represent and manipu-
latesequencesof entities which we will use in this paper.

Definition 1 (Sequence Notation). We usen (n∈ IN) to represent the list 1, . . . ,n. A
sequencea1, . . . ,an is denoted byan; the subscript can be omitted when the exact num-
ber of elements in the sequence is not relevant. We writea∈ an whenever there exists
somei ∈ {1, . . . ,n} such thata= ai . The empty sequence is denoted byε, and concate-
nation on sequences bya ·a′ .

We use familiar meta-variables in our formulation to range over class names (C and
D), field names (f), method names (m) and variables (x). We distinguish the class name
Object (which denotes the root of the class inheritance hierarchy in all programs) and
the variablethis (which is used to refer to the receiver object in method bodies).

Definition 2 (FJ¢ Syntax). FJ¢ programsP consist of aclass tableCT , comprising the
class declarations, and anexpressione to be run (corresponding to the body of themain

method in a real Java program). They are defined by:

e ::= x | new C(e) | e. f | e.m(e)

fd ::= C f;
md ::= D m(C1 x1, . . . , Cn xn) { return e; }

cd ::= class C extends C′ { fd md } (C 6= Object)

CT ::= cd

P ::= (CT ,e)

1 We can simulate field update by adding to every class C, for each field fi belonging to the class,
a method Cupdate_ fi(x) { return new C(this. f1,...,x,...,this. fn); }.

2 In the sense that typeable expressions can get stuck at runtime.

From this point, all the concepts defined are program dependent (parametric on the
class table); however, since a program is essentially a fixedentity, it will be left as an
implicit parameter in the definitions that follow. This is done in the interests of readabil-
ity, and is a standard simplification in the literature (e.g.[19]). Here, we also point out
that we only consider programs which conform to some sensible well-formedness cri-
teria: no cycles in the inheritance hierarchy, and fields andmethods in any given branch
of the inheritance hierarchy are uniquely named. An exception is made to allow the
redeclaration of methods, providing that only thebodyof the method differs from the
previous declaration (in the parlance of class-basedOO, this is calledmethod override).

Definition 3 (Lookup Functions). The following lookup functions are defined to ex-
tract the names of fields and bodies of methods belonging to (and inherited by) a class.

1. The functionF (C) returns the list of fieldsfn belonging to class C (including those
it inherits).

2. The functionM b(C,m) returns a tuple(x,e), consisting of a sequence of the method
m’s (as defined in the class C) formal parameters and its body.

As usual,substitutionis at the basis of reduction in our calculus: when a method is
invoked on an object (thereceiver) the invocation is replaced by the body of the method
that is called, and each of the variables is replaced by a corresponding argument.

Definition 4 (Reduction). 1. A term substitutionS = {x1 7→e1, . . . ,xn 7→en} is de-
fined in the standard way, as a total function on expressions that systematically
replaces all occurrences of the variablesxi by their corresponding expressionei .
We writeeS for S(e).

2. The reduction relation→ is the smallest relation on expressions satisfying:

– new C(en). f j → e j , for class name C withF (C) = fn and j ∈ n .

– new C(e).m(e’n)→ eS, whereS= {this 7→new C(e), x1 7→e’1, . . . , xn 7→e’n},
for class name C and methodm with M b(C,m) = (xn,e).

and the usual congruence rules for allowing reduction in subexpressions.
3. If e → e’, thene is theredexande’ thecontractum; →∗ is the reflexive, transitive

closure of→.
This notion of reduction isconfluent.

3 Approximation Semantics

In this section we define anapproximation semanticsfor FJ¢. The notion ofapproximant
was first introduced in [27] forLC. Essentially, an approximant is a partially evaluated
expression in which the locations of incomplete evaluation(i.e. where reductionmay
still take place) are explicitly marked by the element⊥; thus, theyapproximatethe
result of computations. Intuitively, an approximant can beseen as a ‘snapshot’ of a
computation, where we focus on that part of the resulting program which will no longer
change (i.e. the observableoutput).

Definition 5 (Approximants). 1. The set ofapproximantsFJ¢ is defined by the fol-
lowing grammar:

a ::= x | ⊥ | a. f | a.m(an) | new C(an) (n≥ 0)

A ::= x | ⊥ | new C(An) (n≥ 0)
| A. f | A.m(A) (A 6=⊥, A 6= new C(An))

Note that approximate normal forms approximate expressions in (head) normal
form. In addition, if we were to extend the notion of reduction so that field accesses
and method calls on⊥ reduce to⊥, then we would find that the approximate normal
forms are exactly the normal forms with respect to this extended reduction relation.

