
Approximation Semantics
and

Expressive Predicate Assignment
for

Object-Oriented Programming
R.N.S. Rowe and S.J. van Bakel

Department of Computing

Imperial College London

⊢ FJ¢ TLCA 2011, Jun 01 1/17

Summary

We study FJ¢, Featherweight Java without casts.

FJ is a restriction of Java defined by removing all but the most essential features of

the full language; FJ bears a similar relation to Java as the λ-calculus does to

languages such as ML and Haskell.

We study two semantics for FJ:

• An approximation model;

• An (intersection) type-based model.

We define these because we want to define semantics-based systems of abstract

interpretation for Java.

We will (in future work) extend FJ¢ with the usual (imperative) features, working

towards Java.

⊢ FJ¢ TLCA 2011, Jun 01 2/17

FJ¢ Syntax

FJ¢ programs P consist of a class table CT , comprising the class declarations, and

an expression e to be run (cf. the body of the main method in a real Java program).

They are defined as a variant of Featherweight Java:

⊢ FJ¢ TLCA 2011, Jun 01 3/17

FJ¢ Syntax

FJ¢ programs P consist of a class table CT , comprising the class declarations, and

an expression e to be run (cf. the body of the main method in a real Java program).

They are defined as a variant of Featherweight Java:

e ::= x | this | new C(e) | e. f | e.m(e)

⊢ FJ¢ TLCA 2011, Jun 01 3/17

FJ¢ Syntax

FJ¢ programs P consist of a class table CT , comprising the class declarations, and

an expression e to be run (cf. the body of the main method in a real Java program).

They are defined as a variant of Featherweight Java:

e ::= x | this | new C(e) | e. f | e.m(e)

fd ::= C f;

⊢ FJ¢ TLCA 2011, Jun 01 3/17

FJ¢ Syntax

FJ¢ programs P consist of a class table CT , comprising the class declarations, and

an expression e to be run (cf. the body of the main method in a real Java program).

They are defined as a variant of Featherweight Java:

e ::= x | this | new C(e) | e. f | e.m(e)

fd ::= C f;

md ::= D m(C1 x1, . . . , Cn xn) {return e;}

⊢ FJ¢ TLCA 2011, Jun 01 3/17

FJ¢ Syntax

FJ¢ programs P consist of a class table CT , comprising the class declarations, and

an expression e to be run (cf. the body of the main method in a real Java program).

They are defined as a variant of Featherweight Java:

e ::= x | this | new C(e) | e. f | e.m(e)

fd ::= C f;

md ::= D m(C1 x1, . . . , Cn xn) {return e;}

cd ::= class C extends C′ { fd md} (C 6= Object)

CT ::= cd

P ::= (CT ,e)

⊢ FJ¢ TLCA 2011, Jun 01 3/17

FJ¢ Syntax

FJ¢ programs P consist of a class table CT , comprising the class declarations, and

an expression e to be run (cf. the body of the main method in a real Java program).

They are defined as a variant of Featherweight Java:

e ::= x | this | new C(e) | e. f | e.m(e)

fd ::= C f;

md ::= D m(C1 x1, . . . , Cn xn) {return e;}

cd ::= class C extends C′ { fd md} (C 6= Object)

CT ::= cd

P ::= (CT ,e)

1. The function F (C) returns the list of fields f n belonging to class C (including

those it inherits).

2. The function Mb(C,m) returns a tuple (x ,e), consisting of a sequence of the

method m’s formal parameters and its body (as present in the class C).
⊢ FJ¢ TLCA 2011, Jun 01 3/17

Reduction
As usual, computation is modelled via a reduction relation on expressions.

⊢ FJ¢ TLCA 2011, Jun 01 4/17

Reduction
As usual, computation is modelled via a reduction relation on expressions.

• A term substitution S = {x1 7→e1, . . . ,xn 7→en} is defined as a map on

expressions that replaces all occurrences of the variables xi by the expressions

ei. We write eS for S(e).

