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Abstract

We consider semantics for the class-based object-orientedcalculus Featherweight Java based uponapproxima-
tion. We also define anintersection type assignment systemsfor this calculus and show that it issoundandcomplete,
i.e. types are preserved under conversion. We establish thelink with between type assignment and the approxima-
tion semantics by showing an approximation result, which leads to a sufficient condition for head-normalisation and
termination.

We show the expressivity of our predicate system by defining an encoding of Combinatory Logic into our calculus.
We show that this encoding preserves predicate-ability andalso that our system characterises the normalising and
strongly normalising terms for this encoding. We thus demonstrate that the great analytic capabilities of intersection
types can be applied to the context of class-based object orientation.

Introduction

Over the years many expressive type systems have been definedand investigated for a variety of calculi. Amongst
those, theintersection type discipline(ITD) [15, 16, 12, 2], first defined for the Lambda Calculus (LC) [11], stands
out as a system that is closed underβ-equality and gives rise to a filter model; it is defined as an extension of
Curry’s basic type system forLC, by allowing term-variables to have many, potentially non-unifiable, types. This
generalisation leads to a very expressive system: for example, termination (i.e. strong normalisation) of terms can
be characterised by assignable types. Furthermore, intersection type-based models and approximation results show
that intersection types describe the full semantical behaviour of typeable terms. Intersection type systems have also
been employed successfully in analyses for dead code elimination [18], strictness analysis [28], and control-flow
analysis [10], proving them a versatile framework for reasoning about programs. Inspired by this expressive power,
investigations have taken place of the suitability of intersection type assignment for other computational models:
for example, van Bakel and Fernández have studied intersection types in the context of Term Rewriting Systems
(TRS) [7, 8] and van Bakel studied them in the context of sequent calculi [4, 5].

Theobject-orientedprogramming paradigm has also been the subject of extensivetheoretical study over the last
two decades, as exemplified by languages such as C++ [39], Java [25], C# [20], Ruby [37], ECMAscript (or Javascript)
[21] and Python [35].OO languages come in two broad flavours: theobject(or prototype) based, and theclassbased.
A number of formal models has been developed [13, 14, 31, 22, 23, 1, 27] which attempt to distill the many features of
OO into a core set of primitive operations. Of these, theς-calculus [1] and Featherweight Java (FJ) [27] have been well
received as elementary models for object based and class-basedOO, respectively. In an attempt to bring intersection
types to the context ofOO, van Bakel and de’Liguoro presented a system for theς-calculus [6]; the main characteristic
of that system is that it sees assignable types as anexecution predicate, or applicability predicate, rather than as a
functional characterisation as is the view in the context ofLC and, as a result, recursive calls are typed individually,
with different types. This is also the case in our system.

Semantics is a well-established area of research for both functional and imperative languages; for the functional
programming language side, semantics is mainlydenotational, based on Scott’s domain theory [38], whereas for
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imperative languages it is mainlyoperational[34]. In this paper we aim to develop denotational semanticsfor class-
basedOO; in order to be able to concentrate on the essential difficulties, we focus on Featherweight Java [27], a
restriction of Java defined by removing all but the most essential features of the full language; Featherweight Java
bears a similar relation to Java asLC does to languages such asML [30] and Haskell [26]. We illustrate the expressive
power of our calculus by showing that it is Turing complete through an embedding of Combinatory Logic (CL) – and
thereby alsoLC. We will use two approaches, by defining both an approximation based and type-based semantics for
FJ; to achieve the latter, we introduce a notion of intersection type assignment (we will use the terminologypredicates
here, to distinguish our notion from the traditional notionof class types).

For that notion of intersection predicate assignment, we will show that the expected properties of a system based
on intersection (i.e.soundnessand completeness) hold. A notion ofapproximantfor FJ-programs is defined as a
finite, rooted segment of a (head)-normal form, as usual; this is used to show anapproximation resultwhich states
that, for every intersection predicate assignable to a termin our system, an approximant of that term exists which
can be assigned the same predicate. Interpreting a term by its set of approximants gives anapproximation semantics
and the approximation result then relates the approximation and the predicate-based semantics; it demonstrates that
our predicate system is sound and complete with respect to the approximation semantics, allowing a predicate-based
analysis of termination. As is also the case forLC and TRS, in our system this result is shown using a notion of
computability; since the notion of reduction we consider isweak, as in [8], to show the approximation result we need
to consider reduction on predicate derivations.

We then restrict our notion to that of Curry type assignment –for which we can easily show a principal predicate
property – and show a predicate preservation result: types assignable toCL-terms in Curry’s system correspond to
predicates in our system that can be assigned to the interpretedCL-terms. This could easily be extended to the strict
intersection type assignment system forLC [2]; combined with the results we show in this paper, this then implies
that the collection of predicate-ableOO expressions correspond to the terms that are typeable usingintersection types,
i.e. all λ-terms that are semantically meaningful.

Contents of this paper.In Section 1, we present the calculusFJ¢, Featherweight Java without casts, for which in
Section 2 we define an approximation semantics, interpreting expressions through finite rooted segments of (infinite)
normal forms. In Section 3, we define our notion of intersection predicate assignment, and show an subject reduc-
tion and expansion result (soundness and completeness). InSection 4 we show how to encode Combinatory Logic
into FJ¢, whilst preserving assignable Curry types. In Section 5 we define a notion of reduction on derivations that
follows reduction onFJ¢-expressions, and show that this notion is strongly normalisable. The two approaches of ap-
proximation and intersection types are linked in Section 6,where we show the approximation result. i.e. every type
assignment for an expression is valid for one if its approximants, and show that this is a direct consequence of the
strong normalisability of derivation reduction; we also show some characterisation results for head-normalisation and
strong normalisation; we apply our result to the interpretation of Combinatory Logic. In Section 7, we give some
detailed examples and observations, followed by our conclusion.

An extended abstract of this paper will appear as [36]. In [9]we presented a similar system which here has
been simplified. In particular, we have removed the (functional) field updatefeature (which can be modelled using
method calls1), which gives a more straightforward presentation of system and proofs. We have also decoupled our
intersection predicate system from the existing class typesystem, which shows that the approximation result does not
depend on the class type system in any way.

1. Featherweight Java without casts

In this section, we will define the variant of Featherweight Java we consider in this paper. As in other class-based
object-oriented languages, it definesclasses, which represent abstractions encapsulating both data (stored infields) and
the operations to be performed on that data (encoded asmethods). Sharing of behaviour is accomplished through the
inheritanceof fields and methods from parent classes. Computation is mediated byinstancesof these classes (called

1One possible solution is to add to every classC, for each fieldfi belonging to the class, a method
C update_fi(x) { return new C(this. f 1,...,x,...,this. f n); } .
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objects), which interact with one another bycalling (also calledinvoking) methods on each other and accessing each
other’s (or their own) fields. We have removed cast expressions since, as the authors of [27] themselves point out, the
presence ofdowncastsis unsound2; for this reason we call our calculusFJ¢. We also leave the constructor method as
implicit.

Before defining the calculus itself, we introduce some notational conventions that we will use in the remainder of
this paper.

Definition 1 (Notation). 1. A sequences of n elementsa1, . . . , an is denoted byan; the subscript can be omitted
when the exact number of elements in the sequence is not relevant.

2. We writea ∈ an whenever there exists somei ∈ {1, . . . ,n} such thata = ai.
3. We usen (wheren is natural number) to represent the sequence1, . . . ,n.
4. For a constant termc, cn represents the sequence ofn occurrences ofc.
5. The empty sequence is denoted byǫ, and concatenation on sequences bys1 · s2.
6. ℘ denotes thepowerset(set of all subsets) construction.

We use familiar meta-variables in our formulation to range over class names (C andD), field names (f), method
names (m) and variables (x). We distinguish the class nameObject (which denotes the root of the class inheritance
hierarchy in all programs) and the self variablethis3, used to refer to the receiver object in method bodies.

Definition 2 (FJ¢ Syntax). FJ¢ programsP consist of aclass tableCT , comprising theclass declarations, and an
expression eto be run (corresponding to the body of themain method in a real Java program). They are defined by
the grammar:

e ::= x | this | new C(e) | e.f | e.m(e)
fd ::= C f;

md ::= D m(C1 x1, . . . , Cn xn) {return e;}
cd ::= class C extends C’ {fd md} (C 6= Object)
CT ::= cd

P ::= (CT ,e)

From this point, all the concepts defined are program dependent (or more precisely, parametric on the class table);
however, since a program is essentially a fixed entity, it will be left as an implicit parameter in the definitions that
follow. This is done in the interests of readability, and is astandard simplification in the literature (e.g. [27]). We
only consider programs which conform to some sensible well-formedness criteria: that there are no cycles in the
inheritance hierarchy, and that fields and methods in any given branch of the inheritance hierarchy are uniquely
named. An exception is made to allow the redeclaration of methods, providing that only thebodyof the method
differs from the previous declaration (in the parlance of class-basedOO, this is calledmethod override).

We define the following functions to look up elements of classdefinitions.

Definition 3 (Lookup Functions). The following lookup functions are defined to extract the names of fields and
bodies of methods belonging to (and inherited by) a class.

1. The following functions retrieve the name of a class or field from its definition:

CN(class C extends D {fd md}) = C
FN(C f) = f

2. By abuse of notation, we will treat theclass table, CT, as a partial map from class names to class definitions:

CT (C) = cd if CN(cd) = C and cd∈ CT

2In the sense that typeable expressions can get stuck at runtime.
3Not a variable in the traditional sense, since it is not used to express a position in the method’s body where a parameter can be passed.
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3. The list of fields belonging to a classC (including those it inherits) is given by the functionF , which is defined
as follows:

F (Object) = ǫ
F (C) = F (C’) · f n if CT (C) = class C extends C’ {fdn md}

andFN(fdi) = fi for all i ∈ n.

4. The functionMb, given a class nameC and method namem, returns a tuple(x,e), consisting of a sequence of
the method’s formal parameters and its body:

Mb(C,m) = (xn,e) if CT (C) = class C extends C’ {fd md}, and there exist
C0,Cn such thatC0 m(C1 x1, . . . ,Cn xn) {return e;} ∈ md.

Mb(C,m) = Mb(C’,m) if CT (C) = classCextends C’ {fd md}, and there are no
C0, Cn, xn, esuch thatC0 m(C1 x1, . . . ,Cn xn) {return e;} ∈ md.

5. The functionVARS returns the set of variables used in an expression.

We impose the additional criterion that well-formed programs satisfy the following property:

if Mb(C,m) = (xn,eb) thenVARS(eb) \ {this} ⊆ {x1, . . . ,xn }

Substitutionof expressions for variables is the basic mechanism for reduction in our calculus: when a method is
invoked on an object (thereceiver) the invocation is replaced by the body of the method that is called, and each of the
variables is replaced by a corresponding argument.

Definition 4 (Reduction). 1. A term substitutionS= {x1 7→e1, . . . ,xn 7→en } is defined in the standard way as a
total function on expressions that systematically replaces all occurrences of the variablesxi by their correspond-
ing expressionei. We writeeS for S(e).

2. The reduction relation→ is the smallest relation on expressions satisfying:

new C(en).fi → ei for class nameC with F (C) = f n andi ∈ n,

new C(e).m(e’n) → eS for class nameC and methodm with Mb(C,m) = (xn,e),
whereS= { this 7→new C(e), x1 7→e’1, . . . , xn 7→e’n }

We call the left-hand term theredexand the right-hand thecontractum.
We add the usual congruence rules for allowing reduction in subexpressions, and the reflexive and transitive
closure of→ is denoted by→∗.

This notion of reduction isconfluent, which is easily shown by a standard ‘colouring’ argument (as is done in [11]
for LC).

2. Approximation Semantics

In this section, we define anapproximation semanticsfor FJ¢. The notion ofapproximantwas first introduced
by Wadsworth in [41] forLC. Essentially, approximants are partially evaluated expressions in which the locations of
incomplete evaluation (i.e. where reductionmaystill take place) are explicitly marked by the element⊥; thus, they
approximatethe result of computations; intuitively, an approximant can be seen as a ‘snapshot’ of a computation,
where we focus on that part of the resulting program which will no longer change (i.e. the observableoutput).

Example 5. To illustrate this concept, considerFJ¢ extended with numerals and arithmetic, and if-then-else construct,
and take the class table given in Figure 1. Let the notationn1:n2:. . .:nk:[] be shorthand for theFJ¢ expression:

new NonEmpty(n1, new NonEmpty(n2, . . . new NonEmpty(nk, new IntList()) . . . ))
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class IntList extends Object {

IntList square() { return new IntList(); }
IntList removeMultiplesOf(int n) { return new IntList(); }
IntList sieve() { return new IntList(); }

IntList listFrom(int n) { return new NonEmpty(n, this.listFrom(n+1)); }
IntList primes() { return this.listFrom(2).sieve(); }

}

class NonEmpty extends IntList {

int val;
IntList next;

IntList square() { return new NonEmpty(this.val * this.val, this.next.square()); }
IntList removeMultiplesOf(int n) {

if (this.val % n == 0) {
return this.next.removeMultiplesOf(n);

} else {
return new NonEmpty(this.val, this.next.removeMultiplesOf(n));

}
}
IntList sieve() {

return new NonEmpty(
this.val,
this.next.removeMultiplesOf(this.val).sieve();

);
}

}

Figure 1: The class table for the Sieve of Eratosthenes inFJ¢

Then which has the approximant
(1:2:3:[]).square() ⊥

→∗ 1:(2:3:[]).square() 1:⊥
→∗ 1:4:(3:[]).square() 1:4:⊥
→∗ 1:4:9:([]).square() 1:4:9:⊥
→∗ 1:4:9:[] 1:4:9:[]

In this case, the output is finite, and the final approximant isthe end-result itself. The class table in Figure 1 is also
able to calculate a (infinite) list of prime numbers using thewell-known ‘sieve of Eratosthenes’.
Then (where we abbreviateremoveMultiplesOf byrMO) which has the approximant

new IntList().primes() ⊥
→∗ (2:3:4:5:6:7:8:9:10:11:...).sieve() ⊥
→∗ 2:(3:(4:5:6:7:8:9:10:11:...).rMO(2)).sieve() 2:⊥
→∗ 2:3:(((5:6:7:8:9:10:11:...).rMO(2)).rMO(3)).sieve() 2:3:⊥
→∗ 2:3:5:(((7:8:9:10:11:...).rMO(2)).rMO(3)).rMO(5)).sieve() 2:3:5:⊥

...
...