The notion of approximation is formalised as follows.

Definition 6 (Approximation Relation). Theapproximation relation⊑ is the contex-
tual closure of the smallest preorder on approximants satisfying: ⊥⊑ a, for all a.

The relationship between the approximation relation and reduction is:

Lemma 7. If A⊑ e ande →∗ e’, thenA⊑ e’.

Notice that this property expresses that the observable behaviour of a program can only
increase (in terms of⊑) through reduction.

Definition 8 (Approximants). The set ofapproximantsof e is defined asA (e) = {A |
∃ e’ [e →∗ e’ & A⊑ e’]}.

Thus, an approximant (of some expression) is a approximate normal form that ap-
proximates some (intermediate) stage of execution. This notion of approximant allows
us to define what an approximation model is forFJ¢.

Definition 9 (FJ¢ Semantics). An approximation modelfor anFJ¢ program is a struc-
ture 〈℘(A),⌈⌈·⌋⌋〉, where the interpretation function⌈⌈·⌋⌋, mapping expressions to ele-
ments of the domain,℘(A), is defined by⌈⌈e⌋⌋= A (e).

As for models ofLC, our approximation semantics equates expressions which have
the same reduction behaviour, as shown by the following theorem.

Theorem 10. e →∗ e’ ⇒ A (e) = A (e’).

4 Predicate Assignment

We will now define a notion of predicate assignment which is sound and complete with
respect to the approximation semantics defined above in the sense that every predicate
assignable to an expression is also assignable to an approximant of that expression, and
vice versa. Notice that, since in approximants redexes are replaced by⊥, this result
is not an immediate consequence of subject reduction; we will see that it is the predi-
cate derivation itself which specifies the approximant in question. This relationship is
formalised in the next section.

The predicate assignment system defined below uses intersection predicates; it is in-
fluenced by the predicate system for theς-calculus as defined in [5], and can ultimately
be seen as based upon the strict intersection type system forLC (see [2] for a survey).
Our predicates describe the capabilities of an expression (or rather, the object to which
that expression evaluates) in terms of (1) the operations that may be performed on it
(i.e. accessing a field or invoking a method), and (2) theoutcomeof performing those
operations. In this way, our predicates express detailed properties about the contexts in
which expressions can be safely used.

More intuitively, our predicates capture the notion ofobservational equivalence:
two expressions with the same (non-empty) set of assignablepredicates will be obser-
vationally indistinguishable. Our predicates thus constitutesemantic predicates, so for
this reason (and also to distinguish them from the already existing Java class types) we
do not call them types.

Definition 11 (Predicates). The set ofpredicates(ranged over byφ, ψ) and its subset
of strict predicates (ranged over byσ) are defined by the following grammar (whereϕ
ranges overpredicate variables, and as for syntax C ranges over class names):

φ,ψ ::= ω | σ | φ∩ψ
σ ::= ϕ | C | 〈 f :σ〉 | 〈m:(φ1, . . . ,φn)→ σ〉 (n≥ 0)

It is possible to group information stated for an expressionin a collection of predicates
into intersectionsfrom which any specific one can be selected as demanded by the
context in which the expression appears. In particular, an intersection may combine
different (even non-unifiable) analyses of thesamefield or method.

Our predicates arestrict in the sense of [2] since they must describe the outcome of
performing an operation in terms of a(nother)singleoperation rather than an intersec-
tion. We include a predicate constant for each class, which we can use to type objects
when a more detailed analysis of the object’s fields and methods is not possible3. The
predicate constantω is a top (maximal) predicate, assignable to all expressions.

Definition 12 (Subpredicate Relation). The subpredicate relationP is the smallest
preorder satisfying the following conditions:

φ P ω for all φ φ∩ψ P φ
φ P ψ & φ P ψ′ ⇒ φ P ψ∩ψ′ φ∩ψ P ψ

We write∼ for the equivalence relation generated byP, extended by

σ ∼ σ′ ⇒ 〈 f :σ〉 ∼ 〈 f :σ′〉
∀i ∈ n[φ′i ∼ φ′i] & σ ∼ σ′ ⇒ 〈m: (φ1, . . . ,φn)→ σ〉 ∼ 〈m: (φ′1, . . . ,φ

′
n)→ σ′〉

We consider predicates modulo∼; in particular, all predicates in an intersection are
different andω does not appear in an intersection. It is easy to show that∩ is associative,
so we writeσ1∩ . . .∩σn (wheren≥ 2) to denote a general intersection.

