Approximation Semantics and Expressive Predicate Assignment for Object-Oriented Programming

R.N.S. Rowe and S.J. van Bakel

Department of Computing Imperial College London

Summary

We study **FJ[¢]**, Featherweight Java without casts.

FJ is a restriction of Java defined by removing all but the most essential features of the full language; FJ bears a similar relation to Java as the λ -calculus does to languages such as ML and Haskell.

We study two semantics for FJ:

- An *approximation* model;
- An *(intersection) type-based* model.

We define these because we want to define *semantics-based systems* of *abstract interpretation* for Java.

We will (in future work) extend FJ[¢] with the usual (imperative) features, working towards Java.

 FJ^{\emptyset} programs *P* consist of a *class table CT*, comprising the *class declarations*, and an *expression* e to be run (cf. the body of the main method in a real Java program). They are defined as a variant of Featherweight Java:

 FJ^{\emptyset} programs *P* consist of a *class table CT*, comprising the *class declarations*, and an *expression* e to be run (cf. the body of the main method in a real Java program). They are defined as a variant of Featherweight Java:

e ::= $x \mid \text{this} \mid \text{new } C(\vec{e}) \mid e.f \mid e.m(\vec{e})$

 FJ^{\emptyset} programs *P* consist of a *class table CT*, comprising the *class declarations*, and an *expression* e to be run (cf. the body of the main method in a real Java program). They are defined as a variant of Featherweight Java:

e ::= $x \mid \text{this} \mid \text{new } C(\vec{e}) \mid e.f \mid e.m(\vec{e})$ fd ::= C f;

 FJ^{\emptyset} programs *P* consist of a *class table CT*, comprising the *class declarations*, and an *expression* e to be run (cf. the body of the main method in a real Java program). They are defined as a variant of Featherweight Java:

e ::= $x \mid \text{this} \mid \text{new } C(\vec{e}) \mid e.f \mid e.m(\vec{e})$ fd ::= C f;md ::= $D m(C_1 x_1, \dots, C_n x_n) \{\text{return } e; \}$

 FJ^{\emptyset} programs *P* consist of a *class table CT*, comprising the *class declarations*, and an *expression* e to be run (cf. the body of the main method in a real Java program). They are defined as a variant of Featherweight Java:

e ::= $x \mid \text{this} \mid \text{new } C(\vec{e}) \mid e.f \mid e.m(\vec{e})$ fd ::= $C \quad f;$ md ::= $D \quad m(C_1 \quad x_1, \quad \dots, \quad C_n \quad x_n) \quad \{\text{return } e; \}$ cd ::= class $C \quad \text{extends } C' \quad \{\vec{fd} \quad \vec{md}\} \quad (C \neq \text{Object})$ $CT \quad ::= \quad \vec{cd}$ $P \quad ::= \quad (CT, e)$

 FJ^{\emptyset} programs P consist of a *class table CT*, comprising the *class declarations*, and an expression e to be run (cf. the body of the main method in a real Java program). They are defined as a variant of Featherweight Java:

- e ::= $x \mid \text{this} \mid \text{new } C(\vec{e}) \mid e.f \mid e.m(\vec{e})$ fd ::= C f; $md ::= D m(C_1 x_1, ..., C_n x_n) \{return e; \}$ cd ::= class C extends C' { $\overline{fd} \ \overline{md}$ } (C \neq Object) $\mathcal{CT} := \overline{cd}$ $P ::= (\mathcal{CT}, \mathbf{e})$
- 1. The function $\mathcal{F}(C)$ returns the list of fields $\overline{f_n}$ belonging to class C (including those it inherits).
- 2. The function $\mathcal{M}b(C,m)$ returns a tuple (\vec{x}, e) , consisting of a sequence of the method m's formal parameters and its body (as present in the class C). $\models{}_{\mathsf{FJ}}{}^{{\boldsymbol{\emptyset}}}$ TLCA 2011, Jun 01

As usual, computation is modelled via a reduction relation on expressions.

As usual, computation is modelled via a reduction relation on expressions.

A *term substitution* S = { x₁ → e₁,..., x_n → e_n } is defined as a map on expressions that replaces all occurrences of the variables x_i by the expressions e_i. We write e^S for S(e).

As usual, computation is modelled via a reduction relation on expressions.

- A *term substitution* S = { x₁ → e₁,..., x_n → e_n } is defined as a map on expressions that replaces all occurrences of the variables x_i by the expressions e_i. We write e^S for S(e).
- The reduction relation \rightarrow is defined as the contextual closure of:

As usual, computation is modelled via a reduction relation on expressions.

- A *term substitution* S = { x₁ → e₁,..., x_n → e_n } is defined as a map on expressions that replaces all occurrences of the variables x_i by the expressions e_i. We write e^S for S(e).
- The reduction relation \rightarrow is defined as the contextual closure of:

- new $C(\overline{e_n}) \cdot f_i \to e_i$, for class name C with $\mathcal{F}(C) = \overline{f_n}$ and $i \in \overline{n}$.

As usual, computation is modelled via a reduction relation on expressions.