⊢ FJ¢ TLCA 2011, Jun 01 4/17

Reduction
As usual, computation is modelled via a reduction relation on expressions.

• A term substitution S = {x1 7→e1, . . . ,xn 7→en} is defined as a map on

expressions that replaces all occurrences of the variables xi by the expressions

ei. We write eS for S(e).

• The reduction relation → is defined as the contextual closure of:

⊢ FJ¢ TLCA 2011, Jun 01 4/17

Reduction
As usual, computation is modelled via a reduction relation on expressions.

• A term substitution S = {x1 7→e1, . . . ,xn 7→en} is defined as a map on

expressions that replaces all occurrences of the variables xi by the expressions

ei. We write eS for S(e).

• The reduction relation → is defined as the contextual closure of:

− new C(en). fi → ei, for class name C with F (C) = f n and i ∈ n.

⊢ FJ¢ TLCA 2011, Jun 01 4/17

Reduction
As usual, computation is modelled via a reduction relation on expressions.

• A term substitution S = {x1 7→e1, . . . ,xn 7→en} is defined as a map on

expressions that replaces all occurrences of the variables xi by the expressions

ei. We write eS for S(e).

• The reduction relation → is defined as the contextual closure of:

− new C(en). fi → ei, for class name C with F (C) = f n and i ∈ n.

− new C(e).m(e’n)→ eS, where S = {this 7→new C(e),
x1 7→e’1, . . . , xn 7→e’n}, for class name C and method m with

Mb(C,m) = (xn,e).

This notion of reduction is confluent.

⊢ FJ¢ TLCA 2011, Jun 01 4/17

Approximants for FJ¢

Following the standard concept, we define the notion of approximant for FJ¢ by

replacing (possibly) active computations in expressions with ⊥.

The set of approximate normal forms, A, ranged over by A, is defined by the

following grammar (extending expressions with ⊥):

A ::= x | this | ⊥ | new C(An) (n ≥ 0)

| A. f | A.m(A) (A 6= ⊥, A 6= new C(An))

Notice that all these expressions cannot be reduced - they are in normal form.

⊢ FJ¢ TLCA 2011, Jun 01 5/17

Approximants for FJ¢

Following the standard concept, we define the notion of approximant for FJ¢ by

replacing (possibly) active computations in expressions with ⊥.

The set of approximate normal forms, A, ranged over by A, is defined by the

following grammar (extending expressions with ⊥):

A ::= x | this | ⊥ | new C(An) (n ≥ 0)

| A. f | A.m(A) (A 6= ⊥, A 6= new C(An))

Notice that all these expressions cannot be reduced - they are in normal form.

We consider ⊥. f not in normal form: it can be that ⊥ hides an expression that

reduces to an object new C(An), in which case the field invocation can run, so

disappears.

⊢ FJ¢ TLCA 2011, Jun 01 5/17

Approximation Semantics

The approximation relation ⊑ is an order on terms defined by taking ⊥ to be smaller

(i.e. containing less information) than any other term, and by extending this to a

relation between all terms:

⊥ ⊑ A

A⊑ A’ & ∀i ≤ n Ai ⊑ A’i ⇒











A. f ⊑ A’. f

new C(An) ⊑ new C(A’n)

A.m(An) ⊑ A’.m(A’n)

⊢ FJ¢ TLCA 2011, Jun 01 6/17

Approximation Semantics

The approximation relation ⊑ is an order on terms defined by taking ⊥ to be smaller

(i.e. containing less information) than any other term, and by extending this to a

relation between all terms:

⊥ ⊑ A

A⊑ A’ & ∀i ≤ n Ai ⊑ A’i ⇒











A. f ⊑ A’. f

new C(An) ⊑ new C(A’n)

A.m(An) ⊑ A’.m(A’n)

The relationship between ⊑ and reduction is: If A⊑ e and e →∗ e’, then A⊑ e’.