In this case, the computation is infinite, and so is the output- there is no final approximant since the ‘result’ is never
reached and thus⊥ is in every approximant.

Approximate expressions and approximate normal forms forFJ¢ are defined below.
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Definition 6 (Approximate Expressions). 1. The set ofapproximateFJ¢ expressions is defined, essentially adding
⊥ as an expression, by the grammar:

a ::= x | ⊥ | a.f | a.m(an) | new C(an) (n ≥ 0)

2. The set ofapproximate normal forms, A, ranged over byA, is a strict subset of the set of approximate expres-
sions and is defined by the following grammar:

A ::= x | ⊥ | new C(An) (F (C) = fn)
| A. f | A.m(A) (A 6= ⊥, A 6= new C(An))

Notice that we consider⊥. f not in approximate normal form: it can be that⊥ hides an expression that reduces to an
objectnew C(An), in which case the field invocation can run, so disappears.

As can be expected, when we extend the notion of reduction so that field accesses and method calls on⊥ them-
selves reduce to⊥, we find that the approximate normal forms are normal forms with respect to this extended reduction
relation.

The notion of approximation is formalised through an approximation relation on expressions.

Definition 7 (Approximation Relation). Theapproximation relation⊑ is defined as the smallest preorder satisfying:

⊥ ⊑ A

A⊑ A’ & ∀i ≤ n [Ai ⊑ A’i ] ⇒







A. f ⊑ A’. f
new C(An) ⊑ new C(A’n)
A.m(An) ⊑ A’.m(A’n)

The relationship between the approximation relation and reduction is characterised by the following result.

Lemma 8. If A ⊑ e and e→∗ e’, then A⊑ e’.

PROOF. By induction on the definition of the length of reduction sequences; we only show the base case, which gets
shown by induction on the structure of approximate normal forms.

A= ⊥: Immediate, since⊥ ⊑ e’ by definition.

A= x: Thene= e’ = x.

A= A’. f : Thene= e”. f with A’ ⊑ e” . Also, sinceA’ 6= new C(An) it follows from Definition 7 thate” 6= new C(en).
Thuse is not a redex and the reduction must take place ine” , that ise’= e”’. f with e” → e”’ . Then, by induction,
A’ ⊑ e”’ and soA’. f ⊑ e”’. f .

A= A’.m(An): Thene= e0.m(en) with A’ ⊑ e0 andAi ⊑ ei for eachi ∈ n. SinceA’ 6= new C(A) it follows that
e0 6= new C(e’). Sincee is not a redex, there are only two possibilities for the reduction step:

1. e0 → e’0 ande’ = e’0.m(en). Then by inductionA’ ⊑ e’0 and so alsoA’.m(An)⊑ e’0.m(en).
2. ej → e’j for somej ∈ n ande’ = e0.m(e’n) with e’k = ek for eachk ∈ n such thatk 6= j. Then, clearly

Ak ⊑ e’k for eachk ∈ n such thatk 6= j. Also, by inductionAj ⊑ e’j. ThusA’.m(An)⊑ e0.m(e’n).

A= new C(An): Thene= new C(en) with Ai ⊑ ei for eachi ∈ n. Alsoej → e’j for somej ∈ n ande’= new C(e’n)
wheree’k = ek for eachk ∈ n such thatk 6= j. Then, clearlyAk ⊑ e’k for eachk ∈ n such thatk 6= j and by
inductionAj ⊑ e’j. Thus, by Definition 7,new C(An)⊑ new C(e’n). �

Notice that this property expresses that the observable behaviour of a program can only increase (in terms of⊑)
through reduction.

We also define ajoin operation on approximate expressions.
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Definition 9 (Join Operation). 1. Thejoin operation⊔ on approximate expressions is a partial mapping defined
as the reflexive and contextual closure of:

⊥ ⊔ a=⊥ ⊔ a= a

2. We extend the join operation to sequences of approximate expressions as follows:

⊔ ǫ = ⊥ ⊔ a · an = a⊔ ( ⊔ an)

The following lemma shows that⊔ acts as an upper bound on approximate expressions, and that it is closed over
the set of approximatenormalforms.

Lemma 10. 1. Let a1,a2 and a3 be approximate expressions, then

a1 ⊑ a3 & a2 ⊑ a3 ⇒ a1 ⊔ a2 ⊑ a3 & a1 ⊑ a1 ⊔ a2 & a2 ⊑ a1 ⊔ a2

(a1 ⊔ a2) ⊔ a3 = a1 ⊔ (a2 ⊔ a3)
a1 ⊔ a2 = a2 ⊔ a1

Moreover, if a1 and a2 arenormal, then so is a1 ⊔ a2 (when it is defined).
2. ⊔ An = A1 ⊔ . . . ⊔An.

PROOF. 1. By induction on the structure of expressions in approximate normal form; we show a more illustrating
case.

a1 = a’1. f , a2 = a’2. f , a’1 ⊑ a’, a’2 ⊑ a’: By induction, we havea’1 ⊔ a’2 ⊑ a’,a’1 ⊑ a’1 ⊔ a’2, anda’2 ⊑ a’1 ⊔
a’2. Then, by Definition 7, it immediately follows that(a’1 ⊔ a’2). f ⊑ a’. f , a’1. f ⊑ (a’1 ⊔ a’2). f , and
a’2. f ⊑ (a’1 ⊔ a’2). f . Then, by Definition 9,a1 ⊔ a2 = (a’1 ⊔ a’2). f .

Moreover, if a1 anda2 are normal, then by definition so area’1 anda’2, with botha’1 anda’2 being
neither⊥, nor of the formnew C(a”n). Then by inductiona’1 ⊔ a’2 is also normal, and by Definition 9
the join is neither equal to⊥ nor of the formnew C(a”n). Thus, by Definition 7,(a’1 ⊔ a’2). f = a1 ⊔ a2

is an approximate normal form.

2. By induction on the length of sequences. �

Definition 11 (Approximants). The functionA returns the set ofapproximantsof an expressioneand is defined by:

A(e) = {A | ∃ e’ [e→∗ e’ & A⊑ e’ ]}

Thus, an approximant of some expression is an approximate normal form that approximates some (intermediate)
stage of execution of that expression.

As for models ofLC, our approximation semantics equates pairs of expressionsthat are in the reduction relation,
as shown by the following theorem.

Theorem 12. e1 →
∗ e2 ⇒A(e1) = A(e2).

PROOF. ⊇: e1 →
∗ e2 & A∈ A(e2) ⇒ (Definition 11)

e1 →
∗ e2 & ∃e3 [e2 →

∗ e3 & A⊑ e3 ] ⇒
∃e3 [e1 →

∗ e3 & A⊑ e3 ] ⇒ (Definition 11)
A∈ A(e1)

⊆: e1 →
∗ e2 & A∈ A(e1) ⇒ (Definition 11)

e1 →
∗ e2 & ∃e3 [e1 →

∗ e3 & A⊑ e3 ] ⇒ (Church-Rosser)
∃e3,e4 [e1 →

∗ e2 & e2 →
∗ e4 & e1 →

∗ e3 & e3 →
∗ e4 & A⊑ e3 ] ⇒ (Lemma 8)

∃e4 [e2 →
∗ e4 & A⊑ e4 ] ⇒ (Definition 11)

A∈ A(e2) �

This result allows us to define a semantics forFJ¢ by interpreting expressions by the set of their approximants:

Definition 13 (Approximation Semantics). An approximation modelfor anFJ¢ program is a structure〈℘(A),⌈⌈·⌋⌋〉,
where the interpretation function⌈⌈·⌋⌋, mapping expressions to elements of the domain,℘(A), is defined by⌈⌈e⌋⌋ =
A(e).
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3. Type Assignment

Having defined a semantics forFJ¢, we continue by considering a type system forFJ¢ which is sound and complete
with respect to these semantics in the sense that every type assignable to an expression is also assignable to an
approximant of that expression and vice-versa. Notice that, since in approximants redexes are replaced by⊥, this
result is not an immediate consequence of subject reduction; moreover, it is the type derivation itself which determines
the approximant in question. This relationship is formalised in the next section.

The type assignment system defined below follows in theintersection type discipline; it is influenced by the
predicate system for the object calculus [6], and is ultimately based upon the strict intersection type system forLC

(see [2] for a survey). Our types can be seen as describing thecapabilities of an expression (or rather, the object to
which that expression evaluates) in terms of (1) the operations that may be performed on it (i.e. accessing a field or
invoking a method), and (2) theoutcomeof performing those operations, where dependencies between the inputs
and outputs of methods are tracked using (type) variables. In this way, our types express detailed properties about
the contexts in which expressions can safely be used. More intuitively, they capture a certain notion ofobservational
equivalence: two expressions with the same set of assignable types will be observationally indistinguishable. Our
types thus constitutesemantic predicates, so for this reason (and also to distinguish them from the already existing
Java class types) we call them predicates.

Definition 14 (Predicates).The set ofpredicates(ranged over byφ, ψ) and its subset ofstrict predicates (ranged
over byσ) are defined by the following grammar (whereϕ ranges over a denumerable set ofpredicate variables, and
C ranges over the set of class names):

φ,ψ ::= ω | σ | φ∩ψ

σ ::= ϕ | C | 〈 f : σ〉 | 〈m : (φ1, . . . ,φn)→ σ〉 (n ≥ 0)

The key feature of predicates is that they may group information about many operations together intointersections
from which any specific one can be selected for an expression as demanded by the context in which it appears. In
particular, an intersection may combine two or more different (even non-unifiable) analyses of thesamefield or
method.

In the language of intersection type systems, our predicates arestrict in the sense of [2], since they must describe
the outcome of performing an operation in terms of a(nother)singleoperation rather than an intersection. We include
a predicate constant for each class, which we can use to type objects which therefore always have a type, like for the
case when an object does not contain any fields or methods (as is the case forObject) or, more generally, because
no fields or methods can be safely invoked. The predicate constant ω is a top (maximal) type, assignable to all
expressions.

Thesubpredicaterelation facilitates the selection of individual behaviours from an intersection.

Definition 15 (Subpredicate Relation).The subpredicate relationP is the smallest preorder satisfying the following
conditions:

φ P ω for all φ
φ∩ψ P φ
φ∩ψ P ψ

φ P ψ & φ P ψ′ ⇒ φ P ψ∩ψ′

We write∼ for the equivalence relation generated byP, extended by

σ ∼ σ′ ⇒ 〈 f : σ〉 ∼ 〈 f : σ′〉
∀i ∈ n [φ′

i ∼ φ′
i ] & σ ∼ σ′ ⇒ 〈m : (φ1, . . . ,φn)→ σ〉 ∼ 〈m : (φ′

1, . . . ,φ′
n)→ σ′〉

We consider predicates modulo∼; in particular, all predicates in an intersection are different andω does not
appear in an intersection. Notice also that∩ is associative, so we will abuse notation slightly and writeσ1 ∩ . . .∩σn

(wheren ≥ 2) to denote a general intersection. In a further abuse of notation, φ1 ∩ . . .∩φn will denote the predicate
φ1 whenn = 1, andω whenn = 0.
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(OBJ) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = f n)
Π ⊢ new C(en) :C

(VAR) : (φ P σ)
Π,x:φ ⊢ x: σ

(INVK ) :
Π ⊢ e: 〈m : (φn)→ σ〉 Π ⊢ e1 : φ1 . . . Π ⊢ en : φn

Π ⊢ e.m(en) : σ
(FLD) :

Π ⊢ e: 〈 f : σ〉

Π ⊢ e. f : σ

(NEWM) :
this:ψ,x1:φ1, . . . ,xn:φn ⊢ eb : σ Π ⊢ new C(e) : ψ

(Mb(C, m) = (xn,eb))
Π ⊢ new C(e) : 〈m : (φn)→ σ〉

(NEWF) :
Π ⊢ e1 :φ1 . . . Π ⊢ en :φn

(F (C) = f n, i ∈ n, σ = φi)
Π ⊢ new C(en) : 〈fi : σ〉

(JOIN) :
Π ⊢ e: σ1 . . . Π ⊢ e: σn

(n ≥ 2)
Π ⊢ e: σ1 ∩ . . . ∩ σn

(ω) :
Π ⊢ e:ω

Figure 2: Predicate Assignment forFJ¢

Definition 16 (Predicate Environments). 1. A predicate statementis of the forme:φ, wheree is called thesub-
ject of the statement.

2. An environmentΠ is a set of predicate statements with (distinct) variables as subjects;Π,x:φ stands for the
environmentΠ ∪ {x:φ} (so then eitherx does not appear inΠ or x:φ ∈ Π), andx:φ for ∅,x:φ.

3. We extendP to environments by: Π′ P Π ⇔ ∀x:φ ∈ Π ∃ φ′ P φ [x:φ′ ∈ Π′ ].
4. If Πn is a sequence of environments, then

⋂

Πn is the environment defined as follows:x:φ1 ∩ . . .∩φm ∈
⋂

Πn,
if and only if,{x:φ1, . . . ,x:φm } is the non-empty set of all statements in the union of the environments that have
x as the subject.

We will now define our notion of predicate assignment, which is a slight variant of the system defined in [9].

Definition 17 (Predicate Assignment).Predicate assignment forFJ¢ is defined by the natural deduction system given
in Figure 2.

The predicate assignment rules in fact operate on the largerset of approximate expressions, but for clarity we abuse
notation slightly and use the meta-variablee for expressions rather thana. Note that there is no special rule for typing
⊥, meaning that if⊥appears in a term, then some part of that term, containing that ⊥, is typed withω.