3 This may be because the object does not contain any fields or methods (as is the case for
Object) or more generally because no fields or methods can be safely invoked.

(VAR) : (φ P σ)
Π,x:φ ⊢ x:σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ
(JOIN) :

Π ⊢ e :σ1 . . . Π ⊢ e :σn
(n≥ 2)

Π ⊢ e :σ1∩ . . . ∩σn

(ω) : Π ⊢ e :ω (INVK) :
Π ⊢ e :〈m:(φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = fn, i ∈ n, φi P σ,φi 6= ω)
Π ⊢ new C(en) :〈 fi :σ〉

(NEWM) :
{this:ψ, x1:φ1, . . . , xn:φn} ⊢ eb :σ Π ⊢ new C(e) :ψ

(M b(C,m) = (xn,eb))
Π ⊢ new C(e) :〈m: (φn)→ σ〉

Fig. 1. Predicate Assignment forFJ¢

Definition 13 (Predicate Environments). 1. A predicate statementis of the form
e:φ, wheree is called thesubjectof the statement.

2. An environmentΠ is a set of predicate statements with (distinct) variables as sub-
jects;Π,x:φ stands forΠ∪{x:φ} wherex does not appear inΠ.

3. If Πn is a sequence of environments, then
⋂

Πn is the environment defined as fol-
lows: x:φ1∩ . . .∩φm ∈

⋂
Πn if and only if {x:φ1, . . . ,x:φm} is the non-empty set of

all statements in the union of the environments that havex as the subject.

We will now define our notion of intersection predicate assignment, which is a slight
variant of the system defined in [8]:

Definition 14 (Predicate Assignment). Predicate assignment forFJ¢ is defined by the
natural deduction system given in Fig. 1. The rules in fact operate on the larger set of
approximants, but for clarity we abuse notation slightly and use the meta-variablee for
expressions rather thana. Note that there is no special rule for typing⊥, meaning that
the only predicate which may be assigned to (a subterm containing)⊥ is ω.

The rules of our predicate assignment system are fairly straightforward general-
isations of the rules of the strict intersection type assignment system forLC to OO:
e.g. (FLD) and (INVK) are analagous to(→E); (NEWF) and (NEWM) are a form of
(→I); and (OBJ) can be seen as a universal(ω)-like rule for objectsonly. The only
non-standard rule from the point of view of similar work for term rewriting and tra-
ditional nominalOO type systems is(NEWM), which derives a predicate for an object
that presents an analysis of a method. It makes sense howeverwhen viewed as an ab-
straction introduction rule. Like the correspondingLC typing rule(→I), the analysis
involves typing the body of the abstraction (i.e. the method body), and the assumptions
(i.e. requirements) on the formal parameters are encoded in the derived predicate (to be
checked on invocation). However, a method body may also makerequirements on the
receiver, through the use of the variablethis. In our system we check that these holdat
the same timeas typing the method body (so-calledearly self typing). This checking of
requirements on the object itself is where the expressive power of our system resides.
If a method calls itself recursively, this recursive call must be checked, but – crucially

– carries adifferentpredicate if a valid derivation is to be found. Thus only recursive
calls which terminate at a certain point (i.e.which can be assignedω, and thus ignored)
will be permitted by the system.

As is standard for intersection type assignment systems, our system exhibits both
subject reductionandsubject expansion; the proof is standard.

Theorem 15 (Subject reduction and expansion).Let e → e’; then Π ⊢ e’ :φ if and
only if Π ⊢ e :φ.

5 Linking Predicates with Semantics: the Approximation Result

We will now describe the relationship between the predicatesystem and the approx-
imation semantics, which is expressed through anapproximation theorem: this states
that for every predicate-able approximant of an expression, the same predicate can be
assigned to the expression itself, and vice-versa:Π ⊢ e :φ ⇔ ∃ A ∈ A (e) [Π ⊢ A :φ]. As
for other systems [3, 7], this result is a direct consequenceof the strong normalisability
of derivation reduction: the structure of the normal form ofa given derivation exactly
corresponds to the structure of the approximant. As we see below, this implies that
predicate-ability provides a sufficient condition for the (head) normalisation ofexpres-
sions, i.e. a terminationanalysis forFJ¢; it also immediately puts into evidence that
predicate assignment is undecidable.

Since reduction on expressions isweak, we need to consider derivation reduction,
as in [7]. For lack of space, we will skip the details of this reduction; suffice to say that
it is essentially a form of cut-elimination on predicate derivations, defined through the
following two basic ‘cut’ rules:

D1

Π ⊢ e1 :φ1 . . .