⊢ FJ¢ TLCA 2011, Jun 01 6/17

Approximation Semantics

The approximation relation ⊑ is an order on terms defined by taking ⊥ to be smaller

(i.e. containing less information) than any other term, and by extending this to a

relation between all terms:

⊥ ⊑ A

A⊑ A’ & ∀i ≤ n Ai ⊑ A’i ⇒











A. f ⊑ A’. f

new C(An) ⊑ new C(A’n)

A.m(An) ⊑ A’.m(A’n)

The relationship between ⊑ and reduction is: If A⊑ e and e →∗ e’, then A⊑ e’.

We define the set of approximants of e as A(e) = {A | ∃ e’ [e →∗ e’ & A⊑ e’]}.

We can show: e →∗ e’ ⇒A(e) = A(e’).

This result allows us to define a semantics for FJ¢ by interpreting expressions by the

set of their approximants: ⌈⌈e⌋⌋ =A(e).

⊢ FJ¢ TLCA 2011, Jun 01 6/17

Predicates (vs. Java types)
Our predicates describe the capabilities of an expression in terms of

1. the operations that may be performed on it (i.e. accessing a field or invoking a

method), and

2. the outcome of performing those operations.

They express detailed properties about the contexts in which expressions can be

safely used.

⊢ FJ¢ TLCA 2011, Jun 01 7/17

Predicates (vs. Java types)
Our predicates describe the capabilities of an expression in terms of

1. the operations that may be performed on it (i.e. accessing a field or invoking a

method), and

2. the outcome of performing those operations.

They express detailed properties about the contexts in which expressions can be

safely used.

The set of predicates is defined by the following grammar:

φ,ψ ::= ω | σ | φ∩ψ

σ ::= ϕ | C | 〈 f :σ〉 | 〈m : (φ1, . . . ,φn)→σ〉 (n ≥ 0)

⊢ FJ¢ TLCA 2011, Jun 01 7/17

Predicates (vs. Java types)
Our predicates describe the capabilities of an expression in terms of

1. the operations that may be performed on it (i.e. accessing a field or invoking a

method), and

2. the outcome of performing those operations.

They express detailed properties about the contexts in which expressions can be

safely used.

The set of predicates is defined by the following grammar:

φ,ψ ::= ω | σ | φ∩ψ

σ ::= ϕ | C | 〈 f :σ〉 | 〈m : (φ1, . . . ,φn)→σ〉 (n ≥ 0)

The predicate assignment relation is expressed through the standard notation

Π ⊢ e :φ, where as usual Π contains type assumptions for the variables in e.

It is defined by ...

⊢ FJ¢ TLCA 2011, Jun 01 7/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = f n, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = f n)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F(C) = fn, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Derivation Rules

(VAR) : (φ P σ)
Π,x:φ ⊢ x :σ (FLD) :

Π ⊢ e : 〈 f :σ〉

Π ⊢ e. f :σ

(ω) :
Π ⊢ e :ω

(JOIN) :
Π ⊢ e :σ1 . . . Π ⊢ e :σn

(n ≥ 2)
Π ⊢ e :σ1 ∩ . . . ∩ σn

(INVK) :
Π ⊢ e : 〈m : (φ1, . . . ,φn)→ σ〉 Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

Π ⊢ e.m(en) :σ

(NEWO) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = f n)
Π ⊢ new C(en) :C

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = f n, i ∈ n, φi = σ)
Π ⊢ new C(en) : 〈 fi :σ〉

(NEWM) :
this:ψ, x:φn ⊢ eb :σ Π ⊢ new C(e) :ψ

(Mb(C,m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

We show: if e → e’ then Π ⊢ e’ :φ ⇔ Π ⊢ e :φ; this gives a type-based semantics.
⊢ FJ¢ TLCA 2011, Jun 01 8/17

The Approximation Result
We now have two approaches to semantics: (1) the approximation model, and

(2) a type based semantics. So what is the relation between the two?

⊢ FJ¢ TLCA 2011, Jun 01 9/17

The Approximation Result
We now have two approaches to semantics: (1) the approximation model, and

(2) a type based semantics. So what is the relation between the two?