The rules of our predicate assignment system are fairly straightforward generalisations of the rules of the strict
intersection type assignment system forLC to OO: e.g. (FLD) and (INVK ) are analogous to(→E); (NEWF) and
(NEWM) are a form of(→I); and(OBJ) can be seen as a universal(ω)-like rule for objectsonly. The only non-
standard rule from the point of view of similar work forTRS and traditional nominalOO type systems is(NEWM),
which derives a predicate for an object that presents an analysis of a method that is available in that object. It makes
sense, however, when viewed as an(→I) rule. Like that rule, the analysis involves typing the body of the abstraction
(i.e. the method body), and the assumptions (i.e. requirements) on the formal parameters are encoded in the derived
predicate (to be checked on invocation). However, a method body may also make requirements on thereceiver,
through the use of the variablethis. In our system we check that these holdat the same timeas typing the method
body (so-calledearly self typing)4. This checking of requirements on the object itself is wherethe expressive power
of our system resides. If a method calls itself recursively,this recursive call must be checked, but – crucially – carries
a differentpredicate if a valid derivation is to be found. Thus only recursive calls which terminate at a certain point
(i.e. which can then be assignedω or C, and thus ignored) will be permitted by the system.

As is standard for intersection type assignment systems, our system exhibits both subject reductionand subject
expansion. First we show:

4Late self typing would check the type of the receiver at the point of method invocation.
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Lemma 18 (Weakening).Let Π′ P Π; thenΠ ⊢ e: φ ⇒ Π′ ⊢ e: φ.

PROOF. By easy induction on the structure of derivations. The basecase of(ω) follows immediately, and for(VAR)
it follows by transitivity of the subpredicate relation. �

Lemma 19. 1. (Replacement) If x1:φ1, . . . ,xn:φn ⊢ e: φ and there existsΠ anden such thatΠ ⊢ ei : φi for each
i ∈ n, thenΠ ⊢ eS : φ whereS= {x1 7→ e1, . . . ,xn 7→ en }.

2. (Extraction) For an expression e and term substitutionS= {x1 7→ e1, . . . ,xn 7→ en } with VARS(e)⊆{x1, . . . ,xn },
if Π ⊢ eS : φ, then there areφn such thatΠ ⊢ ei : φi for eachi ∈ n and x1:φ1, . . . ,xn:φn ⊢ e: φ.

PROOF. 1. By induction on the structure of derivations.

(ω): Immediate.

(VAR): Thene= xi for somei ∈ n andeS = ei. Also, φ = σ with φi P σ, thusφi = σ1 ∩ . . .∩σn andσ = σj for
somej ∈ n. SinceΠ ⊢ ei : φi it follows from rule(JOIN) thatΠ ⊢ ei : σk for eachk ∈ n. So, in particular,
Π ⊢ ei : σj.

The other cases follow straightforwardly by induction.

2. Also by induction on the structure of derivations.

(ω): By the(ω) rule,Π ⊢ ei : ω for eachi ∈ n andx1:ω, . . . ,xn:ω ⊢ e: ω.

(VAR): Thenφ is a strict predicate (hereafter calledσ), andx:ψ ∈ Π with ψ P σ. Also, it must be thate= xi

for somei ∈ n andei = x. We then takeφi = σ andφj = ω for eachj ∈ n such thatj 6= i. By assumption
Π ⊢ x: σ (that isΠ ⊢ ei : φi). Also, by the(ω) rule, we can deriveΠ ⊢ ej : ω for eachj ∈ n such thatj 6= i.
Lastly, by(VAR) we havex1:ω, . . . ,xi:σ, . . . ,xn:ω ⊢ xi : σ.

(NEWF): TheneS = new C(e’n′ ) andφ = 〈 f : σ〉 with F (C) = fn′ and f = fj for somej ∈ n′. Also, there is

φn′ such thatΠ ⊢ e’k′ : φk′ for eachk′ ∈ n′, andσ P φj. There are two cases to consider fore:

(a) e= xi for somei ∈ n. Thenei = new C(e’n′ ). Takeφi = 〈 f : σ〉 andφk = ω for eachk ∈ n such
that k 6= i. By assumption we haveΠ ⊢ new C(e’n′ ) : 〈 f : σ〉 (that isΠ ⊢ ei : φi). Also, by rule(ω)
Π ⊢ ek : ω for eachk ∈ n such thatk 6= i, and lastly by rule(VAR) Π′ ⊢ xi : 〈 f : σ〉 whereΠ′ =
x1:ω, . . . ,xi:〈 f : σ〉, . . . ,xn:ω.

(b) e= new C(e”n′ ) with e”k′
S = e’k′ for eachk′ ∈ n′. Notice VARS(e”k′ ) ⊆ VARS(e) ⊆ {x1, . . . ,xn }

for eachk′ ∈ n′. So, by induction, for eachk′ ∈ n′ there isφk′n such thatΠ ⊢ ei : φk′i
for each

i ∈ n andΠk′ ⊢ e”k′ : φk′ whereΠk′ = x1:φk′
1
, . . . ,xn:φk′n

. Let the environmentΠ′ =
⋂

Πn′ , that is

Π
′ = x1:φ11

∩ . . .∩φn′
1
, . . . ,xn:φ1n ∩ . . .∩φn′

n
. Notice thatΠ′ P Πk′ for eachk′ ∈ n′, so by Lemma 18

Π′ ⊢ e”k′ : φk′ for eachk ∈ n′. Then by(NEWF) Π′ ⊢ new C(e”n′ ) : 〈 f : σ〉. Lastly, by(JOIN) we can
deriveΠ ⊢ ei : φ1i

∩ . . .∩φn′
i
for eachi ∈ n.

The other cases are similar to that for(NEWF). �

We can now show that type assignment is closed under reduction as well as under expansion.

Theorem 20 (Subject reduction and expansion).Let e→ e’; thenΠ ⊢ e: φ if, and only if,Π ⊢ e’ : φ.

PROOF. By induction on the definition of reduction. We show the cases for the two kinds of redex and one inductive
case (the others are similar). We show only the reasoning forthe case thatφ is strict; whenφ = ω the result follows
immediately since we can always type bothe ande’ using the(ω) rule, and whenφ is an intersection we can reason
that the result holds for each strict predicate in the intersection, and then apply the(JOIN) rule.

F (C) = f n ⇒ new C(en).fj → ej, j ∈ n: if: AssumeΠ ⊢ new C(en).fj : σ. The last rule applied in this derivation
must be(FLD) so Π ⊢ new C(en) : 〈fj : σ〉. This in turn must have been derived using the(NEWF) rule
and so there areφ1, . . . ,φn such thatΠ ⊢ ei : φi for eachi ∈ n. Furthermore,σ P φj and so it must be that
φj = σ. ThusΠ ⊢ ej : σ.
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class Combinator extends Object {
Combinator app(Combinator x) { return this; }

}

class K extends Combinator {
Combinator app(Combinator x) { return new K1(x); }

}

class K1 extends K {
Combinator x;
Combinator app(Combinator y) { return this.x; }

}

class S extends Combinator {
Combinator app(Combinator x) { return new S1(x); }

}

class S1 extends S {
Combinator x;
Combinator app(Combinator y) { return new S2(this.x, y); }

}

class S2 extends S1 {
Combinator y;
Combinator app(Combinator z) { return this.x.app(z).app(this.y.app(z)); }

}

Figure 3: The class table for Object-Oriented Combinatory Logic (OOCL) programs

only if: AssumeΠ ⊢ ej : σ. Notice that using(ω) we can deriveΠ ⊢ ei : ω for eachi ∈ n such thati 6= j. Then,
using the(NEWF) rule, we can deriveΠ ⊢ new C(en) : 〈fj : σ〉 and by(FLD) alsoΠ ⊢ new C(en).fj : σ.

Mb(C,m) = (xn,eb)⇒ new C(e’).m(en)→ eb
S whereS= {this 7→ new C(e’),x1 7→ e1, . . . ,xn 7→ en }:

if: AssumeΠ ⊢ new C(e’).m(en) : σ. The last rule applied in the derivation must be(INVK ), so there
is φn such thatΠ ⊢ new C(e’) : 〈m : (φn)→ σ〉 and Π ⊢ ei : φi for eachi ∈ n. Furthermore, the last
rule applied in the derivation ofΠ ⊢ new C(e’) : 〈m : (φn)→ σ〉 must be(NEWM) and so there is some
predicateψ such thatΠ ⊢ new C(e’) : ψ andΠ′ ⊢ eb : σ whereΠ′ = this:ψ,x1:φi, . . . ,xn:φn. Then from
Lemma 19(1) it follows thatΠ ⊢ eb

S : σ.

only if: Assume thatΠ ⊢ eb
S : σ. Then by Lemma 19(2) it follows that there isψ, φn such thatΠ′ ⊢ eb : σ

whereΠ′ = this:ψ,x1:φi, . . . ,xn:φn with Π ⊢ new C(e’) : ψ and Π ⊢ ei : φi for eachi ∈ n. By the
(NEWM) rule we can then deriveΠ ⊢ new C(e’) : 〈m : (φn)→ σ〉, and by the(INVK ) rule thatΠ ⊢
new C(e’).m(en) : σ.

e→ e’ ⇒ e.f→ e’. f: if: Assume thatΠ ⊢ e.f : σ. The last rule applied in the derivation must be(FLD) and so we
have thatΠ ⊢ e: 〈 f : σ〉. By induction,Π ⊢ e’ : 〈 f : σ〉, and so by(FLD) thatΠ ⊢ e’. f : σ.

only if: Assume thatΠ ⊢ e’. f : σ. The last rule applied in the derivation must be(FLD) and so we have that
Π ⊢ e’ : 〈 f : σ〉. By induction,Π ⊢ e: 〈 f : σ〉, and so by(FLD) thatΠ ⊢ e.f : σ. �

4. Expressivity

In this section we consider the formal expressivity of ourOO calculus and predicate system. We show thatFJ¢ is
Turing complete by defining an encoding of Combinatory Logic(CL). Through the approximation result of the next
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section all normalisableOOCL-expressions can be assigned a non-trivial predicate in oursystem. Thus, we have a
predicate-based characterisation of all (terminating) computable functions inOO (see Theorem 73).

Combinatory Logic is a Turing complete model of computationdefined by H.B. Curry [17] independently ofLC.
It is a higher-orderTRS consisting of the function symbolsS,K and the following rewrite rules:

K x y → x
S x y z → x z (y z)

Our encoding ofCL in FJ¢ is based on a Curryfied first-order version of the system above(see [7] for details), where the
rules forS andK are expanded so that each new rewrite rule has asingleoperand, allowing for the partial application
of function symbols. Application, the basic engine of reduction in TRS, is modelled via the invocation of a method
namedapp. The reduction rules of CurryfiedCL each apply to (or are ‘triggered’ by) different ‘versions’ of the S

andK combinators; in our encoding these rules are implemented bythe bodies of five different versions of theapp
method which are each attached to different classes representing the different versions of theS andK combinators. In
order to make our encoding a valid (typeable) program in fullJava, we have defined aCombinator class containing
anapp method from which all the others inherit, essentially acting as aninterfaceto which all encoded versions ofS

andK must adhere.

Definition 21. The encoding of Combinatory Logic (CL) into theFJ¢ programOOCL (Object-Oriented Combinatory
Logic) is defined using the execution context given in Figure3 and the function⌈⌈·⌋⌋ which translates terms ofCL into
FJ¢ expressions, and is defined as follows:

⌈⌈x⌋⌋ = x
⌈⌈t1t2⌋⌋ = ⌈⌈t1⌋⌋.app(⌈⌈t2⌋⌋)
⌈⌈K⌋⌋ = new K()
⌈⌈S⌋⌋ = new S()

The reduction behaviour ofOOCL mirrors that ofCL.

Theorem 22. If t 1, t2 are terms ofCL and t1 →
∗ t2, then⌈⌈t1⌋⌋ →

∗ ⌈⌈t2⌋⌋ in OOCL.

PROOF. By induction on the definition of reduction inCL; we only show the case forS:

⌈⌈S t1 t2 t3⌋⌋ =∆

((new S().app(⌈⌈t1⌋⌋)).app(⌈⌈t2⌋⌋)).app(⌈⌈t3⌋⌋) →
((new S1(⌈⌈t1⌋⌋)).app(⌈⌈t2⌋⌋)).app(⌈⌈t3⌋⌋) →
(new S2(this.x,y)).app(⌈⌈ t3⌋⌋) [this 7→ new S1(⌈⌈t1⌋⌋), y 7→ ⌈⌈t2⌋⌋] =
(new S2(new S1(⌈⌈t1⌋⌋).x,⌈⌈t2⌋⌋)).app(⌈⌈t3⌋⌋) →
(new S2(⌈⌈t1⌋⌋,⌈⌈t2⌋⌋).app(⌈⌈t3⌋⌋) →
this.x.app(z).app(this.y.app(z)) [this 7→ new S2(⌈⌈t1⌋⌋,⌈⌈t2⌋⌋), z 7→ ⌈⌈t3⌋⌋] =
((new S2(⌈⌈t1⌋⌋,⌈⌈t2⌋⌋).x.app(⌈⌈t3⌋⌋)).app(new S2(⌈⌈t1⌋⌋.⌈⌈t2⌋⌋).y.app(⌈⌈t3⌋⌋)) →∗

(⌈⌈t1⌋⌋.app(⌈⌈t3⌋⌋)).app((⌈⌈t2⌋⌋).app(⌈⌈t3⌋⌋)) =∆

⌈⌈t1 t3 (t2 t3)⌋⌋

The case forK is similar, and the rest is straightforward. �

Given the Turing completeness ofCL, this result shows thatFJ¢ is also Turing complete. Although we are sure
this does not come as a surprise, it is a nice formal property for our calculus to have. In addition, our type system can
perform the same ‘functional’ analysis asITD does forLC andCL. This is illustrated by atype preservationresult. We
describe Curry’s type system forCL and then show we can give equivalent types toOOCL programs.