Dn

Π ⊢ en :φn

Π ⊢ new C(en) :〈 fi :σ〉

Π ⊢ new C(en). fi :σ

→D

D i

Π ⊢ ei :σ

..

.

Db

this:ψ,x1:φ1, . . . ,xn:φn ⊢ eb :σ
Dself

Π ⊢ new C(e′) :ψ
Π ⊢ new C(e′) :〈m:(φn)→ σ〉 D1

Π ⊢ e1 :φ1 . . .

Dn

Π ⊢ en :φn

Π ⊢ new C(e’).m(en) :σ →D

Db
S

Π ⊢ eb
S :σ

whereDb
S is the derivation obtained fromDb by replacing all sub-derivations of the

form 〈VAR〉 :: Π,xi :φi ⊢ xi :σ by (a sub-derivation of4) D i , and sub-derivations of the
form 〈VAR〉 :: Π,this:ψ ⊢ this :σ by (a sub-derivation of)Dself. Similarly, eb

S is the
expression obtained fromeb by replacing each variablexi by the expressionei , and the
variablethis by new C(e’). This reduction creates exactly the derivation for a contrac-
tum as suggested by the proof of the subject reduction, but isexplicit in all its details,
which gives the expressive power to show the approximation result.

4 Note thatφi could be an intersection, containingσ.

Notice that sub-derivations of the form〈ω〉 :: Π ⊢ e :ω do not reduce (althoughe
might) - they are already in normal form with respect to derivation reduction. This is
crucial for the strong normalisation result, since it decouples the reduction of a deriva-
tion from the possibly infinite reduction sequence of the expression which it assigns a
predicate to.

This notion of derivation reduction is not onlysound(i.e. produces valid deriva-
tions) but, most importantly, we have that it corresponds toreduction on expressions.

Theorem 16 (Soundness of Derivation Reduction).If D :: Π ⊢ e :φ andD →D D
′,

thenD ′ is a well-defined derivation, in that there exists somee’ such thatD ′ :: Π ⊢ e’ :φ,
ande → e’.

The key step in showing the approximation result is proving that this notion of
derivation reduction is terminating,i.e. strongly normalising. In other words, all deriva-
tions have anormal formwith respect to→D. Our proof uses the well-known technique
of computability[26]; the formal definition of theComp(D) predicate is, as standard,
defined inductively over the structure of predicates:

Definition 17 (Computability). The set ofcomputablederivations is defined as the
smallest set satisfying the following conditions (whereComp(D) denotes thatD is a
member of the set of computable derivations):

1. Comp(〈ω〉 :: Π ⊢ e :ω).
2. Comp(D :: Π ⊢ e :ϕ)⇔ SN(D :: Π ⊢ e :ϕ).
3. Comp(D :: Π ⊢ e :C)⇔ SN(D :: Π ⊢ e :C).

4. Comp(D :: Π ⊢ e : 〈 f :σ〉)⇔ Comp(〈D ,FLD〉 :: Π ⊢ e. f :σ).
5. Comp(D :: Π ⊢ e : 〈m:(φn)→ σ〉)⇔

∀D n [∀ i ∈ n [Comp(D i :: Πi ⊢ ei :φi)]⇒
Comp(〈D ′

,D
′
1, . . . ,D

′
n, INVK 〉 :: Π′ ⊢ e.m(en) :σ)]

whereD ′ = D [Π′ P Π] andD ′
i = D i [Π′ P Πi] for eachi ∈ n with Π′ =

⋂
Π ·Πn,

andD [Π′ P Π] denotes a derivation of exactly the same shape asD in which the
environmentΠ is replaced withΠ′ in each statement of the derivation.

6. Comp(〈D1, . . . ,Dn, JOIN〉 :: Π ⊢ e :σ1∩ . . .∩σn)⇔∀ i ∈ n [Comp(D i)].

As can be expected, we show that computable derivations are strongly normalising, and
that all valid derivations are computable.

Theorem 18. 1. Comp(D :: Π ⊢ e :φ) ⇒ SN(D :: Π ⊢ e :φ) .
2. D :: Π ⊢ e :φ ⇒ Comp(D :: Π ⊢ e :φ)

Then the key step to the approximation theorem follows directly.

Theorem 19 (Strong Normalisation). If D :: Π ⊢ e :φ thenSN(D).

Finally, the following two properties of approximants and predicate assignment lead
to the approximation result itself.