- A *term substitution* S = { x₁ → e₁,..., x_n → e_n } is defined as a map on expressions that replaces all occurrences of the variables x_i by the expressions e_i. We write e^S for S(e).
- The reduction relation \rightarrow is defined as the contextual closure of:
 - new $C(\overline{e_n}) \cdot f_i \to e_i$, for class name C with $\mathcal{F}(C) = \overline{f_n}$ and $i \in \overline{n}$.
 - new $C(\vec{e}).m(\vec{e'_n}) \rightarrow e^S$, where $S = \{ \text{this} \mapsto \text{new } C(\vec{e}), x_1 \mapsto e'_1, ..., x_n \mapsto e'_n \}$, for class name C and method m with $\mathcal{M}b(C,m) = (\overline{x_n}, e)$.

This notion of reduction is *confluent*.

Approximants for **FJ**[¢]

Following the standard concept, we define the notion of approximant for FJ^{\emptyset} by replacing *(possibly) active computations* in expressions with \bot .

The set of *approximate normal forms*, \mathbb{A} , ranged over by A, is defined by the following grammar (extending expressions with \bot):

$$A ::= x | \text{this} | \perp | \text{new } C(\overline{A_n}) \quad (n \ge 0) \\ | A.f | A.m(\overline{A}) \qquad (A \ne \bot, A \ne \text{new } C(\overline{A_n}))$$

Notice that all these expressions cannot be reduced - they are in *normal form*.

Approximants for FJ[¢]

Following the standard concept, we define the notion of approximant for FJ^{\emptyset} by replacing *(possibly) active computations* in expressions with \bot .

The set of *approximate normal forms*, \mathbb{A} , ranged over by A, is defined by the following grammar (extending expressions with \bot):

$$A ::= x | \text{this} | \perp | \text{new } C(\overline{A_n}) \quad (n \ge 0) \\ | A.f | A.m(\overline{A}) \qquad (A \ne \bot, A \ne \text{new } C(\overline{A_n}))$$

Notice that all these expressions cannot be reduced - they are in *normal form*.

We consider $\perp f$ not in normal form: it can be that \perp hides an expression that reduces to an object new $C(\overline{A_n})$, in which case the field invocation can run, so disappears.

Approximation Semantics

The approximation relation \sqsubseteq is an order on terms defined by taking \bot to be smaller (i.e. containing less information) than any other term, and by extending this to a relation between all terms:

Approximation Semantics

The approximation relation \sqsubseteq is an order on terms defined by taking \bot to be smaller (i.e. containing less information) than any other term, and by extending this to a relation between all terms:

The relationship between \sqsubseteq and reduction is: If A \sqsubseteq e and e \rightarrow^* e', then A \sqsubseteq e'.

Approximation Semantics

The approximation relation \sqsubseteq is an order on terms defined by taking \bot to be smaller (i.e. containing less information) than any other term, and by extending this to a relation between all terms:

The relationship between \sqsubseteq and reduction is: If A \sqsubseteq e and e \rightarrow^* e', then A \sqsubseteq e'.

We define the set of *approximants* of e as $\mathcal{A}(e) = \{A \mid \exists e' [e \rightarrow^* e' \& A \sqsubseteq e']\}.$

We can show: $\mathbf{e} \to^* \mathbf{e}' \Rightarrow \mathcal{A}(\mathbf{e}) = \mathcal{A}(\mathbf{e}').$

This result allows us to define a semantics for FJ^{\emptyset} by interpreting expressions by the set of their approximants: $[e] = \mathcal{A}(e)$.

Predicates (vs. Java types)

Our predicates describe the capabilities of an expression in terms of

- 1. the operations that may be performed on it (i.e. accessing a field or invoking a method), and
- 2. the *outcome* of performing those operations.

They express detailed properties about the contexts in which expressions can be safely used.

Predicates (vs. Java types)

Our predicates describe the capabilities of an expression in terms of

- 1. the *operations* that may be performed on it (i.e. accessing a field or invoking a method), and
- 2. the *outcome* of performing those operations.

They express detailed properties about the contexts in which expressions can be safely used.

The set of *predicates* is defined by the following grammar:

 $\phi, \psi ::= \omega \mid \sigma \mid \phi \cap \psi$ $\sigma ::= \varphi \mid \mathbf{C} \mid \langle f : \sigma \rangle \mid \langle m : (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad (n \ge 0)$

Predicates (vs. Java types)

Our predicates describe the capabilities of an expression in terms of

- 1. the *operations* that may be performed on it (i.e. accessing a field or invoking a method), and
- 2. the *outcome* of performing those operations.

They express detailed properties about the contexts in which expressions can be safely used.

The set of *predicates* is defined by the following grammar:

 $\begin{array}{lll} \phi, \psi & ::= & \omega \mid \sigma \mid \phi \cap \psi \\ \sigma & ::= & \varphi \mid \mathsf{C} \mid \langle f : \sigma \rangle \mid \langle m : (\phi_1, \dots, \phi_n) \to \sigma \rangle & (n \ge 0) \end{array}$

The *predicate assignment* relation is expressed through the standard notation $\Pi \vdash \mathbf{e} : \phi$, where as usual Π contains type assumptions for the variables in \mathbf{e} .