Definition 23 (Curry Type Assignment for CL ). 1. The set ofsimple types(or Curry types) is defined by the
following grammar:

τ ::= ϕ | τ → τ
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(VAR)
this:〈x : σ〉,y:σ′ ⊢ this : 〈x : σ〉

(FLD)
this:〈x : σ〉,y:σ′ ⊢ this.x :σ

(VAR)
this:K,x:σ ⊢ x : σ

(NEWF)
this:K,x:σ ⊢ new K1(x) : 〈x : σ〉

(NEWM)
this:K,x:σ ⊢ new K1(x) : 〈app : (σ′)→ σ〉

(OBJ)
∅ ⊢ new K() :K

(NEWM)
∅ ⊢ new K() : 〈app : (σ)→ 〈app : (σ′)→ σ〉〉

Let σ1 = 〈app : (σ)→ 〈app : (σ′)→ σ′′〉〉, and σ2 = 〈app : (σ)→ σ′〉, Π′ = this:〈x : σ1〉,y:σ2, and Π =
this:〈x : σ1〉 ∩ 〈y : σ2〉,z:σ. Then

..

..

..

..

..

..

.

(VAR)
Π ⊢ this : 〈x : 〈app : (σ)→ 〈app : (σ′)→ σ′′〉〉〉

(FLD)
Π ⊢ this.x : 〈app : (σ)→ 〈app : (σ′)→ σ′′〉〉

(VAR)
Π ⊢ z : σ

(NEWM)
Π ⊢ this.x.app(z) : 〈app : (σ′)→ σ′′〉

(VAR)
Π ⊢ this : 〈y : 〈app : (σ)→ σ′〉〉

(FLD)
Π ⊢ this.y : 〈app : (σ)→ σ′〉

(VAR)
Π ⊢ z :σ

(INVK )
Π ⊢ this.y.app(z) :σ′

..

..

.

(INVK )
Π ⊢ this.x.app(z).app(this.y.app(z)) :σ′′

(VAR)
Π

′ ⊢ this : 〈x : σ1〉
(FLD)

Π
′ ⊢ this.x : σ1

(NEWF)
Π

′ ⊢ new S2(this.x,y) : 〈x :σ1〉

(VAR)
Π

′ ⊢ y : σ2
(NEWF)

Π
′ ⊢ new S2(this.x,y) : 〈y : σ2〉

..

..

(JOIN)
Π

′ ⊢ new S2(this.x,y) : 〈x : σ1〉∩ 〈y :σ2〉
(NEWM)

Π
′ ⊢ new S2(this.x,y) : 〈app : (σ)→ σ′′〉

(VAR)
this:S,x:σ1 ⊢ x : σ1

(NEWF)
this:S,x:σ1 ⊢ new S1(x) : 〈x : σ1〉

(NEWM)
this:S,x:σ1 ⊢ new S1(x ) : 〈app : (σ2)→ 〈app : (σ)→ σ′′〉〉

(OBJ)
∅ ⊢ new S() :S

..

..

..

..

.

(NEWM)
∅ ⊢ new S() : 〈app : (σ1)→ 〈app : (σ2)→ 〈app : (σ)→ σ′′〉〉〉

Figure 4: Derivation schemes for the translations ofS andK

2. A basis Bis a mapping from variables to Curry types, written as a set ofstatements of the formx:τ in which
each of the variablesx is distinct.

3. Simple types are assigned toCL-terms using the following natural deduction system:

(VAR) : (x:τ ∈ B)
B⊢CL x:τ (→E) :

B⊢CL t1:τ → τ′ B⊢CL t2:τ

B⊢CL t1t2:τ′

(K) : B⊢CL K:τ → τ′ → τ (S) : B⊢CL S:(τ → τ′ → τ′′)→ (τ → τ′)→ τ → τ′′

To show type preservation, we need to define what the equivalent of Curry’s types are in terms of predicates. To
this end, we define the following translation of Curry types.

Definition 24 (Type Translation). The function⌈⌈·⌋⌋, which transforms Curry types into predicates5, is defined as
follows:

⌈⌈ϕ⌋⌋ = ϕ
⌈⌈τ → τ′⌋⌋ = 〈app : (⌈⌈τ⌋⌋)→ ⌈⌈τ′⌋⌋〉

It is extended to bases as follows:⌈⌈B⌋⌋= {x:⌈⌈τ⌋⌋ | x:τ ∈ B}.

We can now show the type preservation result.

5Note we haveoverloadedthe notation⌈⌈·⌋⌋, which we also use for the translation ofCL terms toFJ¢ expressions.
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Theorem 25 (Preservation of Types).If B ⊢CL t:τ then⌈⌈B⌋⌋ ⊢ ⌈⌈t⌋⌋ :⌈⌈τ⌋⌋.

PROOF. By induction on the derivation ofB⊢CL t:τ. The cases for(VAR) and(→E) are trivial. For the rules(K) and
(S), Figure 4 gives derivation schemas for assigning the translation of the respective Curry type schemes to theOOCL

translations ofK andS. �

Furthermore, since Curry’s well-known translation of the simply typedLC into CL preserves typeability, we also
construct a type-preserving encoding ofLC into FJ¢. It is straightforward to extend this preservation result to full-
blown strict intersection types. We stress that this resultreally demonstrates the validity of our approach. Indeed,
our type system actually has more power than intersection type systems forCL, since there not all normal forms are
typeable using strict types, whereas in our system they are.

5. Strong Normalisation of Derivation Reduction

The approximation result we show in the next section is, as inother systems [3, 8], a direct consequence of the
strong normalisability of derivation reduction6 which we will define in this section.

The notion ofderivation reductionis essentially a form of cut-elimination on predicate derivations, defined through
the following two basic ‘cut’ rules:

D1

Π ⊢ e1 : φ1 · · ·

Dn

Π ⊢ en : φn
(NEWF)

Π ⊢ new C(en) : 〈fi : σ〉
(FLD)

Π ⊢ new C(en).fi : σ

→D

Di

Π ⊢ ei : σ

Db

this:ψ,x1:φ1, . . . ,xn:φn ⊢ eb : σ

Dself

Π ⊢ new C(e’) : ψ
(NEWM)

Π ⊢ new C(e’) : 〈m : (φn)→ σ〉

D1

Π ⊢ e1 : φ1 · · ·

Dn

Π ⊢ en : φn
(INVK )

Π ⊢ new C(e’).m(en) : σ

→D

Db
S

Π ⊢ eb
S : σ

whereDb
S is the derivation obtained fromDb by replacing all sub-derivations of the form〈VAR〉 :: Π,xi:φi ⊢ xi : σ by

appropriately typed sub-derivations ofDi, and sub-derivations of the form〈VAR〉 :: Π,this:ψ ⊢ this : σ by appropri-
ately typed sub-derivations ofDself. Similarly,eb

S is the expression obtained fromeb by replacing each variablexi by
the expressionei, and the variablethis by new C(e’). This reduction creates exactly the derivation for a contractum
as suggested by the proof of the subject reduction, but is explicit in all its details, which gives the expressive power
to show the approximation result. An important feature of derivation reduction is that sub-derivations of the form
〈ω〉 :: Π ⊢ e: ω do not reduce (althoughe might) - they are already in normal form. This is crucial for the strong
normalisability of derivation reduction, since it decouples the reduction of a derivation from the possibly infinite
reduction sequence of the expression which it types.

Definition 26 (Notation for Derivations). The meta-variableD ranges over derivations. We will use the notation
〈D1, . . . ,Dn,r〉 :: Π ⊢ e: φ to represent the derivation concluding with the judgementΠ ⊢ e: φ where the last rule
applied isr andD1, . . . ,Dn are the (sub) derivations for each of that rule’s premises. By abuse of notation, we may
sometimes writeD :: Π ⊢ e: φ for D = 〈D1, . . . ,Dn,r〉 :: Π ⊢ e: φ when the structure ofD is not relevant, and simply
write 〈D1, . . . ,Dn,r〉 when the conclusion of the derivation is not relevant or is implied by the context.

We also introduce some further notational concepts to aid usin describing and reasoning about the structure and
reduction of derivations. The first of these is the notion ofpositionwithin an expression or derivation. We then
extend expressions and derivations with a notion of placeholder, so that we can refer to and reason about specific
subexpressions and subderivations.

6As in [8], we need to consider derivation reduction; since reduction on expressions isweak, the ‘normal’ approach (as used in [2]) to show the
approximation result does not work.
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Definition 27 (Position). Thepositionp of one (sub) expression – similarly of one (sub) derivation –within another,
denoted bypos(e, e’) – or pos(D, D′) – is a partial function on a pair of expressions or derivations, and returns, if
defined, a non-empty sequence of integers:

1. Positions within expressions are defined inductively as follows:

pos(e, e) = 0

pos(e’, e) = p ⇒

{

pos(e’, e.f) = 0 · p

pos(e’, e.m(e)) = 0 · p

pos(e’, ej) = p with j ∈ n ⇒

{

pos(e’, e.m(en)) = j · p

pos(e’, new C(en)) = j · p

2. Positions within derivations are defined inductively as follows:

pos(D, D) = 0

pos(D, D′) = pos(D, 〈Db,D′, NEWM〉)
pos(D, Dj) = p with j ∈ n ⇒ pos(D, 〈Dn, JOIN〉) = p

pos(D, D′) = p ⇒

{

pos(D, 〈D′, FLD〉) = 0 · p

pos(D, 〈D′,Dn, INVK 〉) = 0 · p

pos(D, Dj) = p with j ∈ n ⇒







pos(D, 〈D′,Dn, INVK 〉) = j · p

pos(D, 〈Dn, OBJ〉) = j · p

pos(D, 〈Dn, NEWF〉) = j · p

Notice that due to the(JOIN) rule, sub-derivations indicated by positions in derivations are not necessarily
unique.

3. We define the following terminology:

• We say thate’ (D′) appears at positionp within e (D) if pos(e’, e) = p (pos(D′, D) = p).

• We say that positionp exists within e(D) if there exists somee’ (D′) that appears at positionp within e
(D).

Definition 28 (Expression Contexts). 1. An expression contextC is an expression containing a unique ‘hole’
(denoted by[ ]) defined by the following grammar:

C ::= [ ] | C. f | C.m(e) | e.m(. . . ,ei−1,C,ei+1, . . .) | new C( . . . ,ei−1,C,ei+1, . . .)

2. C[e] denotes the expression obtained by replacing the hole inC with e.
3. We writeCp to indicate that the hole inC appears at positionp.
4. ContextsCp wherep = 0n, for somen ≥ 1, are calledneutral.
5. Expressions of the formC[x] whereC is neutral are also called neutral.

The following is easy to show:

Proposition 29. Approximate expressions of the form A. f and A.m(A) are neutral.

We also use the notion ofderivation contextthat is like a derivation, but concluding with a statement assigning a
strict predicate to a neutral context, essentially adding the inference rule:

([ ])
Π ⊢ [ ] : σ

Definition 30 (Derivation Contexts). 1. A derivation contextD(p,σ), where we mark at which position the hole
appears, and which strict type it gets assigned, is inductively defined as a generalisation over derivations by:

(a) D(0,σ) = 〈[ ]〉 :: Π ⊢ [ ] : σ is a derivation context.
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(b) If D(p,σ) :: Π ⊢ C : 〈 f : σ′〉 is a derivation context, thenD′
(0·p,σ) = 〈D, FLD〉 :: Π ⊢ C. f : σ′ is also a deriva-

tion context.
(c) if D(p,σ) :: Π ⊢ C : 〈m : (φn)→ σ′〉 is a derivation context andDn is a sequence of derivations such that

Di :: Π ⊢ e: φi for eachi ∈ n, thenD′
(0·p,σ) = 〈D,Dn, INVK 〉 :: Π ⊢ C.m(en) : σ′ is also a derivation

context.

2. For a derivationD :: Π ⊢ e: σ and derivation contextD(p,σ) :: Π ⊢ C : σ′, we writeD(p,σ)[D] :: Π ⊢ C[e] : σ′ to
denote the derivation obtained by replacing the hole inD by D.

We now define an explicitderivation weakeningoperation on derivations, which is straightforwardly extended
to derivation contexts. This will be crucial in defining our notion of computabilitywhich we will use to show that
derivation reduction is strongly normalising.

Definition 31 (Weakening). A weakening, written [Π′ P Π] whereΠ′ P Π, is an operation that replaces environ-
ments by sub-environments. For derivationsD :: Π ⊢ e: φ, D[Π′ P Π] is defined as the derivationD′ of exactly
the same shape (using the same rules in the same order, deriving the same type for the same expression, but using a
different context) asD such thatD′ :: Π′ ⊢ e: φ.

The following two basic properties of the weakening operation on derivations will be needed later when showing
that it preserves computability.

Proposition 32. Let Π1,Π2,Π3 and Π4 be predicate environments such thatΠ2 P Π1, and Π3 P Π1; Π4 P Π2,
andΠ4 P Π3; andD be a derivation such thatD :: Π1 ⊢ e: φ. Then

1. (D[Π2 P Π1])[Π4 P Π2] =D[Π4 P Π1].
2. (D[Π2 P Π1])[Π4 P Π2] = (D[Π3 P Π1])[Π4 P Π3].

PROOF. Easy. �

We also show the following property of weakening for derivation contexts and substitutions, which will be used
in the proof of Lemma 55 to show that computability is preserved by derivation expansion.

Lemma 33. LetD(p,σ) :: Π ⊢ Cp : φ be a derivation context andD :: Π ⊢ e: σ be a derivation. Also, let[Π′ P Π] be
a weakening. Then

D(p,σ)[D][Π′ P Π] = D(p,σ)[Π
′ P Π][D[Π′ P Π]]

PROOF. By induction on the structure of derivation contexts. �

We now define two sets of derivations: the strong andω-safe derivations. The idea behind these kinds of derivation
is to restrict the use of the(ω) rule in order to preclude non-termination (i.e. guarantee normalisation). In strong
derivations, we do not allow the(ω) rule to be used at all. This restriction is relaxed slightly for ω-safe derivations
in that ω may be used to type the arguments to a method call. The idea behind this is that when those arguments
disappear during reduction it is ‘safe’ to type them withω since non-termination at these locations can be ignored.
We will show later that our definitions do indeed entail the desired properties, since expressions typeable using strong
derivations are strongly normalising, and expressions which can be typed withω-safe derivations using anω-safe
environment, while not necessarily being strongly normalising, have a normal form.

Definition 34 (Strong andω-safe Derivations). 1. Strong derivationsare defined as in Definition 17, but by ex-
cluding rule(ω).