Lemma 20. 1. If D :: Π ⊢ a :φ anda ⊑ a’ then there exists a derivationD ′ :: Π ⊢ a’ :φ.

2. If D :: Π ⊢ e :φ andD is in normal form with respect to→D, then there existsA
andD ′ such thatA⊑ e andD ′ :: Π ⊢ A :φ.

The first of these two properties simply states the soundnessof predicate assignment
with respect to the approximation relation. The second is the more interesting, since it
expresses the relationship between the structure of a derivation and the approximant.
The derivationD ′ is constructed fromD by replacing sub-derivations of the form〈ω〉 ::
Π ⊢ e :ω by 〈ω〉 :: Π ⊢ ⊥ :ω (thus covering any redexes appearing ine). SinceD is in
normal form, there are also no redexes that carry a non-trivial predicate, ensuring that
the expression in the conclusion ofD ′ is a (normal) approximant. The ‘only if’ part of
the approximation result itself then follows easily from the fact that→D corresponds
to reduction of expressions, soA is also anapproximantof e. The ‘if’ part follows from
the first property above and subject expansion.

Theorem 21 (Approximation). Π ⊢ e :φ iff there existsA ∈ A (e) such thatΠ ⊢ A :φ.

In other intersection type systems [3, 7], the approximation theorem underpins char-
acterisation results for various forms of termination. Like theLC (and in contrast to the
system in [7] forTRS) our predicate system gives afull characterisationof normalisabil-
ity. So predicate-ability gives a guarantee of terminationsince our normal approximate
forms of Definition 5 correspond in structure to expressionsin (head) normal form.

Definition 22 ((Head-)Normal Forms). 1. The set of expressions inhead-normal
form (ranged over byH) is defined by:

H ::= x | new C(e) | H. f | H.m(e) (H 6= new C(e))

2. The set of expressions innormal form(ranged over byN) is defined by:

N ::= x | new C(N) | N. f | N.m(N) (N 6= new C(N))

Notice that the difference between these two notions sits inthe second and fourth
alternative, where head-normal forms allow arbitrary expressions to be used.

Lemma 23. 1. If A 6=⊥ andA⊑ e, thene is a head-normal form.
2. If A⊑ e andA does not contain⊥, thene is a normal form.

Thus any predicate, or, more accurately, any predicate derivation other than those of
the form〈ω〉 :: Π ⊢ e :ω (which correspond to the approximant⊥) specifies the structure
of a (head) normal form via the normal form of its derivation.

Definition 24. 1. A derivation isstrong if it contains no instances of the rule(ω).
2. If the only instances of the(ω) rule in a derivation are those typing the arguments

to method invocations, then we say it isω-safe.
3. For a predicate environmentΠ, if for all x:φ ∈ Π eitherφ = ω or φ does not contain

ω at all, then we sayΠ is ω-safe.

From the approximation result, the following normalisability guarantees are easily
achieved.

Theorem 25 (Normalisation). 1. Π ⊢ e :σ if and only if e has a head-normal form.
2. D :: Π ⊢ e :σ with ω-safeD andΠ only if e has a normal form.
3. D :: Π ⊢ e :σ with D strong if and only ife is strongly normalisable.

Notice that we currently do not have an ‘if and only if’ resultfor Theorem 25(2),
whereas terms with normal formscan be completely characterised inLC. This is be-
cause derivation expansion does not preserveω-safety in general. To see why this is the
case consider that while anω-safe derivation may exist forΠ ⊢ ei :σ, noω-safe deriva-
tion may exist forΠ ⊢ new C(en). fi :σ (due to non-termination in the other expressions
e j) even though this expression has the same normal form asei .

6 Expressivity

In this section we consider the formal expressivity of ourOO calculus and predicate sys-
tem. We show thatFJ¢ is Turing complete by considering an encoding of Combinatory
Logic (CL). Through the approximation result of the previous sectionall normal forms
of theCL program can be assigned a non-trivial predicate in our system. Thus, we have
a predicate-based characterisation of all (terminating) computable functions inOO.

Combinatory Logic is a model of computation defined by H. Curry [16] indepen-
dently ofLC. It defines a higher-order term rewriting system over of the function sym-
bols{S,K } and the following rewrite rules:

K x y → x
S x y z → x z(y z)

Our encoding ofCL in FJ¢ is based on acurryfied first-order versionof the system above
(see [6] for details), where the rules forS andK are expanded so that each new rewrite
rule has asingleoperand, allowing for the partial application of function symbols. Ap-
plication, the basic engine of reduction in term rewriting systems, is modelled via the
invocation of a method namedapp belonging to aCombinator interface. Since we do
not have interfaces proper inFJ¢, we have defined aCombinator class but left the body
of theapp method unspecified to indicate that in a full-blown Java program this would
be an interface. The reduction rules of curryfiedCL each apply to (or are ‘triggered’
by) different ‘versions’ of theS andK combinators; in our encoding these rules are
implemented by the bodies of five different versions of theapp method which are each
attached to different subclasses (i.e.different versions) of theCombinator class.