It is defined by ...

$$(VAR): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \leq \sigma) \quad (FLD): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma}$$

$$(\omega): \overline{\Pi \vdash e: \omega} \qquad (JOIN): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \geq 2)$$

$$(INVK): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma}$$

$$(NEWO): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n})$$

$$(NEWF): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(NEWM): \frac{\text{this}: \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash new \ C(\overline{e}): \psi}{\Pi \vdash new \ C(\overline{e_n}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(C, m) = (\overline{x_n}, e_b))$$

$$(\text{VAR}): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \triangleleft \sigma) \quad (\text{FLD}): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma}$$

$$(\omega): \overline{\Pi \vdash e: \omega} \qquad (\text{JOIN}): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \ge 2)$$

$$(\text{INVK}): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma}$$

$$(\text{NEWO}): \frac{\Pi \vdash e_1: \phi_1 \quad \dots \quad \Pi \vdash e_n: \phi_n}{\Pi \vdash \text{new } C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n})$$

$$(\text{NEWF}): \frac{\Pi \vdash e_1: \phi_1 \quad \dots \quad \Pi \vdash e_n: \phi_n}{\Pi \vdash \text{new } C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(\text{NEWM}): \frac{\text{this}: \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash \text{new } C(\overline{e}): \psi}{\Pi \vdash \text{new } C(\overline{e}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(C, m) = (\overline{x_n}, e_b))$$

$$(VAR): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \triangleleft \sigma) \quad (FLD): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma}$$

$$(\omega): \overline{\Pi \vdash e: \omega} \qquad (JOIN): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \ge 2)$$

$$(INVK): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma}$$

$$(NEWO): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n})$$

$$(NEWF): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(NEWM): \frac{\text{this:} \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash new \ C(\overline{e}): \psi}{\Pi \vdash new \ C(\overline{e_n}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(C, m) = (\overline{x_n}, e_b))$$

$$(VAR): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \leq \sigma) \quad (FLD): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma}$$

$$(\omega): \overline{\Pi \vdash e: \omega} \qquad (JOIN): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \geq 2)$$

$$(INVK): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma}$$

$$(NEWO): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n})$$

$$(NEWF): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(NEWM): \frac{\text{this:} \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash new \ C(\overline{e}): \psi}{\Pi \vdash new \ C(\overline{e_n}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(C, m) = (\overline{x_n}, e_b))$$

$$(VAR): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \triangleleft \sigma) \quad (FLD): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma}$$

$$(\omega): \overline{\Pi \vdash e: \omega} \qquad (JOIN): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \ge 2)$$

$$(INVK): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma}$$

$$(NEWO): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n})$$

$$(NEWF): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(NEWM): \frac{\text{this}: \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash new \ C(\overline{e}): \psi}{\Pi \vdash new \ C(\overline{e_n}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(C, m) = (\overline{x_n}, e_b))$$

$$(VAR): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \leqslant \sigma) \quad (FLD): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma}$$

$$(\omega): \overline{\Pi \vdash e: \omega} \qquad (JOIN): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \ge 2)$$

$$(INVK): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma}$$

$$(NEWO): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n})$$

$$(NEWF): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(NEWM): \frac{\text{this:} \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash new \ C(\overline{e}): \psi}{\Pi \vdash new \ C(\overline{e_n}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(C, m) = (\overline{x_n}, e_b))$$

$$(VAR): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \triangleleft \sigma) \quad (FLD): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma}$$

$$(\omega): \overline{\Pi \vdash e: \omega} \qquad (JOIN): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \ge 2)$$

$$(INVK): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma}$$

$$(NEWO): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n})$$

$$(NEWF): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(NEWM): \frac{\text{this:} \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash new \ C(\overline{e}): \psi}{\Pi \vdash new \ C(\overline{e_n}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(C, m) = (\overline{x_n}, e_b))$$

$$(\operatorname{VAR}): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \triangleleft \sigma) \quad (\operatorname{FLD}): \frac{\Pi \vdash \operatorname{e:} \langle f: \sigma \rangle}{\Pi \vdash \operatorname{e.} f: \sigma}$$

$$(\omega): \overline{\Pi \vdash \operatorname{e:} \omega} \qquad (\operatorname{JOIN}): \frac{\Pi \vdash \operatorname{e:} \sigma_1 \dots \Pi \vdash \operatorname{e:} \sigma_n}{\Pi \vdash \operatorname{e:} \sigma_1 \cap \dots \cap \sigma_n} (n \ge 2)$$

$$(\operatorname{INVK}): \frac{\Pi \vdash \operatorname{e:} \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle}{\Pi \vdash \operatorname{e_1:} \phi_1 \dots \Pi \vdash \operatorname{e_n:} \phi_n}$$

$$(\operatorname{INVK}): \frac{\Pi \vdash \operatorname{e:} \langle \phi_1 \dots \Pi \vdash \operatorname{e_n:} \phi_n}{\Pi \vdash \operatorname{new} \operatorname{C}(\overline{e_n}): \operatorname{C}} (\mathcal{F}(\operatorname{C}) = \overline{f_n})$$

$$(\operatorname{NEWO}): \frac{\Pi \vdash \operatorname{e_1:} \phi_1 \dots \Pi \vdash \operatorname{e_n:} \phi_n}{\Pi \vdash \operatorname{new} \operatorname{C}(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(\operatorname{C}) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma)$$