2. ω-safe derivations are defined inductively as follows:

• 〈VAR〉 :: x:φ ⊢ x: σ is ω-safe for anyφ andσ.

• 〈Dn, JOIN〉, 〈Dn, OBJ〉 and〈Dn, NEWF〉 areω-safe, if each derivationDi is ω-safe.

• 〈D, FLD〉 is ω-safe, ifD is ω-safe.
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..

..

(VAR)
this:〈x : ϕ1〉,y:ϕ2 ⊢ this : 〈x : ϕ1〉

(FLD)
this:〈x : ϕ1〉,y:ϕ2 ⊢ this.x : ϕ1

(VAR)
this:K,x:ϕ1 ⊢ x : ϕ1

(NEWF)
this:K,x:ϕ1 ⊢ new K1(x) : 〈x : ϕ1〉

(NEWM)
this:K,x:ϕ1 ⊢ new K1(x) : 〈app : (ϕ2)→ ϕ1〉

(VAR)
x:ϕ1,y:ϕ2 ⊢ new K() :K

(NEWM)
x:ϕ1,y:ϕ2 ⊢ new K() : 〈app : (ϕ1)→ 〈app : (ϕ2)→ ϕ1〉〉

(VAR)
x:ϕ1,y:ϕ2 ⊢ x : ϕ1

(INVK )
x:ϕ1,y:ϕ2 ⊢ new K().app(x) : 〈app : (ϕ2)→ ϕ1〉

(VAR)
x:ϕ1,y:ϕ2 ⊢ y : ϕ2

(INVK )
x:ϕ1,y:ϕ2 ⊢ new K().app(x).app(y) : ϕ1

..

(VAR)
this:〈x : ϕ〉,y:ω ⊢ this : 〈x : ϕ〉

(FLD)
this:〈x : ϕ〉,y:ω ⊢ this.x : ϕ

(VAR)
this:K,x:ϕ ⊢ x : ϕ

(NEWF)
this:K,x:ϕ ⊢ new K1(x) : 〈x : ϕ〉

(NEWM)
this:K,x:ϕ ⊢ new K1(x) : 〈app : (ω)→ ϕ〉 (OBJ)

x:ϕ ⊢ new K() :K
(NEWM)

x:ϕ ⊢ new K() : 〈app : (ϕ)→ 〈app : (ω)→ ϕ〉〉
(VAR)

x:ϕ ⊢ x : ϕ
(INVK )

x:ϕ ⊢ new K().app(x) : 〈app : (ω)→ ϕ〉

(ω)
x:ϕ ⊢ ⌈⌈δδ⌋⌋ :ω

..

..

..

.

(INVK )
x:ϕ ⊢ new K().app(x).app(⌈⌈δδ⌋⌋) : ϕ

(ω)
this:K1,x:ω ⊢ x : ω

(OBJ)
this:K,x:ω ⊢ new K1(x) :K1

(OBJ)
∅ ⊢ new K() :K

(NEWM)
∅ ⊢ new K() : 〈app : (ω)→ K1〉

(ω)
∅ ⊢ ⌈⌈δδ⌋⌋ : ω

(INVK )
∅ ⊢ new K().app(⌈⌈δδ⌋⌋) :K1

Figure 5: Derivations for Example 35

• 〈D,Dn, INVK 〉 is ω-safe, ifD is ω-safe and for eachDi eitherDi is ω-safe orDi is of the form〈ω〉 ::

Π ⊢ e: ω.

• 〈D,D′, NEWM〉 is ω-safe, if bothD andD′ areω-safe.

We call a predicateφ strong if it does not containω. We call a predicate environmentΠ strong if for all
x:φ ∈ Π, φ is strong. Similarly we callΠ ω-safe if, for allx:φ ∈ Π, eitherφ is strong orφ = ω.

Notice thatω can appear inω-safe derivations, but can never be the derived type, and that anω-safe derivation can
have subderivations that are notω-safe.

Example 35. Figure 5 shows, respectively,

• a strong derivation typing a strongly normalising expression;

• an ω-safe derivation of a normalising (but not strongly normalising) expression; and

• a non-ω-safe derivation deriving a non-trivial predicate for a head-normalising (but not normalising) expres-
sion,

whereδ is theCL termS (S K K) (S K K) – i.e.δδ is an unsolvable term.

Lemma 36. If D :: Π ⊢ A: φ with ω-safeD andΠ, then A does not contain⊥; moreover, if A is neutral, thenφ does
not containω.

PROOF. By induction on the structure of derivations.

〈ω〉: Vacuously true, since〈ω〉 derivations are notω-safe.
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〈VAR〉: ThenA = x and so does not contain⊥. Sincex is neutral, we must also show thatφ does not containω.
Notice thatφ is strict and that there is someψ P φ such thatx:ψ ∈ Π. Sinceφ is strict andψ P φ, ψ 6= ω and
sinceΠ is ω-safe it follows thatψ does not containω; therefore, byP, neither doesφ.

〈D′,Dn, INVK 〉: ThenA= A’.m(An) andφ is strict, hereafter calledσ. Also D′ :: Π ⊢ A’ : 〈m : (φn)→ σ〉 with D′

ω-safe, andDi :: Π ⊢ Ai : φi for eachi ∈ n. By induction,A’ does not contain⊥. Also, notice thatA must be
neutral, and therefore so mustA’. Then it also follows by induction that〈m : (φn)→ σ〉 does not containω.
This means that noφi is equal toω, and so it must be that eachDi is ω-safe; thus by induction, noAi contains
⊥ either. Consequently,A’.m(An) does not contain⊥ andσ does not containω.

〈Db,D′, NEWM〉: ThenDb :: Π′ ⊢ eb : σ with this:ψ ∈ Π′ andD′ :: Π ⊢ A: ψ. SinceD is ω-safe so also isD′ and
by induction,A does not contain⊥.

The other cases follow straightforwardly by induction. �

Continuing with the definition of derivation reduction we point out that, just as substitution is the main engine for
reduction on expressions, a notion of substitution for derivations, in which instances of the(VAR) rule are replaced
by subderivations, will form the basis of derivation reduction.

Derivation substitution is formally defined as follows.

Definition 37 (Derivation Substitution). A derivation substitutionis a partial function from derivations to deriva-
tions, defined by:

1. LetD1 :: Π′ ⊢ e1 : φ1, . . . ,Dn :: Π′ ⊢ en : φn be derivations, andx1, . . . ,xn be distinct variables, thenS = {x1 7→
D1, . . . ,xn 7→ Dn } is a derivation substitution (based onΠ′). When eachDi is strong (ω-safe) then we say that
S is also strong (ω-safe).

2. If D :: Π ⊢ e: φ is a derivation such thatΠ ⊆ x1:φ1, . . . ,xn:φn, andS a derivation substitution, then we say that
S is applicableto D, and the result of applyingS to D (writtenDS ) is defined inductively as follows (whereS
is the term substitution induced byS, i.e.S= {x1 7→ e1, . . . ,xn 7→ en}):

D = 〈VAR〉 :: Π ⊢ x: σ: Then there are two cases to consider.
(a) Eitherx:σ ∈ Π and sox= xi for somei ∈ n with Di :: Π

′ ⊢ ei : σ: thenDS = Di; or
(b) x:φ ∈ Π with φ = σ1 ∩ . . .∩σn′ andσ = σj for somej ∈ n′. Also in this casex= xi for somei ∈ n,

so thenDi = 〈D′
1, . . . ,D′

n′ , JOIN〉 :: Π
′ ⊢ ei : φ andDS = D′

j :: Π
′ ⊢ ei : σj.

D = 〈Db,D′, NEWM〉 :: Π ⊢ new C(e) : 〈m : (φ)→ σ〉: Then

DS = 〈Db,D′S , NEWM〉 :: Π ⊢ new C(e)S : 〈m : (φ)→ σ〉

D = 〈D1, . . . ,Dn,r〉 :: Π ⊢ e: φ,r /∈{(VAR), (NEWM)}: ThenDS = 〈D1
S , . . . ,Dn

S ,r〉 :: Π′ ⊢ eS : φ.

Notice that the last case includes the base case of derivations of the form〈ω〉 :: Π ⊢ e: ω as a special case.
3. We extend the weakening operation to derivation substitutions as follows: for a derivation substitutionS =

{x1 7→ D1 :: Π ⊢ e1 : φ1, . . . ,xn 7→ Dn :: Π ⊢ en : φn }, S [Π′ P Π] is the derivation substitution{x1 7→ D1[Π
′ P

Π], . . . ,xn 7→ Dn[Π′ P Π]}.

Notice that when we substitute

D1

Π ⊢ e: φ1

D2

Π ⊢ e: φ2
(JOIN)

Π ⊢ e: φ1 ∩φ2

in the derivation forx:φ1 ∩φ2 ⊢ x: φ1, we do not build

D1

Π ⊢ e: φ1

D2

Π ⊢ e: φ2
(JOIN)

Π ⊢ e: φ1 ∩φ2
(?)

Π ⊢ e: φ1
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since we do not have a rule that allows for the last step - afterall, the notion of predicate assignment is strict – but
define the result of this substitution as:

D1

Π ⊢ e: φ1

so let the collection of derivations used in(JOIN) ‘distribute.’ It is because the system is strict that we are sure the
correct sub-derivation is present.

Example 38. Consider the derivations below for two expressions e1 and e2:

D1

Π ⊢ e1 : 〈m : (ϕ1 ∩ ϕ2)→ σ〉

D′
2

Π ⊢ e2 : ϕ1

D′′
2

Π ⊢ e2 : ϕ2
(JOIN)

D2 :: Π ⊢ e2 : ϕ1 ∩ ϕ2

and also the following derivation of the method invocation x.m(y), where the environment
Π′ = x:〈m : (ϕ1 ∩ ϕ2)→ σ〉,y:ϕ1 ∩ ϕ2:

(VAR)
Π

′ ⊢ x : 〈m : (ϕ1 ∩ ϕ2)→ σ〉

(VAR)
Π

′ ⊢ y : ϕ1

(VAR)
Π

′ ⊢ y : ϕ2
(JOIN)

Π ⊢ y : ϕ1 ∩ ϕ2
(INVK )

D :: Π
′ ⊢ x.m(y) : σ

Let S denote the derivation substitution{x 7→D1,y 7→D2 }; then the result of substitutingD1 for x andD2 for y in
D is the following derivation, where instances of the(VAR) rule in D have been replaced by the appropriate (sub)
derivations inD1 andD2:

D1

Π ⊢ e1 : 〈m : (ϕ1 ∩ ϕ2)→ σ〉

D′
2

Π ⊢ e2 : ϕ1

D′′
2

Π ⊢ e2 : ϕ2
(JOIN)

Π ⊢ e2 : ϕ1 ∩ ϕ2
(INVK )

DS :: Π ⊢ e1.m(e2) : σ

Lemma 39 (Soundness of Derivation Substitution).LetD :: Π ⊢ e: φ andS be a derivation substitution based on
Π

′ and applicable toD; thenDS :: Π
′ ⊢ eS : φ whereS is the term substitution induced byS.

PROOF. By easy induction on the structure of derivations. �

Derivation substitution preserves strong andω-safe derivations.

Lemma 40. If D is strong (ω-safe) then, for any strong (ω-safe) derivation substitutionS applicable toD, DS is
also strong (ω-safe).

PROOF. By straightforward induction on the structure of derivations. �

We also show that the operations of weakening and derivationsubstitution are commutative.

Lemma 41. LetD :: Π′′ ⊢ e: φ be a derivation andS be a derivation substitution based onΠ and applicable toD,
and let[Π′ P Π] be a weakening. ThenDS [Π′ P Π] = DS [Π′PΠ].

PROOF. By induction on the structure of derivations. �

Definition 42 (Identity Substitutions). Each environmentΠ induces a derivation substitutionSΠ which is called
the identity substitutionfor Π. Let Π = x1:φ1, . . . ,xn:φn; thenSΠ , {x1 7→ D1, . . . ,xn 7→ Dn } where for eachi ∈ n:

• If φi = ω thenDi = 〈ω〉 :: Π ⊢ xi : ω;

• If φi is a strict predicateσ thenDi = 〈VAR〉 :: Π ⊢ xi : σ;
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e  p e’ ⇒ D :: Π ⊢ e: ω  
p 〈ω〉 :: Π ⊢ e’ : ω

D :: Π ⊢ e: 〈 f : σ〉  
p D′ :: Π ⊢ e’ : 〈 f : σ〉 ⇒ 〈D, FLD〉  

0 · p 〈D′, FLD〉

D :: Π ⊢ e: 〈m : (φn)→ σ〉  
p D′ :: Π ⊢ e’ : 〈m : (φn)→ σ〉 & ∀ i ∈ n [Di :: Π ⊢ ei : φi ]

⇒ 〈D,Dn, INVK 〉  
0 · p 〈D′,Dn, INVK 〉

Mb(C,m) = (xn,eb) & this:ψ,x1:φ1, . . . ,xn:φn ⊢ eb : σ & D :: Π ⊢ new C(e) : ψ  
p D′

⇒ 〈Db,D, NEWM〉  
p 〈Db,D′, NEWM〉 :: Π ⊢ new C(e) : 〈m : (φn)→ σ〉

∀ i ∈ n (n ≥ 2) [Di :: Π ⊢ e: σi  
p D′

i :: Π ⊢ e’ : σi] ⇒ 〈Dn, JOIN〉  
p 〈D′

n, JOIN〉

D :: Π ⊢ e: 〈m : (φn)→ σ〉 & ∃ j ∈ n [Dj :: Π ⊢ ej : φj  
p D′

j & ∀ i 6= j ∈ n [Di :: Π ⊢ ei : φi ]]

⇒ 〈D,Dn, INVK 〉  
j · p 〈D,D′

n, INVK 〉 :: Π ⊢ e.m(e’n) : σ

F (C) = fn & ∃ j ∈ n [Dj :: Π ⊢ ej : φj  
p D′

j & ∀ i 6= j ∈ n [Di :: Π ⊢ ei : φi ]]

⇒ 〈Dn, OBJ〉  
j · p 〈D′

n, OBJ〉 :: Π ⊢ new C(e’n) :C

F (C) = fn & ∃ j ∈ n [Dj :: Π ⊢ ej : φj  
p D′

j & ∀ i 6= j ∈ n [Di :: Π ⊢ ei : φi ] & φj ∼ σ]

⇒ 〈Dn, NEWF〉  j · p 〈D′
n, NEWF〉 :: Π ⊢ new C(e’n) : 〈fj : σ〉

For the last three cases,ej  
p e’j and∀ i 6= j ∈ n [D′

i = Di & e’i = ei ].