We aim to show: Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

⊢ FJ¢ TLCA 2011, Jun 01 9/17

The Approximation Result
We now have two approaches to semantics: (1) the approximation model, and

(2) a type based semantics. So what is the relation between the two?

We aim to show: Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

• If an expression e can be given a predicate φ, then there exists an approximant

A of e that has the same predicate. i.e: if we run e long enough, a stable result

will appear (with perhaps computations still going on inside) that has the same

predicate φ: predicates ‘foretell’ the shape of the result.

⊢ FJ¢ TLCA 2011, Jun 01 9/17

The Approximation Result
We now have two approaches to semantics: (1) the approximation model, and

(2) a type based semantics. So what is the relation between the two?

We aim to show: Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

• If an expression e can be given a predicate φ, then there exists an approximant

A of e that has the same predicate. i.e: if we run e long enough, a stable result

will appear (with perhaps computations still going on inside) that has the same

predicate φ: predicates ‘foretell’ the shape of the result.

• If we can give A a predicate φ, then we can give that predicate to all

expressions that have A as an approximant.

⊢ FJ¢ TLCA 2011, Jun 01 9/17

The Approximation Result
We now have two approaches to semantics: (1) the approximation model, and

(2) a type based semantics. So what is the relation between the two?

We aim to show: Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

• If an expression e can be given a predicate φ, then there exists an approximant

A of e that has the same predicate. i.e: if we run e long enough, a stable result

will appear (with perhaps computations still going on inside) that has the same

predicate φ: predicates ‘foretell’ the shape of the result.

• If we can give A a predicate φ, then we can give that predicate to all

expressions that have A as an approximant.

The proof for this property is not straightforward; the main problem is that reduction

in FJ¢ is weak. To solve it, we use a notion of derivation reduction that follows

reduction of expressions on, but reduces only those that do not have predicate ω.

⊢ FJ¢ TLCA 2011, Jun 01 9/17

Derivation Reduction
D1

Π ⊢ e1 :φ1 . . .

Dn

Π ⊢ en :φn

Π ⊢ new C(en) : 〈 fi :σ〉

Π ⊢ new C(en). fi :σ

→D

Di

Π ⊢ ei :σ

Notice that new C(en). fi → ei. We also contract:

.

.

.

.

.

.

Db

this:ψ,x1:φ1, . . . ,xn:φn ⊢ eb :σ

Dself

Π ⊢ new C(en) :ψ

Π ⊢ new C(en) : 〈m : (φn)→ σ〉

D1

Π ⊢ e1 :φ1 . . .

Dn

Π ⊢ en :φn

Π ⊢ new C(e).m(en) :σ
→D

Db
S

Π ⊢ eb
S :σ

and new C(e).m(en)→ eb, where D m(E xn){return eb;} is present in C.

⊢ FJ¢ TLCA 2011, Jun 01 10/17

Derivation Reduction is Strongly Normalising

First we show that derivation reduction is sound: If D :: Π ⊢ e :φ and D →D D′,

then D′ is a well-defined derivation, in that is there exists some e’ such that

D′ :: Π ⊢ e’ :φ, and e → e’.

⊢ FJ¢ TLCA 2011, Jun 01 11/17

Derivation Reduction is Strongly Normalising

First we show that derivation reduction is sound: If D :: Π ⊢ e :φ and D →D D′,

then D′ is a well-defined derivation, in that is there exists some e’ such that

D′ :: Π ⊢ e’ :φ, and e → e’.

We show that all reductions on derivations terminate.

D :: Π ⊢ e :φ ⇒ SN(D).

This implies that φ (or, more precisely, D) has only a finite amount of information on

the execution of e.

⊢ FJ¢ TLCA 2011, Jun 01 11/17

Derivation Reduction is Strongly Normalising

First we show that derivation reduction is sound: If D :: Π ⊢ e :φ and D →D D′,

then D′ is a well-defined derivation, in that is there exists some e’ such that

D′ :: Π ⊢ e’ :φ, and e → e’.