$$(\operatorname{NEWM}): \frac{\operatorname{this:} \psi, \overline{x:} \phi_n \vdash \operatorname{e_b:} \sigma \Pi \vdash \operatorname{new} \operatorname{C}(\overline{e_i}): \psi}{\Pi \vdash \operatorname{new} \operatorname{C}(\overline{e_i}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{M}b(\operatorname{C}, m) = (\overline{x_n}, \operatorname{e_b}))$$

$$(VAR): \overline{\Pi, x: \phi \vdash x: \sigma} (\phi \leqslant \sigma) \quad (FLD): \frac{\Pi \vdash e: \langle f: \sigma \rangle}{\Pi \vdash e.f: \sigma} \\ (\omega): \overline{\Pi \vdash e: \omega} \qquad (JOIN): \frac{\Pi \vdash e: \sigma_1 \dots \Pi \vdash e: \sigma_n}{\Pi \vdash e: \sigma_1 \cap \dots \cap \sigma_n} (n \ge 2) \\ (INVK): \frac{\Pi \vdash e: \langle m: (\phi_1, \dots, \phi_n) \to \sigma \rangle \quad \Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash e.m(\overline{e_n}): \sigma} \\ (NEWO): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): C} (\mathcal{F}(C) = \overline{f_n}) \\ (NEWF): \frac{\Pi \vdash e_1: \phi_1 \dots \Pi \vdash e_n: \phi_n}{\Pi \vdash new \ C(\overline{e_n}): \langle f_i: \sigma \rangle} (\mathcal{F}(C) = \overline{f_n}, i \in \overline{n}, \phi_i = \sigma) \\ (NEWM): \frac{\operatorname{this} \psi, \overline{x: \phi_n} \vdash e_b: \sigma \quad \Pi \vdash new \ C(\overline{e}): \psi}{\Pi \vdash new \ C(\overline{e_i}): \langle m: (\overline{\phi_n}) \to \sigma \rangle} (\mathcal{Mb}(C, m) = (\overline{x_n}, e_b))$$

We show: if $\mathbf{e} \to \mathbf{e}'$ then $\Pi \vdash \mathbf{e}' : \phi \Leftrightarrow \Pi \vdash \mathbf{e} : \phi$; this gives a type-based semantics. $\vdash \mathsf{FJ}^{\wp}$

We now have two approaches to semantics: (1) the approximation model, and (2) a type based semantics. So what is the relation between the two?

We now have two approaches to semantics: (1) the approximation model, and (2) a type based semantics. So what is the relation between the two?

We aim to show: $\Pi \vdash \mathbf{e} : \phi \Leftrightarrow \exists \mathsf{A} \in \mathcal{A}(\mathbf{e}) \ [\Pi \vdash \mathsf{A} : \phi].$

We now have two approaches to semantics: (1) the approximation model, and (2) a type based semantics. So what is the relation between the two?

We aim to show: $\Pi \vdash \mathbf{e} : \phi \Leftrightarrow \exists \mathsf{A} \in \mathcal{A}(\mathbf{e}) \ [\Pi \vdash \mathsf{A} : \phi].$

If an expression e can be given a predicate φ, then there exists an approximant
 A of e that has the same predicate. i.e: if we run e long enough, a stable result
 will appear (with perhaps computations still going on inside) that has the same
 predicate φ: predicates 'foretell' the shape of the result.

We now have two approaches to semantics: (1) the approximation model, and (2) a type based semantics. So what is the relation between the two?

We aim to show: $\Pi \vdash \mathbf{e} : \phi \Leftrightarrow \exists \mathsf{A} \in \mathcal{A}(\mathbf{e}) \ [\Pi \vdash \mathsf{A} : \phi].$

- If an expression e can be given a predicate φ, then there exists an approximant
 A of e that has the same predicate. i.e: if we run e long enough, a stable result
 will appear (with perhaps computations still going on inside) that has the same
 predicate φ: predicates 'foretell' the shape of the result.
- If we can give A a predicate φ, then we can give that predicate to all expressions that have A as an approximant.

We now have two approaches to semantics: (1) the approximation model, and (2) a type based semantics. So what is the relation between the two?

We aim to show: $\Pi \vdash \mathbf{e} : \phi \Leftrightarrow \exists \mathsf{A} \in \mathcal{A}(\mathbf{e}) \ [\Pi \vdash \mathsf{A} : \phi].$

- If an expression e can be given a predicate φ, then there exists an approximant
 A of e that has the same predicate. i.e: if we run e long enough, a stable result
 will appear (with perhaps computations still going on inside) that has the same
 predicate φ: predicates 'foretell' the shape of the result.
- If we can give A a predicate φ, then we can give that predicate to all expressions that have A as an approximant.

The proof for this property is not straightforward; the main problem is that reduction in FJ^{\emptyset} is *weak*. To solve it, we use a notion of *derivation reduction* that follows reduction of expressions on, but reduces only those that do not have predicate ω .