Figure 6: The advance operation on derivations

• If φi = σ1 ∩ . . .∩σmi
for somemi ≥ 2 thenDi = 〈D′

mi
, JOIN〉 :: Π ⊢ xi : σ1 ∩ . . .∩σmi

, with D′
j = 〈VAR〉 :: Π ⊢

xi : σj for eachj ∈ mi.

Notice that for every environmentΠ, the identity substitutionSΠ is alsobased onΠ.

We can of course show thatSΠ is indeed the identity for the substitution operation on derivations usingΠ.

Proposition 43. LetD :: Π ⊢ e: φ andSΠ be the identity substitution forΠ; thenDSΠ =D.

Before defining the notion of derivation reduction itself, we first define the auxiliary notion ofadvancinga deriva-
tion. This is an operation which contracts redexes at some given position in expressions covered byω in derivations.
This operation will be used to reduce derivations which introduce intersections.

Definition 44 (Advancing). 1. Theadvanceoperation on expressions contracts the redex at a given positionp
in e if it exists, and is undefined otherwise. It is defined as the smallest relation on tuples(p,e) and expressions
satisfying the following properties (where we writee  p e’ to mean((p,e),e’) ∈ ):

F (C) = f n & e= Cp[new C(en).fi] with i ∈ n ⇒ e  p Cp[ei]

Mb(C,m) = (xn,eb) & e= Cp[new C(e’).m(en)] ⇒ e  p Cp[eb
S]

whereS= {this 7→ new C(e’),x1 7→ e1, . . . ,xn 7→ en}

2. We extend to derivations via the rules in Figure 6, (where we writeD  
p D′ to mean((p,D),D′) ∈ )

Notice that the advance operation does not change thestructureof derivations. Exactly the same rules are applied
and the same predicates derived; only subexpressions whichare typed withω are altered.

The following lemma states that this always generates a correct derivation.

Lemma 45 (Soundness of Advancing).Let D :: Π ⊢ e: φ; if a redex appears at positionp in e and no derivation
redex appears atp in D (so e p e’ for some e’), then there existsD′ such thatD  p D′, andD′ :: Π ⊢ e’ : φ.

PROOF. By well-founded induction on pairs of position and derivation (p,D). �
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〈〈Dn, NEWF〉, FLD〉 :: Π ⊢ new C(e).fi : σ _
0 Di (F (C) = f n,∀i ∈ n)

〈〈Db,D′, NEWM〉,Dn, INVK 〉 :: Π ⊢ new C(e’).m(en) : σ _
0 Db

S

(Mb(C,m) = (xn,eb) & S = {this 7→D′,x1 7→D1, . . . ,xn 7→Dn })

D :: Π ⊢ e: 〈 f : σ〉 _
p D′ :: Π ⊢ e’ : φ ⇒

〈D, FLD〉 :: Π ⊢ e.f : σ _
0 · p 〈D′, FLD〉 :: Π ⊢ e’. f : σ

D _
p D′ :: Π ⊢ e’ : φ ⇒

〈D,Dn, INVK 〉 :: Π ⊢ e.m(en) : σ _
0 · p 〈D′,Dn, INVK 〉 :: Π ⊢ e’.m(en) : σ

∃ j ∈ n [Dj _
p D′

j :: Π ⊢ e’j : φ] ⇒

〈D,D1, . . . ,Dn, INVK 〉 :: Π ⊢ e.m(en) : σ _
j · p 〈D,D′

1, . . . ,D′
n, INVK 〉 :: Π ⊢ e.m(e’n) : σ
∀ i 6= j ∈ n [D′

i = Di & e’i = ei ]
∃ j ∈ n [Dj :: Π ⊢ ej : φj _

p D′
j :: Π ⊢ e’j : φ′

j & φj ∼ σ] ⇒

〈Dn, NEWF〉 :: Π ⊢ new C(en) : 〈 f : σ〉 _
j · p 〈D′

n, NEWF〉 :: Π ⊢ new C(e’n) : 〈 f : σ〉
(∀ i 6= j ∈ n [D′

i = Di & e’i = ei ])
D :: Π ⊢ new C(e) : ψ _

p D′ :: Π ⊢ e: ψ′ ⇒
〈Db,D, NEWM〉 :: Π ⊢ new C(e) : 〈m : (φ)→ σ〉 _

p 〈Db,D′, NEWM〉 :: Π ⊢ e: 〈m : (φ)→ σ〉
(Db :: this:ψ,x1:φ1, . . . ,xn:φn ⊢ eb : σ)

∃ j ∈ n [Dj :: Π ⊢ ej : φj _
p D′

j :: Π ⊢ e’j : φ′
j] ⇒

〈Dn, OBJ〉 :: Π ⊢ new C(en) :C _
j · p 〈D′

n, OBJ〉 :: Π ⊢ new C(e’n) :C
(∀ i 6= j ∈ n [D′

i = Di & e’i = ei ])

∃ j ∈ n [Dj _
p D′

j & ∀ i 6= j ∈ n [Di _
p D′

i ∨ Di  
p D′

i]] ⇒

〈D1, . . . ,Dn, JOIN〉 :: Π ⊢ e: σ1 ∩ . . .∩σn _
p 〈D′

1, . . . ,D′
n, JOIN〉

Figure 7: Derivation reduction

The advance operation preserves strong (andω-safe) typeability.

Lemma 46. If D  p D′ is defined, andD is strong (ω-safe), thenD′ is also strong (ω-safe).

PROOF. By induction on the definition of the advance operation for derivations. �

The notion of derivation reduction is defined in two stages. First, the more specific notion of reduction at a
certain position (i.e. within a given subderivation) is introduced. The full notion of derivation reduction is then a
straightforward generalisation of this position-specificreduction over all positions.

Definition 47 (Derivation Reduction). 1. The reduction of a derivationD at positionp toD′ is denoted byD _
p

D′, and is defined inductively using the rules in Figure 7.
2. The full reduction relation on derivations→D is defined as the smallest relation on derivations satisfying the

condition:
∃ p [D _

p D′ ] ⇒ D →D D′

The reflexive and transitive closure of→D is denoted by→∗
D

.
3. We writeSN(D) whenever the derivationD is strongly normalising with respect to→∗

D
.

Similarly to reduction for expressions, ifD _
0 D′ then we callD a derivation redexandD′ its derivation con-

tractum.

The following properties hold of derivation reduction. They are used in the proofs of Theorem 53 and Lemma 57.

Lemma 48. 1. SN(〈D, FLD〉 :: Π ⊢ e.f : σ) ⇔ SN(D :: Π ⊢ e: 〈 f : σ〉) .
2. SN(〈D,D1, . . . ,Dn, INVK 〉 :: Π ⊢ e.m(en) : σ) ⇒ SN(D) & ∀ i ∈ n [SN(Di) ] .
3. For neutral contextsC, SN(D :: Π ⊢ C[x] : 〈m : (φn)→ σ〉) & ∀ i ∈ n [SN(Di :: Π ⊢ ei : φi) ]⇒

SN(〈D,D1, . . . ,Dn, INVK 〉 :: Π ⊢ C[x].m(en) : σ).
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4. SN(〈Dn, OBJ〉 :: Π ⊢ new C(en) :C) ⇔ ∃ φn [∀ i ∈ n [SN(Di :: Π ⊢ ei : φi) ] ] .
5. SN(〈D1, . . . ,Dn, JOIN〉 :: Π ⊢ e: σ1 ∩ . . .∩σn) ⇔ ∀ i ∈ n [SN(Di :: Π ⊢ e: σi) ] .
6. SN(D[Π′ P Π] :: Π′ ⊢ e: φ) ⇔ SN(D :: Π ⊢ e: φ) .

7. Let C be a class such thatF (C) = fn, then for all j ∈ n: SN(〈Dn, NEWF〉 :: Π ⊢ new C(en) : 〈fj : σ〉) ⇔
∃ φn [σ P φj & ∀ i ∈ n [SN(Di :: Π ⊢ ei : φi) ] ].

8. Let C be a class such thatF (C) = fn, then for all j ∈ n: SN(D(p,σ′)[Dj] :: Π ⊢ Cp[ej] : σ) &

∀ i 6= j ∈ n [∃ φ [SN(Di :: Π ⊢ ei : φ) ] ] ⇒ SN(D(p,σ′)[〈〈Dn, NEWF〉, FLD〉] :: Π ⊢ Cp[new C(en).fj] : σ) .

9. Let C be a class such thatMb(C,m) = (xn,eb) andDb :: this:ψ,x:φn ⊢ eb : σ′, then for all derivation contexts
D(p,σ′) and expression contextsC: SN(D(p,σ′)[Db

S ] :: Π ⊢ Cp[eb
S] : σ) & SN(D0 :: Π ⊢ new C(e’) : ψ) &

∀ i ∈ n [SN(Di :: Π ⊢ ei : φi) ]⇒ SN(D(p,σ′)[〈D,Dn, INVK 〉] :: Π ⊢ Cp[new C(e’).m(en)] : σ).

where D = 〈Db,D0, NEWM〉 :: Π ⊢ new C(e’) : 〈m : (φn)→ σ′〉,
S = {this 7→D0,x1 7→D1, . . . ,xn 7→Dn }, and
S = {this 7→new C(e’),x1 7→e1, . . . ,xn 7→en }.

PROOF. These all follow straightforwardly from Definition 47. �

Our notion of derivation reduction is not onlysound(i.e. produces valid derivations) but, most importantly, we
can show that it corresponds to reduction on expressions.

Theorem 49 (Soundness of Derivation Reduction).If D :: Π ⊢ e: φ and D →D D′, thenD′ is a well-defined
derivation, that is there exists some e’ such thatD′ :: Π ⊢ e’ : φ; moreover, then e→ e’ and if D reduces toD′ at
positionp then e p e’.

PROOF. By induction on the definition of derivation reduction.

We can also show that strong andω-safe derivations are preserved by derivation reduction.

Lemma 50. If D is strong (ω-safe) andD →D D′, thenD′ is strong (ω-safe).

PROOF. By induction on the definition of derivation reduction; notice that derivation reduction does not introduce
instances of rule(ω) and that, by (Lemma 40), derivation substitution preservesstrong andω-safe derivations. �

The key step in showing the approximation result below is proving that this notion of derivation reduction is
strongly normalising, i.e. terminating. In other words, all derivations have anormal formwith respect to→D. Our
proof uses the well-known technique ofcomputability[40]. As is standard, our notion is defined inductively over the
structure of types (predicates), and is defined in such a way as to guarantee that computable derivations are strongly
normalising.

Definition 51 (Computability). 1. The set ofcomputablederivations is defined as the smallest set satisfying the
following conditions (whereComp(D) denotes thatD is a member of the set of computable derivations):

Comp(〈ω〉 :: Π ⊢ e: ω)

Comp(D :: Π ⊢ e: ϕ) ⇔ SN(D :: Π ⊢ e: ϕ)

Comp(D :: Π ⊢ e:C) ⇔ SN(D :: Π ⊢ e:C)

Comp(D :: Π ⊢ e: 〈 f : σ〉) ⇔ Comp(〈D, FLD〉 :: Π ⊢ e.f : σ)

Comp(D :: Π ⊢ e: 〈m : (φn)→ σ〉) ⇔ (∀Dn [ ∀ i ∈ n [Comp(Di :: Πi ⊢ ei : φi) ] ⇒

Comp(〈D[
⋂

Π · Πn P Π],Di[
⋂

Π · Πn P Πi], INVK 〉 ::
⋂

Π · Πn ⊢ e.m(en) : σ) ])

Comp(〈D1, . . . ,Dn, JOIN〉 :: Π ⊢ e: σ1 ∩ . . .∩σn) ⇔ ∀ i ∈ n [Comp(Di) ]

2. A derivation substitutionS = {x1 7→D1, . . . ,xn 7→Dn } is computable in an environmentΠ, if and only if, for
all x:φ ∈ Π there exists somei ∈ n such thatx= xi andComp(Di).
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The weakening operation preserves computability:

Lemma 52. Comp(D :: Π ⊢ e: φ) ⇔ Comp(D[Π′ P Π] :: Π′ ⊢ e: φ).

PROOF. By straightforward induction on the structure of predicates; for the base case, we use Lemma 48(6). �

The key property of computable derivations is that they are strongly normalising as shown in the first part of the
following theorem.

Theorem 53. 1. Comp(D :: Π ⊢ e: φ) ⇒ SN(D :: Π ⊢ e: φ) .
2. For neutral contextsC, SN(D :: Π ⊢ C[x] : φ) ⇒ Comp(D :: Π ⊢ C[x] : φ) .

PROOF. By simultaneous induction on the structure of predicates.

ω: By Definition 47 in the case of (1), and by Definition 51 in the case of (2).

ϕ, C: Immediate, by Definition 51.

〈 f : σ〉: 1. Comp(D :: Π ⊢ e: 〈 f : σ〉) ⇒ (Def. 51)
Comp(〈D, FLD〉 :: Π ⊢ e.f : σ) ⇒ (IH(1))
SN(〈D, FLD〉 :: Π ⊢ e.f : σ) ⇒ (Lem. 48)
SN(D :: Π ⊢ e: 〈 f : σ〉)

2. AssumeSN(D :: Π ⊢ C[x] : 〈 f : σ〉) with C a neutral context. ThenSN(〈D, FLD〉 :: Π ⊢ C[x]. f : σ) by
Lemma 48. Now, letC′ = C. f ; notice that, by Definitions 27 and 28,C′ is neutral, andC[x]. f = C

′[x].
Thus SN(〈D, FLD〉 :: Π ⊢ C

′[x] : σ), and, by induction,Comp(〈D, FLD〉 :: Π ⊢ C
′[x] : σ). Then, from

the definition ofC′, it follows that Comp(〈D, FLD〉 :: Π ⊢ C[x]. f : σ), and by Definition 51, we have
Comp(D :: Π ⊢ C[x] : 〈 f : σ〉).