We show that all reductions on derivations terminate.

D :: Π ⊢ e :φ ⇒ SN(D).

This implies that φ (or, more precisely, D) has only a finite amount of information on

the execution of e.

In fact, if ω has been used in D, then all executions inside the expression that has

this predicate are invisible and will not be executed when reducing the derivation.

So in the normal form of a derivation, the expression involved need not be in normal

form.

The proof for this property is not straightforward, since typeable terms need not

terminate - we use the computability technique (Tait).

⊢ FJ¢ TLCA 2011, Jun 01 11/17

Main results
From the termination result for derivation reduction, these others follow:

Approximation result : Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

⊢ FJ¢ TLCA 2011, Jun 01 12/17

Main results
From the termination result for derivation reduction, these others follow:

Approximation result : Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

Head Normalisation : Π ⊢ e :σ if and only if e has a head-normal form.

This is very close to the approximation result: the head-normal form H
corresponds to the shape of the approximant, which is given by replacing all

subexpressions typed with ω in the derivation’s normal form by ⊥.

⊢ FJ¢ TLCA 2011, Jun 01 12/17

Main results
From the termination result for derivation reduction, these others follow:

Approximation result : Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

Head Normalisation : Π ⊢ e :σ if and only if e has a head-normal form.

This is very close to the approximation result: the head-normal form H
corresponds to the shape of the approximant, which is given by replacing all

subexpressions typed with ω in the derivation’s normal form by ⊥.

Normalisation : D :: Π ⊢ e :σ with ω-safe D and Π only if e has a normal form.

If ω is used in D only for arguments in method invocations, then it is possible to

run e to a result.

⊢ FJ¢ TLCA 2011, Jun 01 12/17

Main results
From the termination result for derivation reduction, these others follow:

Approximation result : Π ⊢ e :φ ⇔ ∃A ∈ A(e) [Π ⊢ A :φ].

Head Normalisation : Π ⊢ e :σ if and only if e has a head-normal form.

This is very close to the approximation result: the head-normal form H
corresponds to the shape of the approximant, which is given by replacing all

subexpressions typed with ω in the derivation’s normal form by ⊥.

Normalisation : D :: Π ⊢ e :σ with ω-safe D and Π only if e has a normal form.

If ω is used in D only for arguments in method invocations, then it is possible to

run e to a result.

Strong Normalisation : D :: Π ⊢ e :σ with D strong if and only if e is strongly

normalisable.

If ω is not used at all in D, then all executions of e will produce a result.

⊢ FJ¢ TLCA 2011, Jun 01 12/17

Expressivity

We compare our work to previous results (and show that FJ¢ is Turing complete) by

considering an encoding of the SK Combinatory Logic (CL) in FJ¢:

K x y → x

S x y z → x z (y z)

⊢ FJ¢ TLCA 2011, Jun 01 13/17

Expressivity

We compare our work to previous results (and show that FJ¢ is Turing complete) by

considering an encoding of the SK Combinatory Logic (CL) in FJ¢:

K x y → x

S x y z → x z (y z)

The encoding of CL into the FJ¢ program OOCL (Object-Oriented CL) is defined

using the class table on the next slide and the function ⌈⌈·⌋⌋ which translates terms of

CL into FJ¢ expressions, and is defined as follows:

⌈⌈x⌋⌋ = x ⌈⌈t1t2⌋⌋ = ⌈⌈t1⌋⌋.app(⌈⌈t2⌋⌋)

⌈⌈K⌋⌋ = new K0() ⌈⌈S⌋⌋ = new S0()

If t1 → t2 in CL, then ⌈⌈t1⌋⌋→ ⌈⌈t2⌋⌋ in FJ¢.