Derivation Reduction

$$\begin{array}{c|cccc}
 & \mathcal{D}_{1} & \mathcal{D}_{n} \\
 & \Pi \vdash \mathbf{e}_{1} : \phi_{1} & \dots & \Pi \vdash \mathbf{e}_{n} : \phi_{n} \\
\hline
 & \Pi \vdash \operatorname{new} \ \mathbf{C}(\overline{\mathbf{e}_{n}}) : \langle f_{i} : \sigma \rangle \\
\hline
 & \Pi \vdash \operatorname{new} \ \mathbf{C}(\overline{\mathbf{e}_{n}}) . f_{i} : \sigma
\end{array}$$

Notice that new $C(\overrightarrow{e_n}) \cdot f_i \rightarrow e_i$. We also contract:

$$\begin{array}{c|c}
\hline \mathcal{D}_{b} & & \mathcal{D}_{self} \\
\hline \text{this:}\psi, x_{1}:\phi_{1}, \dots, x_{n}:\phi_{n} \vdash \mathbf{e}_{b}:\sigma & \Pi \vdash \text{new } \mathbf{C}(\overline{\mathbf{e}_{n}}):\psi \\
\hline \Pi \vdash \text{new } \mathbf{C}(\overline{\mathbf{e}_{n}}):\langle m:(\overline{\phi_{n}}) \rightarrow \sigma \rangle \\
\hline \vdots & & \mathcal{D}_{1} & & \mathcal{D}_{n} \\
\hline \vdots & & \Pi \vdash \mathbf{e}_{1}:\phi_{1} & \dots & \Pi \vdash \mathbf{e}_{n}:\phi_{n} \\
\hline & & & \Pi \vdash \text{new } \mathbf{C}(\overline{\mathbf{e}}).m(\overline{\mathbf{e}_{n}}):\sigma
\end{array}$$

and new $C(\vec{e}).m(\vec{e_n}) \rightarrow e_b$, where $Dm(\vec{E}x_n)$ {return e_b ; } is present in C.
Derivation Reduction is Strongly Normalising

First we show that derivation reduction is sound: If $\mathcal{D} :: \Pi \vdash e : \phi$ and $\mathcal{D} \to_{\mathfrak{D}} \mathcal{D}'$, then \mathcal{D}' is a well-defined derivation, in that is there exists some e' such that $\mathcal{D}' :: \Pi \vdash e' : \phi$, and $e \to e'$.

Derivation Reduction is Strongly Normalising

First we show that derivation reduction is sound: If $\mathcal{D} :: \Pi \vdash \mathbf{e} : \phi$ and $\mathcal{D} \to_{\mathfrak{D}} \mathcal{D}'$, then \mathcal{D}' is a well-defined derivation, in that is there exists some \mathbf{e}' such that $\mathcal{D}' :: \Pi \vdash \mathbf{e}' : \phi$, and $\mathbf{e} \to \mathbf{e}'$.

We show that all reductions on derivations *terminate*.

 $\mathcal{D}::\Pi\vdash\mathsf{e}:\phi\Rightarrow\mathsf{SN}(\mathcal{D}).$

This implies that ϕ (or, more precisely, \mathcal{D}) has only a *finite amount of information* on the execution of \mathbf{e} .

Derivation Reduction is Strongly Normalising

First we show that derivation reduction is sound: If $\mathcal{D} :: \Pi \vdash \mathbf{e} : \phi$ and $\mathcal{D} \to_{\mathfrak{D}} \mathcal{D}'$, then \mathcal{D}' is a well-defined derivation, in that is there exists some \mathbf{e}' such that $\mathcal{D}' :: \Pi \vdash \mathbf{e}' : \phi$, and $\mathbf{e} \to \mathbf{e}'$.

We show that all reductions on derivations terminate.

 $\mathcal{D}::\Pi\vdash\mathsf{e}:\phi\Rightarrow\mathsf{SN}(\mathcal{D}).$

This implies that ϕ (or, more precisely, \mathcal{D}) has only a *finite amount of information* on the execution of **e**.

In fact, if ω has been used in \mathcal{D} , then all executions inside the expression that has this predicate are *invisible* and will not be executed when reducing the derivation.

So in the normal form of a derivation, the expression involved need not be in normal form.

The proof for this property is not straightforward, since typeable terms need not terminate - we use the *computability* technique (Tait).

⊢ _{FJ}¢

From the termination result for derivation reduction, these others follow:

Approximation result: $\Pi \vdash e: \phi \Leftrightarrow \exists A \in \mathcal{A}(e) \ [\Pi \vdash A: \phi].$

From the termination result for derivation reduction, these others follow:

Approximation result: $\Pi \vdash e: \phi \Leftrightarrow \exists A \in \mathcal{A}(e) [\Pi \vdash A: \phi].$

Head Normalisation: $\Pi \vdash e : \sigma$ if and only if e has a *head-normal form*. This is very close to the approximation result: the head-normal form H corresponds to the shape of the approximant, which is given by replacing all subexpressions typed with ω in the derivation's *normal form* by \bot .

From the termination result for derivation reduction, these others follow:

Approximation result: $\Pi \vdash e: \phi \Leftrightarrow \exists A \in \mathcal{A}(e) [\Pi \vdash A: \phi].$

Head Normalisation: $\Pi \vdash e : \sigma$ if and only if e has a *head-normal form*.

This is very close to the approximation result: the head-normal form H corresponds to the shape of the approximant, which is given by replacing all subexpressions typed with ω in the derivation's *normal form* by \perp .

Normalisation: $\mathcal{D} :: \Pi \vdash \mathbf{e} : \sigma$ with ω -safe \mathcal{D} and Π only if \mathbf{e} has a *normal form*.

If ω is used in \mathcal{D} only for arguments in method invocations, then it is possible to run e to a *result*.