〈m : (φn)→ σ〉: 1. AssumeComp(D :: Π ⊢ e: 〈m : (φn)→ σ〉). For eachi ∈ n, we take a fresh variablexi and
construct a derivationDi as follows:

• If φi = ω thenDi = 〈ω〉 :: Πi ⊢ xi : ω, with Πi = ∅;

• If φi is a strict predicateσ thenDi = 〈VAR〉 :: Πi ⊢ xi : σ, with Πi = xi:σ;

• If φi = σ1 ∩ . . .∩σn′ for somen′ ≥ 2 thenDi = 〈D′
1, . . . ,D′

n′ , JOIN〉 :: Πi ⊢ x : σ1 ∩ . . .∩σn′ , with Πi =

xi:φi andD′
j = 〈VAR〉 :: Πi ⊢ xi : σj for eachj ∈ n′.

Notice that eachDi is in normal form, soSN(Di) for eachi ∈ n. Notice also thatDi :: Πi ⊢ C[xi] : φi for
eachi ∈ n whereC is the neutral context[ ]. So, by the second inductionComp(Di) for eachi ∈ n.
Then, by Definition 51,

Comp(〈D′,D′
n, INVK 〉 :: Π

′ ⊢ e.m(xn) : σ)

whereD′ = D[Π′ P Π] andD′
i = Di[Π

′ P Πi] for eachi ∈ n with Π′ =
⋂

Π · Πn. So, by the first
induction,SN(〈D′,D′

n, INVK 〉). Lastly, by Lemma 48(2) we haveSN(D′), and by Lemma 48(6),SN(D).
2. AssumeSN(D :: Π ⊢ C[x] : 〈m : (φn)→ σ〉) with C a neutral context. Also, assume that there exist

derivationsD1, . . . ,Dn such that:Comp(Di :: Πi ⊢ ei : φi) for eachi ∈ n. Then, by the first induction,
SN(Di :: Πi ⊢ ei : φi) for eachi ∈ n. Let Π′ =

⋂

Π · Πn; notice that, by Definition 16,Π′ P Π and
Π′ P Πi for eachi ∈ n. Then, by Lemma 48(6),SN(D[Π′ P Π]) andSN(Di[Π

′ P Πi]) for eachi ∈ n.
By Lemma 48(3) we then have

SN(〈D′,D′
1, . . . ,D′

n, INVK 〉 :: Π
′ ⊢ C[x].m(en) : σ)

whereD′ = D[Π′ P Π] andD′
i = Di[Π

′ P Πi] for eachi ∈ n. Take the contextC′ = C.m(en); notice
that, sinceC is neutral, by Definitions 27 and 28,C′ is also a neutral context andC[x].m(en) = C

′[x].
Thus, by the second induction,

Comp(〈D′,D′
1, . . . ,D′

n, INVK 〉 :: Π
′ ⊢ C[x].m(en) : σ).
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Since the derivationsD1, . . . ,Dn were arbitrary, the following implication holds

∀Dn [ ∀ i ∈ n [Comp(Di :: Πi ⊢ ei : φi) ] ⇒ Comp(〈D′,D′
1, . . . ,D′

n, INVK 〉 :: Π
′ ⊢ C[x].m(en) : σ) ]

whereD′ =D[Π′ P Π] andD′
i =Di[Π

′ P Πi] for eachi ∈ n with Π′ =
⋂

Π · Πn. So, by Definition 51,
we haveComp(D :: Π ⊢ e: 〈m : (φn)→ σ〉). �

σ1 ∩ . . .∩σn,n ≥ 2: By induction.

Another consequence of Theorem 53 is that identity (derivation) substitutions are computable in their own envi-
ronments.

Lemma 54. Let Π be a predicate environment; thenSΠ is computable inΠ.

PROOF. Let Π = x1:φ1, . . . ,xn:φn. So, by Definition 42SΠ = {x1 7→ D1 :: Π ⊢ x1 : φ1, . . . ,xn 7→ Dn :: Π ⊢ x1 : φ1 }.
Notice that for eachi ∈ n the derivationDi contains no derivation redexes, i.e. is in normal form and thusSN(Di).
Notice also that, sincexi = C[xi] whereC is the empty context[ ] (see Definition 28),SN(Di :: Π ⊢ C[x] : φi) for each
i ∈ n. Then, by Theorem 53(2) it follows thatComp(Di). Thus, for eachx:φ ∈ Π there is somei ∈ n such thatx= xi

andComp(Di) and so, by Definition 51,SΠ is computable inΠ. �

Also using Theorem 53, we can show that computability is closed for derivation expansion - that is, ifD′ is
computable andD→D D′, then alsoD is computable. This property will be important when showingthereplacement
lemma (Lemma 57) below. We first show two auxiliary lemmas, that are needed for the proof of that lemma.

Lemma 55. Let C be a class such thatF (C) = f n, then for all j ∈ n: if Comp(D(p,σ′)[Dj] :: Π ⊢ Cp[ej] : σ) and
∀ i 6= j ∈ n [∃ φ [Comp(Di :: Π ⊢ ei : φ) ] ], thenComp(D(p,σ′)[〈〈Dn, NEWF〉, FLD〉] :: Π ⊢ Cp[new C(en).fj] : σ).

PROOF. By induction on the structure of strict predicates.

ϕ: AssumeComp(D(p,σ′)[Dj] :: Π ⊢ Cp[ej] : ϕ) and∃ φ [Comp(Di :: Π ⊢ ei : φ) ] for eachi ∈ n such thati 6= j.
By Theorem 53 it follows that:SN(D(p,σ′)[Dj] :: Π ⊢ Cp[ej] : ϕ) and∃ φ [SN(Di :: Π ⊢ ei : φ) ] for eachi ∈ n
such thati 6= j. Then by Lemma 48(8) we have that

SN(D(p,σ′)[〈〈Dn, NEWF〉, FLD〉] :: Π ⊢ Cp[new C(en).fj] : ϕ)

And, by Definition 51, it follows thatComp(D(p,σ′)[〈〈Dn, NEWF〉, FLD〉] :: Π ⊢ Cp[new C(en).fj] : ϕ).

C: Similar to the case for predicate variables.

〈 f : σ〉: AssumeComp(D(p,σ′)[Dj] :: Π ⊢ Cp[ej] : 〈 f : σ〉) and∃ φ [Comp(Di :: Π ⊢ ei : φ) ] for eachi ∈ n such that
i 6= j. By Definition 51, it follows thatComp(〈D(p,σ′)[Dj], FLD〉 :: Π ⊢ Cp[ej]. f : σ). Take the contextsC′ and

D
′ such that:C′

0·p = Cp. f andD′
(0·p,σ′) = 〈D(p,σ′), FLD〉 :: Π ⊢ Cp. f : σ. Notice that

〈D(p,σ′)[Dj], FLD〉 :: Π ⊢ Cp[ej]. f : σ = D
′
(0·p,σ′)[Dj] :: Π ⊢ C

′
0·p[ej] : σ,

so we haveComp(D′
(0·p,σ′)[Dj] :: Π ⊢ C

′
0·p[ej] : σ). Then by induction we have

Comp(D′
(0·p,σ′)[〈〈Dn, NEWF〉, FLD〉] :: Π ⊢ C

′
0·p[new C(en).fj] : σ),

so by the definition of derivation contexts,

Comp(〈D(p,σ′)[〈〈Dn, NEWF〉, FLD〉], FLD〉 :: Π ⊢ Cp[new C(en).fj]. f : σ).

Then, by Definition 51, we haveComp(D(p,σ′)[〈〈Dn, NEWF〉, FLD〉] :: Π ⊢ Cp[new C(en).fj] : 〈 f : σ〉).
24



〈m : (φn′)→ σ〉: AssumeComp(D(p,σ′)[Dj] :: Π ⊢ Cp[ej] : 〈m : (φn′)→ σ〉) and that∃ φ [Comp(Di :: Π ⊢ ei : φ) ]

for eachi 6= j ∈ n. Now, take arbitrary derivationsD′
1, . . . ,D′

n′ such that, for eachk ∈ n′, Comp(D′
k :: Πk ⊢

e’k : φk). By Definition 51,

Comp(〈D′,D′′
n′ , INVK 〉) :: Π

′ ⊢ Cp[ej].m(e’n′ ) : σ,

whereΠ′ =
⋂

Π · Πn′ , D′ =D(p,σ′)[Dj][Π
′ P Π], andD′′

k = D′
k[Π

′ P Πk] for eachk ∈ n.

By Lemma 33,D′ = D(p,σ′)[Dj][Π
′ P Π] =D(p,σ′)[Π

′ P Π][Dj[Π
′ P Π]]; take the contextsC′ andD′ such

that:C′
0·p = Cp.m(e’n′ ) andD′

(0·p,σ′) = 〈D(p,σ)[Π
′ P Π],D′′

n′ , INVK 〉 :: Π′ ⊢ Cp.m(e’n′ ) : σ. Notice that

〈D′,D′′
n′ , INVK 〉 = D

′
(0·p,σ′)[Dj[Π

′ P Π]] :: Π′ ⊢ C′
0·p[ej] : σ,

then we haveComp(D′
(0·p,σ′)[Dj[Π

′ P Π]]). Now, by Lemma 52,∃ φ [Comp(Di[Π
′ P Π] :: Π

′ ⊢ ei : φ) ] for
eachi 6= j ∈ n. Then by induction,

Comp(D′
(0·p,σ′)[〈〈D1[Π

′
P Π], . . . ,Dn[Π

′
P Π], NEWF〉, FLD〉] :: Π

′ ⊢ C
′
0·p[new C(en).fj] : σ)

So by the definition ofD′,

Comp(〈D(p,σ′)[Π
′ P Π][〈〈D1[Π

′ P Π], . . . ,Dn[Π′ P Π], NEWF〉, FLD〉],D′′
n′ , INVK 〉

:: Π
′ ⊢ Cp[new C(en).fj].m(e’n′ ) : σ)

And then, by Definition 31,

Comp(〈D(p,σ′)[Π
′ P Π][〈〈Dn, NEWF〉, FLD〉[Π′ P Π]],D′′

n′ , INVK 〉 :: Π′ ⊢ Cp[new C(en).fj].m(e’n′ ) : σ)

And by Lemma 33

Comp(〈D(p,σ′)[〈〈Dn, NEWF〉, FLD〉][Π′ P Π],D′′
n′ , INVK 〉 :: Π

′ ⊢ Cp[new C(en).fj].m(e’n′ ) : σ)

Since the derivationsD′
1, . . . ,D′

n′ were arbitrary, the following implication holds:

∀D′
n′ [∀ i ∈ n′ [Comp(D′

i :: Πi ⊢ e’i : φi) ]⇒ Comp(〈D,D′′
n′ , INVK 〉 :: Π′ ⊢ Cp[new C(en).fj].m(e’n′ ) : σ) ]

whereD =D(p,σ)[〈〈Dn, NEWF〉, FLD〉][Π′ P Π]. Thus, by Definition 51, it follows that

Comp(D(p,σ′)[〈〈Dn, NEWF〉, FLD〉] :: Π ⊢ Cp[new C(en).fj] : 〈m : (φn′)→ σ〉)

Lemma 56. LetMb(C,m) = (xn,eb) andDb :: Π′ ⊢ eb : σ′ with Π′ = this:ψ,x1:φ1, . . . ,xn: φn, then for derivation
contextsD(p,σ′) and expression contextsC: if

Comp(D(p,σ′)[Db
S ] :: Π ⊢ Cp[eb

S] : σ), Comp(D0 :: Π ⊢ new C(e’) : ψ) and∀ i ∈ n [Comp(Di :: Π ⊢ ei : φi) ],

thenComp(D(p,σ′)[〈D,Dn, INVK 〉] :: Π ⊢ Cp[new C(e’).m(en)] : σ), where

D = 〈Db,D0, NEWM〉 :: Π ⊢ new C(e’) : 〈m : (φn)→ σ′〉,
S = {this 7→D0,x1 7→D1, . . . ,xn 7→Dn}, and
S = {this 7→new C(e’),x1 7→e1, . . . ,xn 7→en }

PROOF. By induction on the structure of strict predicates.
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ϕ: AssumeComp(D(p,σ′)[Db
S ] :: Π ⊢ Cp[eb

S] : ϕ),Comp(D0 :: Π ⊢ new C(e’) : ψ), andComp(Di :: Π ⊢ ei : φi)

for eachi ∈ n, whereS = {this 7→ D0,x1 7→ D1, . . . ,xn 7→ Dn }, andS is the term substitution induced byS.

Then by Theorem 53 it follows thatSN(D(p,σ′)[Db
S ] :: Π ⊢ Cp[eb

S] : ϕ), SN(D0 :: Π ⊢ new C(e’) : ψ), and
SN(Di :: Π ⊢ ei : φi) for eachi ∈ n.

Then, by Lemma 48(9), we have thatSN(D(p,σ′)[〈D,Dn, INVK 〉] :: Π ⊢ Cp[new C(e’).m(en)] : ϕ), where

D = 〈Db,D0, NEWM〉 :: Π ⊢ new C(e’) : 〈m : (φn)→ σ〉

. And, by Definition 51, we know thatComp(D(p,σ)[〈D,Dn, INVK 〉] :: Π ⊢ Cp[new C(e’).m(en)] : ϕ).

C: Similar to the previous case.