Definition 26. The encoding of Combinatory Logic (CL) into theFJ¢ programOOCL

(Object-OrientedCL) is defined using the class table in Figure 2 and the function⌈⌈·⌋⌋

which translates terms ofCL into FJ¢ expressions, and is defined as follows:

⌈⌈x⌋⌋ = x ⌈⌈t1t2⌋⌋ = ⌈⌈t1⌋⌋.app(⌈⌈t2⌋⌋)

⌈⌈K⌋⌋ = new K1() ⌈⌈S⌋⌋ = new S1()

The reduction behaviour ofOOCL mirrors that ofCL.

Theorem 27. For CL termst1, t2: t1 →∗ t2 if and only if⌈⌈t1⌋⌋ →∗ ⌈⌈t2⌋⌋.

class Combinator extends Object {

Combinator app(Combinator x) { return this; } }

class K1 extends Combinator {

Combinator app(Combinator x) { return new K2(x); } }

class K2 extends K1 { Combinator x;

Combinator app(Combinator y) { return this.x; } }

class S1 extends Combinator {

Combinator app(Combinator x) { return new S2(x); } }

class S2 extends S1 { Combinator x;

Combinator app(Combinator y) { return new S3(this.x, y); } }

class S3 extends S2 { Combinator y;

Combinator app(Combinator z) {

return this.x.app(z).app(this.y.app(z)); } }

Fig. 2. The class table for Object-Oriented Combinatory Logic (OOCL) programs

Given the Turing completeness ofCL, this result shows that our model of class-
basedOO is also Turing complete. Although this certainly does not come as a surprise,
it is a nice formal property for our calculus to have. In addition, our predicate system
can perform the same ‘functional’ analysis asITD does forLC andCL. This is illustrated
by atype preservationresult. We focus on Curry’s type system forCL and show we can
give equivalent types toOOCL programs.

Definition 28 (Curry Types). The set ofsimple typesis defined by the grammar:

τ ::= ϕ | τ → τ

Definition 29 (Curry Type Assignment for CL). 1. A basisB is a set of statements
of the formx:τ in which each of the variablesx is distinct.

2. Simple types are assigned toCL-term using the following natural deduction system:

(VAR) : (x:τ ∈ B)
B ⊢CL x:τ (→E) :

B ⊢CL t1:τ → τ′ B ⊢CL t2:τ

B ⊢CL t1t2:τ′

(K) : B ⊢CL K :τ → τ′ → τ (S) : B ⊢CL S:(τ → τ′ → τ′′)→ (τ → τ′)→ τ → τ′′

To show type preservation, we first define what the equivalentof Curry’s types are
in terms of predicates.

Definition 30 (Type Translation). The function⌈⌈·⌋⌋, which transforms Curry types
into predicates5, is defined as follows:

⌈⌈ϕ⌋⌋ = ϕ
⌈⌈τ → τ′⌋⌋ = 〈app :⌈⌈τ⌋⌋ → ⌈⌈τ′⌋⌋〉

It is extended to bases by:⌈⌈B⌋⌋= {x:⌈⌈τ⌋⌋ | x:τ ∈ B}.

5 Note we haveoverloadedthe notation⌈⌈·⌋⌋, which we also use for the translation ofCL terms
to FJ¢ expressions.

We can now show the following type preservation result.

Theorem 31 (Preservation of Types). If B ⊢CL t:τ then⌈⌈B⌋⌋ ⊢ ⌈⌈t⌋⌋ :⌈⌈τ⌋⌋.

Furthermore, since the well-known encoding of theLC into CL preserves typeability,
we also have a type-preserving encoding ofLC into FJ¢; it is straightforward to extend
this preservation result to full-blown strict intersection types. We stress that this result
really demonstrates the validity of our approach. Indeed, our predicate system actually
has more power than intersection type systems forCL, since there not all normal forms
are typeable using strict types, whereas in our system they are.

Lemma 32. If e is a⊥-free approximate normal form ofOOCL, then there areω-safe
D andΠ and strict predicateσ such thatD :: Π ⊢ e :σ.