⊢ FJ¢ TLCA 2011, Jun 01 13/17

OOCL

class Combinator extends Object {

Combinator app(Combinator x) { return this; } }

class K0 extends Combinator {

Combinator app(Combinator x) { return new K1(x); } }

class K1 extends K0 { Combinator x;

Combinator app(Combinator y) { return this.x; } }

class S0 extends Combinator {

Combinator app(Combinator x) { return new S1(x); } }

class S1 extends S0 { Combinator x;

Combinator app(Combinator y) { return new S2(this.x, y); } }

class S2 extends S1 { Combinator y;

Combinator app(Combinator z) {

return this.x.app(z).app(this.y.app(z)); } }

⊢ FJ¢ TLCA 2011, Jun 01 14/17

Type preservation

The set of simple types is defined by τ ::= ϕ | τ→τ . The basis B contains type

assumptions for variables. Simple types are assigned to CL-terms using:

(VAR) : (x:τ ∈ B)
B ⊢CL x:τ

(→E) :
B ⊢CL t1:τ→τ′ B ⊢CL t2:τ

B ⊢CL t1t2:τ
′

(K) :
B ⊢CL K:τ→τ′→τ

(S) : B ⊢CL S:(τ→τ′→τ′′)→(τ→τ′)→τ→τ′′

⊢ FJ¢ TLCA 2011, Jun 01 15/17

Type preservation

The set of simple types is defined by τ ::= ϕ | τ→τ . The basis B contains type

assumptions for variables. Simple types are assigned to CL-terms using:

(VAR) : (x:τ ∈ B)
B ⊢CL x:τ

(→E) :
B ⊢CL t1:τ→τ′ B ⊢CL t2:τ

B ⊢CL t1t2:τ
′

(K) :
B ⊢CL K:τ→τ′→τ

(S) : B ⊢CL S:(τ→τ′→τ′′)→(τ→τ′)→τ→τ′′

We define what the equivalent of Curry’s types are in terms of predicates.

⌈⌈ϕ⌋⌋ = ϕ

⌈⌈τ→τ′⌋⌋ = 〈app : ⌈⌈τ⌋⌋→⌈⌈τ′⌋⌋〉

⊢ FJ¢ TLCA 2011, Jun 01 15/17

Type preservation

The set of simple types is defined by τ ::= ϕ | τ→τ . The basis B contains type

assumptions for variables. Simple types are assigned to CL-terms using:

(VAR) : (x:τ ∈ B)
B ⊢CL x:τ

(→E) :
B ⊢CL t1:τ→τ′ B ⊢CL t2:τ

B ⊢CL t1t2:τ
′

(K) :
B ⊢CL K:τ→τ′→τ

(S) : B ⊢CL S:(τ→τ′→τ′′)→(τ→τ′)→τ→τ′′

We define what the equivalent of Curry’s types are in terms of predicates.

⌈⌈ϕ⌋⌋ = ϕ

⌈⌈τ→τ′⌋⌋ = 〈app : ⌈⌈τ⌋⌋→⌈⌈τ′⌋⌋〉

Then we can show: If B ⊢CL t:τ then ⌈⌈B⌋⌋ ⊢ ⌈⌈t⌋⌋ : ⌈⌈τ⌋⌋.

Let e = ⌈⌈t⌋⌋ for some CL term t; then e has a normal form if and only if there are

ω-safe D and Π and predicate σ such that D :: Π ⊢ e :σ.

⊢ FJ¢ TLCA 2011, Jun 01 15/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

→∗ new S2(new K0(),new K0()) →∗ new S2(new K0(),new S0())

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

→∗ new S2(new K0(),new K0()) →∗ new S2(new K0(),new S0())

⊢ ⌈⌈SKK⌋⌋ : 〈y :K0〉 ⊢ ⌈⌈SKS⌋⌋ : 〈y :S0〉

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

→∗ new S2(new K0(),new K0()) →∗ new S2(new K0(),new S0())

⊢ ⌈⌈SKK⌋⌋ : 〈y :K0〉 ⊢ ⌈⌈SKS⌋⌋ : 〈y :S0〉

Not all FJ¢ normal forms (or, more generally, approximants) have finite ‘principal’

types:

class C extends Object { C m() { return new C(); } }

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

→∗ new S2(new K0(),new K0()) →∗ new S2(new K0(),new S0())