From the termination result for derivation reduction, these others follow:

Approximation result: $\Pi \vdash e: \phi \Leftrightarrow \exists A \in \mathcal{A}(e) [\Pi \vdash A: \phi].$

Head Normalisation: $\Pi \vdash e : \sigma$ if and only if e has a *head-normal form*.

This is very close to the approximation result: the head-normal form H corresponds to the shape of the approximant, which is given by replacing all subexpressions typed with ω in the derivation's *normal form* by \perp .

Normalisation: $\mathcal{D} :: \Pi \vdash \mathbf{e} : \sigma$ with ω -safe \mathcal{D} and Π only if \mathbf{e} has a *normal form*.

If ω is used in \mathcal{D} only for arguments in method invocations, then it is possible to run e to a *result*.

Strong Normalisation: $\mathcal{D} :: \Pi \vdash e : \sigma$ with \mathcal{D} strong if and only if e is strongly normalisable.

If ω is *not used at all* in \mathcal{D} , then *all* executions of **e** will produce a result.

Expressivity

We compare our work to previous results (and show that FJ^{\emptyset} is Turing complete) by considering an encoding of the SK Combinatory Logic (CL) in FJ^{\emptyset} :

 $\begin{array}{lll} \mathbf{K} x \, y & \rightarrow x \\ \mathbf{S} x \, y \, z & \rightarrow x \, z \, (y \, z \,) \end{array}$

Expressivity

We compare our work to previous results (and show that FJ^{\emptyset} is Turing complete) by considering an encoding of the **SK** Combinatory Logic (CL) in FJ^{\emptyset} :

 $\mathbf{K} x y \rightarrow x$ $\mathbf{S} x y z \rightarrow x z (y z)$

The encoding of CL into the FJ^{\emptyset} program OOCL (Object-Oriented CL) is defined using the class table on the next slide and the function $\llbracket \cdot \rrbracket$ which translates terms of CL into FJ^{\emptyset} expressions, and is defined as follows:

 $\llbracket x \rrbracket = x \qquad \llbracket t_1 t_2 \rrbracket = \llbracket t_1 \rrbracket . \operatorname{app}(\llbracket t_2 \rrbracket)$ $\llbracket \mathbf{K} \rrbracket = \operatorname{new} K_0() \qquad \llbracket \mathbf{S} \rrbracket = \operatorname{new} S_0()$

If $t_1 \to t_2$ in CL, then $\llbracket t_1 \rrbracket \to \llbracket t_2 \rrbracket$ in FJ^{\wp} .

OOCL

class Combinator extends Object {
 Combinator app(Combinator x) { return this; } }

```
class K<sub>0</sub> extends Combinator {
    Combinator app(Combinator x) { return new K<sub>1</sub>(x); } }
class K<sub>1</sub> extends K<sub>0</sub> { Combinator x;
    Combinator app(Combinator y) { return this.x; } }
```

```
class S<sub>0</sub> extends Combinator {
    Combinator app(Combinator x) { return new S<sub>1</sub>(x); } }
class S<sub>1</sub> extends S<sub>0</sub> { Combinator x;
    Combinator app(Combinator y) { return new S<sub>2</sub>(this.x, y); } }
class S<sub>2</sub> extends S<sub>1</sub> { Combinator y;
    Combinator app(Combinator z) {
    return this.x.app(z).app(this.y.app(z)); } }
```

Type preservation

The set of simple types is defined by $\tau ::= \varphi \mid \tau \rightarrow \tau$. The basis B contains type assumptions for variables. Simple types are assigned to CL-terms using:

$$(\mathsf{VAR}): \frac{}{\mathsf{B}\vdash_{\mathsf{CL}} x:\tau} (x:\tau \in \mathsf{B}) \quad (\to \mathsf{E}): \frac{\mathsf{B}\vdash_{\mathsf{CL}} t_1:\tau \to \tau' \quad \mathsf{B}\vdash_{\mathsf{CL}} t_2:\tau}{\mathsf{B}\vdash_{\mathsf{CL}} t_1t_2:\tau'}$$
$$(\mathsf{K}): \frac{}{\mathsf{B}\vdash_{\mathsf{CL}} \mathsf{K}:\tau \to \tau' \to \tau} \qquad (\mathsf{S}): \frac{}{\mathsf{B}\vdash_{\mathsf{CL}} \mathsf{S}:(\tau \to \tau' \to \tau'') \to (\tau \to \tau') \to \tau \to \tau''}$$

Type preservation

The set of simple types is defined by $\tau ::= \varphi | \tau \rightarrow \tau$. The basis B contains type assumptions for variables. Simple types are assigned to CL-terms using:

$$(\mathsf{VAR}): \frac{}{\mathsf{B}\vdash_{\mathsf{cL}} x:\tau} (x:\tau \in \mathsf{B}) \quad (\to \mathsf{E}): \frac{\mathsf{B}\vdash_{\mathsf{cL}} t_1:\tau \to \tau' \quad \mathsf{B}\vdash_{\mathsf{cL}} t_2:\tau}{\mathsf{B}\vdash_{\mathsf{cL}} t_1t_2:\tau'}$$
$$(\mathsf{K}): \frac{}{\mathsf{B}\vdash_{\mathsf{cL}} \mathsf{K}:\tau \to \tau' \to \tau} \quad (\mathsf{S}): \frac{}{\mathsf{B}\vdash_{\mathsf{cL}} \mathsf{S}:(\tau \to \tau' \to \tau'') \to (\tau \to \tau') \to \tau \to \tau''}$$