Since our system has a subject expansion property (andω-safe typeability is pre-
served under expansion for the images ofCL terms inOOCL), this leads to a complete
characterisation of termination forOOCL.

Theorem 33. Let e be an expression such thate = ⌈⌈t⌋⌋ for someCL term t; thene has
a normal form if and only if there areω-safeD andΠ and strict predicateσ such that
D :: Π ⊢ e :σ.

7 Some Observations

In this paper we have shown how theITD approach can be applied to class-basedOO,
preserving the main expected properties of intersection type systems. There are however
some notable differences between our type system and previous work onLC andTRS

upon which our research is based.
Firstly, we point out that when considering the encoding ofCL (and via that,LC) in

FJ¢, our system providesmorethan the traditional analysis of terms as functions: there
are untypeableLC and CL terms which have typeable images inOOCL. Let δ be the
following CL term:S (S K K) (S K K). Notice thatδ δ →∗ δ δ, i.e. it is unsolvable,
and thus can only be given the typeω (this is also true for⌈⌈δ δ⌋⌋). Now, consider the
termt=S(K δ) (K δ). Notice that it is a normal form (⌈⌈t⌋⌋ has a normal form also), but
that for any termt′, S (K δ) (K δ) t′ →∗ δ δ. In a strict system, no functional analysis
is possible fortsinceφ → ω is not a type and so the only way we can type this term is
usingω6. In our type system however we may assign several forms of predicate to⌈⌈t⌋⌋.
Most simply we can derive/0 ⊢ ⌈⌈t⌋⌋ :S3, but even though a ‘functional’ analysis via the
app method is impossible, it is still safe to access the fields of the value resulting from
⌈⌈t⌋⌋ – both /0 ⊢ ⌈⌈t⌋⌋ :〈x :K2〉 and /0 ⊢ ⌈⌈t⌋⌋ :〈y :K2〉 are also easily derivable statements. In
fact, we can derive even more informative types: the expression ⌈⌈K δ⌋⌋ can be assigned
predicates of the formσKδ = 〈app :(σ1)→ 〈app : (σ2∩〈app :(σ2)→ σ3〉)→ σ3〉〉, and
so we can also assign〈x :σKδ〉 and〈y :σKδ〉 to ⌈⌈t⌋⌋. Notice that the equivalentλ-term
to tis λy.(λx.xx)(λx.xx), which is aweakhead normal form without a (head) normal

6 In other intersection type systems (e.g.[11]) φ → ω is a permissible type, but is equivalent to
ω (that isω ≤ (φ → ω) ≤ ω) and so semantics based on these type systems identify termsof
typeφ → ω with unsolvable terms.

form. The ‘functional’ view is that such terms are observationally indistinguishable
from unsolvable terms. When encoded inFJ¢ however, our type system shows that these
terms become meaningful (head-normalisable).

The second observation concernsprincipal types. In theLC, each normal form
has auniquemost-specific type:i.e. a type from which all the other assignable types
may be generated. This property is important for practical type inference. Our in-
tersection type system forFJ¢ does not have such a property. Consider the follow-
ing program:class C extends Object {C m() {return new C();}}. The expression
new C() is a normal form, and so we can assign it a non-trivial predicate, but observe
that the set of all predicates which may be assigned to this expression is theinfinite
set{C,〈m :()→ C〉,〈m :()→ 〈m : ()→ C〉〉, . . .}. None of these types may be considered
themostspecific one, since whichever predicate we pick we can alwaysderive a more
informative (larger) one. On the one hand, this is exactly what we want: we may make
a series of any finite number of calls to the methodm and this is expressed by the
predicates. On the other hand, this seems to preclude the possibility of practical type
inference for our system. Notice however that these predicates are not unrelated to one
another: they each approximate the ‘infinite’ predicate〈m :()→ 〈m :()→ . . .〉〉, which
can be finitely represented by the recursive typeµX.〈m : ()→ X〉. This type concisely
captures the reduction behaviour ofnew C(), showing that when we invoke the method
m on it we again obtain our original term. InLC such families of types arise in con-
nection with fixed point operators. This is not a coincidence: the classC wasrecursively
defined, and in the face of such self-reference it is not then suprising that this is reflected
in our type analysis.

8 Conclusions & Future Work

We have considered an approximation-based denotational semantics for class-basedOO

programs and related this to a predicate-based semantics defined using an intersection
type approach. Our work shows that the techniques and strongresults of this approach
can be transferred straightforwardly from other programming formalisms (i.e. LC and
term rewriting systems) to theOO paradigm. Through characterisation results we have
shown that our predicate system is powerful enough (at leastin principle) to form the
basis for expressive analyses ofOO programs.