⊢ ⌈⌈SKK⌋⌋ : 〈y :K0〉 ⊢ ⌈⌈SKS⌋⌋ : 〈y :S0〉

Not all FJ¢ normal forms (or, more generally, approximants) have finite ‘principal’

types:

class C extends Object { C m() { return new C(); } }

⊢ new C() :C

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

→∗ new S2(new K0(),new K0()) →∗ new S2(new K0(),new S0())

⊢ ⌈⌈SKK⌋⌋ : 〈y :K0〉 ⊢ ⌈⌈SKS⌋⌋ : 〈y :S0〉

Not all FJ¢ normal forms (or, more generally, approximants) have finite ‘principal’

types:

class C extends Object { C m() { return new C(); } }

⊢ new C() :C

⊢ new C() : 〈m : ()→ C〉

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

→∗ new S2(new K0(),new K0()) →∗ new S2(new K0(),new S0())

⊢ ⌈⌈SKK⌋⌋ : 〈y :K0〉 ⊢ ⌈⌈SKS⌋⌋ : 〈y :S0〉

Not all FJ¢ normal forms (or, more generally, approximants) have finite ‘principal’

types:

class C extends Object { C m() { return new C(); } }

⊢ new C() :C

⊢ new C() : 〈m : ()→ C〉

⊢ new C() : 〈m : ()→ 〈m : ()→ C〉〉

⊢ FJ¢ TLCA 2011, Jun 01 16/17

Some Observations
Our types extend the standard ‘functional’ view - they give a ‘structural’ one too:

SKK =CL∩ SKS ⌈⌈SKK⌋⌋ =λ ⌈⌈SKS⌋⌋

⌈⌈SKK⌋⌋ 6=OOCL ⌈⌈SKS⌋⌋

→∗ new S2(new K0(),new K0()) →∗ new S2(new K0(),new S0())

⊢ ⌈⌈SKK⌋⌋ : 〈y :K0〉 ⊢ ⌈⌈SKS⌋⌋ : 〈y :S0〉

Not all FJ¢ normal forms (or, more generally, approximants) have finite ‘principal’

types:

class C extends Object { C m() { return new C(); } }

⊢ new C() :C

⊢ new C() : 〈m : ()→ C〉

⊢ new C() : 〈m : ()→ 〈m : ()→ C〉〉

⊢ new C() : 〈m : ()→ 〈m : ()→ 〈m : ()→ C〉〉〉 etc...
⊢ FJ¢ TLCA 2011, Jun 01 16/17

Conclusions
We have defined two different semantics for a (kernel) class-based object oriented

programming language FJ¢, and stated how they relate.

We have proven all important properties for predicate assignment. Through our

predicate assignment system, we can characterise

• Head normalisation.

• Normalisation.

• Strong normalisation.

We have shown that FJ¢ is fully expressive, by mapping CL into OOCL (we could

even map the λ-calculus).

As a first exercise of how ‘handy’ our system is, we have shown that all (simply)

typeable OOCL programs terminate, and vice-versa.

⊢ FJ¢ TLCA 2011, Jun 01 17/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

Take the function length list a : b = S (length list b)

length list [] = 0

.

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

Take the function length list a : b = S (length list b)

length list [] = 0

.

Then

length list 1 : 2 : 3 →

S (length list 2 : 3) →

S (S (length list 3)) →

S (S (S (length list []))) →

S (S (S (0))) →

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

Take the function length list a : b = S (length list b)

length list [] = 0

.

Then which has the approximant

length list 1 : 2 : 3 → ⊥

S (length list 2 : 3) →

S (S (length list 3)) →

S (S (S (length list []))) →

S (S (S (0))) →

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

Take the function length list a : b = S (length list b)

length list [] = 0

.