We define what the equivalent of Curry's types are in terms of predicates.

$$\begin{split} \llbracket \varphi \rrbracket &= \varphi \\ \llbracket \tau \rightarrow \tau' \rrbracket &= \langle \operatorname{app} \colon \llbracket \tau \rrbracket \rightarrow \llbracket \tau' \rrbracket \rangle \end{split}$$

Type preservation

The set of simple types is defined by $\tau ::= \varphi \mid \tau \rightarrow \tau$. The basis B contains type assumptions for variables. Simple types are assigned to CL-terms using:

$$(\mathsf{VAR}): \frac{}{\mathsf{B}\vdash_{\mathsf{cL}} x:\tau} (x:\tau \in \mathsf{B}) \quad (\to \mathsf{E}): \frac{\mathsf{B}\vdash_{\mathsf{cL}} t_1:\tau \to \tau' \quad \mathsf{B}\vdash_{\mathsf{cL}} t_2:\tau}{\mathsf{B}\vdash_{\mathsf{cL}} t_1t_2:\tau'}$$
$$(\mathsf{K}): \frac{}{\mathsf{B}\vdash_{\mathsf{cL}} \mathsf{K}:\tau \to \tau' \to \tau} \quad (\mathsf{S}): \frac{}{\mathsf{B}\vdash_{\mathsf{cL}} \mathsf{S}:(\tau \to \tau' \to \tau'') \to (\tau \to \tau') \to \tau \to \tau''}$$

We define what the equivalent of Curry's types are in terms of predicates.

$$\llbracket \varphi \rrbracket = \varphi$$
$$\llbracket \tau \rightarrow \tau' \rrbracket = \langle \operatorname{app} : \llbracket \tau \rrbracket \rightarrow \llbracket \tau' \rrbracket \rangle$$

Then we can show: If $\mathsf{B} \vdash_{\mathsf{cL}} \mathsf{t}:\tau$ then $[\mathsf{B}] \vdash [\mathsf{t}]: [\tau]$.

Let $\mathbf{e} = \llbracket \mathbf{t} \rrbracket$ for some CL term \mathbf{t} ; then \mathbf{e} has a normal form if and only if there are ω -safe \mathcal{D} and Π and predicate σ such that $\mathcal{D} :: \Pi \vdash \mathbf{e} : \sigma$.

Our types extend the standard 'functional' view - they give a 'structural' one too:

Our types extend the standard 'functional' view - they give a 'structural' one too:

 $SKK =_{CL} SKS$

 $[\mathbf{SKK}] =_{\lambda} [\mathbf{SKS}]$

Our types extend the standard 'functional' view - they give a 'structural' one too:

$\begin{aligned} \mathbf{SKK} =_{\mathsf{CL}_{\bigcap}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \end{aligned}$

Our types extend the standard 'functional' view - they give a 'structural' one too:

 $\begin{aligned} \mathbf{SKK} =_{\mathsf{CL}_{\bigcap}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \\ \rightarrow^* \operatorname{new} S_2(\operatorname{new} K_0(), \operatorname{new} K_0()) & \rightarrow^* \operatorname{new} S_2(\operatorname{new} K_0(), \operatorname{new} S_0()) \end{aligned}$

Our types extend the standard 'functional' view - they give a 'structural' one too:

$$\begin{split} \mathbf{SKK} =_{\mathsf{CL}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \\ \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } K_0()) & \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } S_0()) \\ & \vdash [\![\mathbf{SKK}]\!] : \langle y : K_0 \rangle & \vdash [\![\mathbf{SKS}]\!] : \langle y : S_0 \rangle \end{split}$$

Our types extend the standard 'functional' view - they give a 'structural' one too:

$$\begin{split} \mathbf{SKK} =_{\mathsf{CL}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \\ \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } K_0()) & \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } S_0()) \\ & \vdash [\![\mathbf{SKK}]\!] : \langle \mathbf{y} : \mathbf{K}_0 \rangle & \vdash [\![\mathbf{SKS}]\!] : \langle \mathbf{y} : \mathbf{S}_0 \rangle \end{split}$$

Not all FJ[¢] normal forms (or, more generally, approximants) have finite 'principal' types:

class C extends Object { C m() { return new C(); } }

Our types extend the standard 'functional' view - they give a 'structural' one too:

$$\begin{aligned} \mathbf{SKK} =_{\mathsf{CL}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \\ \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } K_0()) & \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } S_0()) \\ & \vdash [\![\mathbf{SKK}]\!] : \langle \mathbf{y} : \mathbf{K}_0 \rangle & \vdash [\![\mathbf{SKS}]\!] : \langle \mathbf{y} : \mathbf{S}_0 \rangle \end{aligned}$$

Not all FJ[¢] normal forms (or, more generally, approximants) have finite 'principal' types:

class C extends Object { C m() { return new C(); } }
⊢ new C():C

Our types extend the standard 'functional' view - they give a 'structural' one too:

$$\begin{aligned} \mathbf{SKK} =_{\mathsf{CL}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \\ \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } K_0()) & \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } S_0()) \\ & \vdash [\![\mathbf{SKK}]\!] : \langle \mathbf{y} : \mathbf{K}_0 \rangle & \vdash [\![\mathbf{SKS}]\!] : \langle \mathbf{y} : \mathbf{S}_0 \rangle \end{aligned}$$