Our work has also highlighted where theOO programming style differs from its
functional cousin. In particular we have noted that becauseof the OO facility for self-
reference, it is no longer the case that all normal forms have a most-specific (or prin-
cipal) type. The types assignable to such normal forms do however seem to be repre-
sentable using recursive definitions. This observation futher motivates and strengthens
the case (by no means a new concept in the analysis ofOO) for the use of recursive types
in this area. Some recent work [22] shows that a restricted but still highly expressive
form of recursive types can still characterise strongly normalising terms, and we hope
to fuse this approach with our own to come to an equally precise but more concise and
practical predicate-based treatment ofOO.

We would also like to reintroduce more features of full Java back into our calculus,
to see if our system can accommodate them whilst maintainingthe strong theoretical

properties that we have shown for the core calculus. For example, similar toλµ [23],
it seems natural to extend our simply typed system to analysethe exception handling
features of Java.

References

1. M. Abadi and L. Cardelli.A Theory of Objects. Springer Verlag, 1996.
2. S. van Bakel. Intersection Type Assignment Systems.TCS, 151(2):385–435, 1995.
3. S. van Bakel. Cut-Elimination in the Strict IntersectionType Assignment System is Strongly

Normalising.NDJFL, 45(1):35–63, 2004.
4. S. van Bakel. Completeness and Partial Soundness Resultsfor Intersection & Union Typing

for λµµ̃. APAL, 161:1400–1430, 2010.
5. S. van Bakel and U. de’Liguoro. Logical equivalence for subtyping object and recursive

types.ToCS, 42(3):306–348, 2008.
6. S. van Bakel and M. Fernández. Normalisation Results for Typeable Rewrite Systems.IaC,

2(133):73–116, 1997.
7. S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combi-

nator Systems.TCS, 290:975–1019, 2003.
8. S. van Bakel and R. Rowe. Semantic Predicate Types for Class-based Object Oriented Pro-

gramming. InFTfJP’09, 2009.
9. A. Banerjee and T.P. Jensen. Modular Control-Flow Analysis with Rank 2 Intersection

Types.MSCS, 13(1):87–124, 2003.
10. H. Barendregt.The Lambda Calculus: its Syntax and Semantics. North-Holland, 1984.
11. H. Barendregt, M. Coppo, and M Dezani-Ciancaglini. A filter lambda model and the com-

pleteness of type assignment.JSL, 48(4):931–940, 1983.
12. L. Cardelli and J.C. Mitchell. Operations on Records.MSCS, 1(1):3–48, 1991.
13. L. Cardelli. A Semantics of Multiple Inheritance.IaC, 76(2/3):138–164, 1988.
14. M. Coppo and M Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for

theλ-Calculus.NDJFL, 21(4):685–693, 1980.
15. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.
16. H.B. Curry. Grundlagen der Kombinatorischen Logik.AJM, 52:509–536, 789–834, 1930.
17. F. Damiani and F. Prost. Detecting and Removing Dead-Code using Rank 2 Intersection. In

TYPES’96, LNCS 1512, pp 66–87, 1998.
18. K. Fisher, F. Honsell, and J.C. Mitchell. A lambda Calculus of Objects and Method Special-

ization. NJ, 1(1):3–37, 1994.
19. A. Igarashi, B.C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java

and GJ.ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
20. T.P. Jensen. Types in Program Analysis. In LNCS 2566, pp 204–222. Springer, 2002.
21. J.C. Mitchell. Type Systems for Programming Languages.In Handbook of TCS, volume B,

chapter 8, pages 415–431, 1990.
22. Hiroshi Nakano. A Modality for Recursion. InLICS, pages 255–266, 2000.
23. M. Parigot. An algorithmic interpretation of classicalnatural deduction. InLPAR’92, LNCS

624, pp 190–201, 1992.
24. G.D. Plotkin. The origins of structural operational semantics.JLAP, 60-61:3–15, 2004.
25. D. Scott. Domains for Denotational Semantics. InICALP’82, LNCS 140, pp 577–613, 1981.
26. W.W. Tait. Intensional interpretation of functionals of finite type I. JSL, 32(2):198–223,

1967.
27. C.P. Wadsworth. The relation between computational anddenotational properties for Scott’s

D∞-models of the lambda-calculus.SIAM J. Comput, 5:488–521, 1976.