Then which has the approximant

length list 1 : 2 : 3 → ⊥

S (length list 2 : 3) → S (⊥)

S (S (length list 3)) →

S (S (S (length list []))) →

S (S (S (0))) →

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

Take the function length list a : b = S (length list b)

length list [] = 0

.

Then which has the approximant

length list 1 : 2 : 3 → ⊥

S (length list 2 : 3) → S (⊥)

S (S (length list 3)) → S (S (⊥))

S (S (S (length list []))) →

S (S (S (0))) →

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

Take the function length list a : b = S (length list b)

length list [] = 0

.

Then which has the approximant

length list 1 : 2 : 3 → ⊥

S (length list 2 : 3) → S (⊥)

S (S (length list 3)) → S (S (⊥))

S (S (S (length list []))) → S (S (S (⊥)))

S (S (S (0))) →

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Approximants (concept)
An approximant is a (finite) description of the result of the running of a program that

will not change (the output) while the program still runs. We hide a place where

computation takes place with ⊥; we see ⊥ as representing “No information on the

computation is available here”.

Take the function length list a : b = S (length list b)

length list [] = 0

.

Then which has the approximant

length list 1 : 2 : 3 → ⊥

S (length list 2 : 3) → S (⊥)

S (S (length list 3)) → S (S (⊥))

S (S (S (length list []))) → S (S (S (⊥)))

S (S (S (0))) → S (S (S (0)))

In this case, the output is finite, and the final approximant is the end-result itself.

⊢ FJ¢ TLCA 2011, Jun 01 18/17

Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

⊢ FJ¢ TLCA 2011, Jun 01 19/17

Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

Then

primes →

sieve [2..] →

2 : sieve [3..] →

2 : 3 : sieve [5..] →

2 : 3 : 5 : sieve [7..] →
...

⊢ FJ¢ TLCA 2011, Jun 01 19/17

Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

Then which has the approximant

primes → ⊥

sieve [2..] →

2 : sieve [3..] →

2 : 3 : sieve [5..] →

2 : 3 : 5 : sieve [7..] →
...

⊢ FJ¢ TLCA 2011, Jun 01 19/17

Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

Then which has the approximant

primes → ⊥

sieve [2..] → ⊥

2 : sieve [3..] →

2 : 3 : sieve [5..] →

2 : 3 : 5 : sieve [7..] →
...

⊢ FJ¢ TLCA 2011, Jun 01 19/17

Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

Then which has the approximant

primes → ⊥

sieve [2..] → ⊥

2 : sieve [3..] → 2 : ⊥

2 : 3 : sieve [5..] →

2 : 3 : 5 : sieve [7..] →
...

⊢ FJ¢ TLCA 2011, Jun 01 19/17

Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

Then which has the approximant

primes → ⊥

sieve [2..] → ⊥

2 : sieve [3..] → 2 : ⊥

2 : 3 : sieve [5..] → 2 : 3 : ⊥

2 : 3 : 5 : sieve [7..] →
...

⊢ FJ¢ TLCA 2011, Jun 01 19/17

Sieve of Eratosthenes in Haskell

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p > 0]

Then which has the approximant

primes → ⊥

sieve [2..] → ⊥

2 : sieve [3..] → 2 : ⊥

2 : 3 : sieve [5..] → 2 : 3 : ⊥

2 : 3 : 5 : sieve [7..] → 2 : 3 : 5 : ⊥
...

...

In this case, the computation is infinite, and so is the output, and there is no final

approximant, since the “result” is never reached - ⊥ is in every approximant.

⊢ FJ¢ TLCA 2011, Jun 01 19/17

	Summary
	FJmC Syntax
	Reduction
	Approximants for FJmC
	Approximation Semantics
	Predicates (vs. Java types)
	The Derivation Rules
	The Approximation Result
	Derivation Reduction
	Derivation Reduction is Strongly Normalising
	Main results
	Expressivity
	OOCL
	Type preservation
	Some Observations
	Conclusions
	Approximants (concept)
	Sieve of Eratosthenes in {Red Haskell}