Not all FJ[¢] normal forms (or, more generally, approximants) have finite 'principal' types:

```
class C extends Object { C m() { return new C(); } }

\vdash new C():C

\vdash new C():\langlem:() \rightarrow C\rangle
```

Our types extend the standard 'functional' view - they give a 'structural' one too:

$$\begin{aligned} \mathbf{SKK} =_{\mathsf{CL}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \\ \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } K_0()) & \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } S_0()) \\ & \vdash [\![\mathbf{SKK}]\!] : \langle \mathbf{y} : \mathbf{K}_0 \rangle & \vdash [\![\mathbf{SKS}]\!] : \langle \mathbf{y} : \mathbf{S}_0 \rangle \end{aligned}$$

Not all FJ[¢] normal forms (or, more generally, approximants) have finite 'principal' types:

```
class C extends Object { C m() { return new C(); } }

\vdash new C():C

\vdash new C():\langlem:() \rightarrow C\rangle

\vdash new C():\langlem:() \rightarrow \langlem:() \rightarrow C\rangle\rangle
```

⊢ _{E.I}¢

Our types extend the standard 'functional' view - they give a 'structural' one too:

$$\begin{aligned} \mathbf{SKK} =_{\mathsf{CL}} \mathbf{SKS} & [\![\mathbf{SKK}]\!] =_{\lambda} [\![\mathbf{SKS}]\!] \\ & [\![\mathbf{SKK}]\!] \neq_{\mathsf{OOCL}} [\![\mathbf{SKS}]\!] \\ \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } K_0()) & \rightarrow^* \text{new } S_2(\text{new } K_0(), \text{new } S_0()) \\ & \vdash [\![\mathbf{SKK}]\!] : \langle \mathbf{y} : \mathbf{K}_0 \rangle & \vdash [\![\mathbf{SKS}]\!] : \langle \mathbf{y} : \mathbf{S}_0 \rangle \end{aligned}$$

Not all FJ[¢] normal forms (or, more generally, approximants) have finite 'principal' types:

```
class C extends Object { C m() { return new C(); } }

\vdash \text{new C():C}
\vdash \text{new C():\langle m:() \to C \rangle
\vdash \text{new C():\langle m:() \to \langle m:() \to C \rangle \rangle}
\vdash \text{new C():\langle m:() \to \langle m:() \to \langle m:() \to C \rangle \rangle \rangle \text{ etc...}
\prod_{L \subseteq A 2011, Jun 01}
```

Conclusions

We have defined two different semantics for a (kernel) class-based object oriented programming language FJ[¢], and stated how they relate.

We have proven all important properties for predicate assignment. Through our predicate assignment system, we can characterise

- Head normalisation.
- Normalisation.
- Strong normalisation.

We have shown that FJ^{\emptyset} is *fully expressive*, by mapping CL into OOCL (we could even map the λ -calculus).

As a first exercise of how 'handy' our system is, we have shown that all (simply) typeable OOCL programs terminate, and vice-versa.

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

Take the function length list a:b = S(length list b). length list [] = 0

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

Take the function length list a:b = S(length list b). length list [] = 0

Then

 $\begin{array}{ll} \textit{length list } 1:2:3 & \rightarrow \\ S(\textit{length list } 2:3) & \rightarrow \\ S(S(\textit{length list } 3)) & \rightarrow \\ S(S(S(\textit{length list } []))) & \rightarrow \\ S(S(S(S(0))) & \rightarrow \end{array}$

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

Take the function length list a:b = S(length list b). length list [] = 0

Then

 which has the approximant

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

Take the function length list a:b = S(length list b). length list [] = 0

Then

which has the approximant

 $S(\perp)$

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

Take the function length list a:b = S(length list b). length list [] = 0

Then

which has the approximant

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

Take the function length list a:b = S(length list b). length list [] = 0

Then

 which has the approximant

An *approximant* is a (finite) description of the result of the running of a program that will not change (the output) while the program still runs. We hide a place where computation takes place with \bot ; we see \bot as representing "*No information on the computation is available here*".

Take the function length list a:b = S(length list b). length list [] = 0

Then

which has the approximant

<i>length list</i> 1 : 2 : 3	\rightarrow	\bot
S (length list 2:3)	\rightarrow	$S(\perp)$
S(S(length list 3))	\rightarrow	$S(S(\perp))$
S(S(S(length list [])))	\rightarrow	$S(S(S(\perp)))$
S(S(S(0)))	\rightarrow	S(S(S(0)))

In this case, the output is finite, and the final approximant is the end-result itself.

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x 'mod' p > 0]

2:3:5: sieve $[7..] \rightarrow$

•

```
primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x 'mod' p > 0]

Then

primes \rightarrow

sieve [2..] \rightarrow

2:sieve [3..] \rightarrow

2:3:sieve [5..] \rightarrow
```


Sieve of Eratosthenes in Haskell

Sieve of Eratosthenes in Haskell

•

Sieve of Eratosthenes in Haskell

In this case, the computation is infinite, and so is the output, and there is no final approximant, since the "result" is never reached - \perp is in every approximant.