〈 f : σ〉: AssumeComp(D(p,σ′)[Db
S ] :: Π ⊢ Cp[eb

S] : 〈 f : σ〉), Comp(D0 :: Π ⊢ new C(e’) : ψ), andComp(Di :: Π ⊢

ei : φi) for all i ∈ n, whereS = {this 7→ D0,x1 7→ D1, . . . ,xn 7→ Dn }, andS is the term substitution induced
by S. By Definition 51, it follows thatComp(〈D(p,σ′)[Db

S ], FLD〉 :: Π ⊢ Cp[eb
S]. f : σ). Take the contextsC′

andD′ such thatC′
0·p = Cp. f andD′

(0·p,σ′) = 〈D(p,σ′), FLD〉 :: Π ⊢ Cp. f : σ. Notice that

〈D(p,σ′)[Db
S ], FLD〉 :: Π ⊢ Cp[eb

S]. f : σ =D
′
(0·p,σ′)[Db

S ] :: Π ⊢ C
′
0·p[eb

S] : σ

So we haveComp(D′
(0·p,σ′)[Db

S ] :: Π ⊢ C
′
0·p[eb

S] : σ), and then by induction

Comp(D′
(0·p,σ′)[〈D,Dn, INVK 〉] :: Π ⊢ C

′
0·p[new C(e’).m(en)] : σ)

whereD = 〈Db,D0, NEWM〉 :: Π ⊢ new C(e’) : 〈m : (φn)→ σ′〉. So by the definition ofD′,

Comp(〈D(p,σ′)[〈D,Dn, INVK 〉], FLD〉 :: Π ⊢ Cp[new C(e’).m(en)]. f : σ)

Then, by Definition 51, it follows that

Comp(D(p,σ′)[〈D,Dn, INVK 〉] :: Π ⊢ Cp[new C(e’).m(en)] : 〈 f : σ〉)

〈m′ : (φ′
n′ )→ σ〉: Assume

Comp(D(p,σ′)[Db
S ] :: Π ⊢ Cp[eb

S] : 〈m′ : (φ′
n′ )→ σ〉),

Comp(D0 :: Π ⊢ new C(e’) : ψ),

and, for alli ∈ n,
Comp(Di :: Π ⊢ ei : φi)

whereS = {this 7→ D0,x1 7→ D1, . . . ,xn 7→ Dn }, andS is the term substitution induced byS. Now, take
arbitrary derivationsD′

1, . . . , D′
n′ such thatComp(D′

k :: Πk ⊢ e”k : φ′
k) for eachk ∈ n′. By Definition 51, it

follows that
Comp(〈D′,D′′

n′ , INVK 〉 :: Π
′ ⊢ Cp[eb

S].m′(e”n′ ) : σ)

whereΠ′′ =
⋂

Π · Πn′ , D′ = D(p,σ′)[Db
S ][Π′′ P Π], andD′′

k = D′
k[Π

′′ P Πk] for eachk ∈ n′. Then, by

Lemma 33,D′ = D(p,σ′)[Db
S ][Π′′ P Π] = D(p,σ′)[Π

′′ P Π][Db
S [Π′′ P Π]]. Take the contextsC′ andD′

such thatC′
0·p = Cp.m′(e”n′ ) andD′

(0·p,σ′) = 〈D(p,σ′)[Π
′′ P Π],D′′

n′ , INVK 〉 :: Π′′ ⊢ Cp.m′(e”n′ ) : σ.

Notice that
〈D′,D′′

n′ , INVK 〉 =D
′
(0·p,σ′)[Db

S [Π′′
P Π]] :: Π

′′ ⊢ C
′
0·p[eb

S] : σ

So we have
Comp(D′

(0·p,σ′)[Db
S [Π′′

P Π]] :: Π
′′ ⊢ C

′
0·p[eb

S] : σ)

26



And then by Lemma 41
Comp(D′

(0·p,σ′)[Db
S [Π′′PΠ]] :: Π

′′ ⊢ C
′
0·p[eb

S] : σ)

Now, by Lemma 52,Comp(D0[Π
′′ P Π] :: Π′′ ⊢ new C(e’) : ψ) andComp(Di[Π

′′ P Π] :: Π′′ ⊢ ei : φi) for all
i ∈ n. Thus, by induction,

Comp(D′
(0·p,σ′)[〈D

′′,D1[Π
′′ P Π], . . . ,Dn[Π′′ P Π], INVK 〉] :: Π′′ ⊢ C

′
0·p[new C(e’).m(en)] : σ)

whereD′′ = 〈Db,D0[Π
′′ P Π], NEWM〉 :: Π′′ ⊢ new C(e’) : 〈m : (φn)→ σ′〉. So by the definition ofD′

Comp(〈D(p,σ′)[Π
′′ P Π][〈D′′,D1[Π

′′ P Π], . . . ,Dn[Π′′ P Π], INVK 〉],

D′′
n′ , INVK 〉 :: Π′′ ⊢ Cp[new C(e’).m(en)].m′(e”n′ ) : σ)

Then, by Definition 31,

Comp(〈D(p,σ′)[Π
′′ P Π][〈D,Dn, INVK 〉[Π′′ P Π]],D′′

n′ , INVK 〉 :: Π
′′ ⊢ Cp[new C(e’).m(en)].m′(e”n′ ) : σ)

whereD = 〈Db,D0, NEWM〉 :: Π ⊢ new C(e’) : 〈m : (φn)→ σ′〉. And by Lemma 33

Comp(〈D(p,σ′)[〈D,Dn, INVK 〉][Π′′ P Π],D′′
n′ , INVK 〉 :: Π

′′ ⊢ Cp[new C(e’).m(en)].m′(e”n′ ) : σ)

Since the choice of the derivationsD′
1, . . . ,D′

n′ was arbitrary, the following implication holds:

∀D′
n′ [ ∀ i ∈ n [Comp(D′

i :: Πi ⊢ e”i : φ′
i) ]⇒ Comp(〈D′′′,D′′

1 , . . . ,D′′
n′ , INVK 〉 :: Π′′ ⊢ e.m(en) : σ) ]

whereD′′′ =D(p,σ′)[〈D,Dn, INVK 〉][Π′′ P Π] andD′′
k =D′

k[Π
′′ P Πk] for eachk ∈ n′.

So, by Definition 51, we have

Comp(D(p,σ′)[〈D,Dn, INVK 〉] :: Π ⊢ Cp[new C(e’).m(en)] : 〈m′ : (φ′
n′ )→ σ〉) �

The final piece of the strong normalisation proof is the derivation replacement lemma, which shows that when we
perform derivation substitution using computable derivations we obtain a derivation that is overall computable. In [8],
where an approximation result is shown for combinator systems, this lemma must be proved using anencompassment
relation on terms. Since our notion of reduction is weak (as is the case for combinator systems, andTRS in general)
one might think that a similar approach would be necessary for FJ¢. This is not the case however, since our type
system incorporates a novel feature: method bodies are typed for each individual invocation, and are part of the
overall derivation. Thus, there will be sub-derivations for the constituents of each redex that will appear during
reduction. The consequence of this is that we are able to prove the replacement lemma by straightforward induction
on derivations.

Lemma 57 (Replacement).If D :: Π ⊢ e: φ andS is a derivation substitution computable inΠ and applicable to
D, thenComp(DS ).

PROOF. By induction on the structure of derivations. The(NEWF) and(NEWM) cases are particularly tricky, and
use Lemmas 55 and 56 respectively. Let

• Π = x1:φ′
1, . . . ,xn

′:φ′
n′ and

• S = {x’1 7→ D′
1 :: Π

′ ⊢ e”1 : φ′′
1 , . . . ,x’n′′ 7→ D′

n′′ :: Π
′ ⊢ e”n′′ : φ′′

n′′ } with {x1, . . . ,xn′ } ⊆ {x’1, . . . ,x’n′′ }.

Also, let S be the term substitution induced byS. Note that ifS is applicable toD then it is also applicable to
subderivations ofD.

ω: Immediately by Definition 51, sinceDS = 〈ω〉 :: Π′ ⊢ eS : ω.
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(VAR): ThenD :: Π ⊢ x: σ. We examine the different possibilities forDS :

• x:σ ∈ Π, sox= x’i for somei ∈ n′′ andD′
i :: Π′ ⊢ e”i : σ. ThenDS = D′

i. SinceS is computable inΠ it
follows thatComp(D′

i), and soComp(DS ).

• x:φ ∈ Π for someφ P σ, soφ = σ1 ∩ . . .∩σn with σ = σi for somei ∈ n. Also, x = x’j for somej ∈ n′′

andD′
j :: Π′ ⊢ e”j : φ, soD′

j = 〈D′′
n , JOIN〉 with D′′

k :: Π′ ⊢ e”j : σk for eachk ∈ n.

Now, by Definition 37,DS =D′′
i :: Π′ ⊢ e”j : σi. SinceS is computable inΠ it follows thatComp(D′

j) and

then, by Definition 51, thatComp(D′′
k ) for eachk ∈ n. Thus, in particularComp(D′′

i ) and soComp(DS ).

(FLD): ThenD = 〈D′, FLD〉 :: Π ⊢ e.f : σ andD′ :: Π ⊢ e: 〈 f : σ〉. By induction,Comp(D′S :: Π
′ ⊢ eS : 〈 f : σ〉).

Then, by Definition 51,Comp(〈D′S , FLD〉 :: Π′ ⊢ eS. f : σ). Notice that〈D′S , FLD〉 = DS and soComp(DS ).

(INVK ): ThenD = 〈D0,Dn, INVK 〉 :: Π ⊢ e0.m(en) : σ with D0 :: Π ⊢ e0 : 〈m : (φn)→ σ〉 andDi :: Π ⊢ ei : φi for
eachi ∈ n. By induction, we have

Comp(D0
S :: Π

′ ⊢ e0
S : 〈m : (φn)→ σ〉) & ∀ i ∈ n [Comp(Di

S :: Π
′ ⊢ ei

S : φi) ]

Then, by Definition 51, it follows that

Comp(〈D0
S [Π′′

P Π
′],D1

S [Π′′
P Π

′], . . . ,Dn
S [Π′′

P Π
′], INVK 〉 :: Π

′′ ⊢ e0
S.m(e1

S, . . . ,en
S) : σ)

whereΠ
′′ =

⋂

Π
′ · Πn and Πi = Π

′ for eachi ∈ n. Notice thatΠ′′ = Π
′ and that for allD :: Π ⊢ e: φ,

D[Π P Π] = D, so it follows thatComp(〈D0
S ,D1

S , . . . ,Dn
S , INVK 〉 :: Π′ ⊢ e0

S.m(e1
S, . . . ,en

S) : σ). Notice
that〈D0

S ,D1
S , . . . ,Dn

S , INVK 〉 = DS and soComp(DS ).

(JOIN), (OBJ): By induction.

(NEWF): ThenD = 〈Dn, NEWF〉 :: Π ⊢ new C(en) : 〈fj : σ〉 with F (C) = fn and j ∈ n, and there is someφn such

thatDi :: Π ⊢ ei : φi for eachi ∈ n with φj = σ. By induction,Comp(Di
S :: Π ⊢ ei : φi) for eachi ∈ n. Now,

takeD(0,σ) = 〈[ ]〉 andC= [ ]. Notice that

D(0,σ)[Dj
S ] :: Π ⊢ C[ej

S] : σ = Dj
S :: Π ⊢ ej

S : φj

and soComp(D(0,σ)[Dj
S ] :: Π ⊢ C[ej

S] : σ). Then by Lemma 55 it follows that

Comp(D(0,σ)[〈〈Di
S , . . . ,Dn

S , NEWF〉, FLD〉] :: Π ⊢ C[new C(e1
S, . . . ,en

S).fj] : σ),

and from the definitions ofD(0,σ) andC that

Comp(〈〈Di
S , . . . ,Dn

S , NEWF〉, FLD〉 :: Π ⊢ new C(e1
S, . . . ,en

S).fj : σ)

Then, by Definition 51, we have thatComp(〈Di
S , . . . ,Dn

S , NEWF〉 :: Π ⊢ new C(e1
S, . . . ,en

S) : 〈fj : σ〉). Notice

that〈Di
S , . . . ,Dn

S , NEWF〉 = DS and soComp(DS ).

(NEWM): ThenD = 〈Db,D0, NEWM〉 :: Π ⊢ new C(e) : 〈m : (φn)→ σ〉 with Mb(C,m) = (x”n ,eb) such that both
Db :: Π′′ ⊢ eb : σ andD0 :: Π ⊢ new C(e) : ψ whereΠ′′ = this:ψ,x”1:φ1, . . . ,x”n:φn. By induction, we have
Comp(D0

S :: Π′ ⊢ new C(e)S : ψ). Now, assume there exist derivationsD1 :: Π1 ⊢ e’1 : φ1, . . . , D1 :: Πn ⊢
e’n : φn such thatComp(Di) for eachi ∈ n. Let Π′′′ =

⋂

Π′ · Πn; notice thatΠ′′′ P Πi for eachi ∈ n so from
Lemma 32 it follows thatComp(Di[Π

′′′ P Πi] :: Π′′′ ⊢ e’i : φi) for eachi ∈ n. Also Π′′′ P Π′ and so then too
by Lemma 32 we have

Comp(D0
S [Π′′′

P Π
′] :: Π

′′′ ⊢ new C(e)S : ψ).

Now consider the derivation substitution

S ′ = {this 7→ D0
S [Π′′′

P Π
′], x”1 7→ D1[Π

′′′
P Π1], . . . , x”n 7→ Dn[Π

′′′
P Πn]}
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Notice thatS ′ is computable inΠ′′ and applicable toDb. So by induction,Comp(Db
S ′

:: Π′′′ ⊢ eb
S′ : σ) where

S
′ is the term substitution induced byS ′. Taking the derivation contextD(0,σ) = 〈[ ]〉 and the expression context

C= [ ], notice that
D(0,σ)[Db

S ′
] :: Π′′′ ⊢ C[eb

S′ ] : σ = Db
S ′

:: Π′′′ ⊢ eb
S′ : σ

and soComp(D(0,σ)[Db
S ′
] :: Π′′′ ⊢ C[eb

S′ ] : σ). From Lemma 56 we then have

Comp(D(0,σ)[〈D
′,D1[Π

′′′
P Π1], . . . ,Dn[Π

′′′
P Πn], INVK 〉] :: Π

′′′ ⊢ C[new C(e)S.m(e’n)] : σ)

whereD′ = 〈Db,D0
S [Π′′′ P Π′], NEWM〉. So, from the definitions ofD(0,σ) andC,

Comp(〈D′,D1[Π
′′′

P Π1], . . . ,Dn[Π
′′′

P Πn], INVK 〉 :: Π
′′′ ⊢ new C(e)S.m(e’n) : σ).

Notice thatD′ =DS [Π′′′ P Π′]. Since the existence of the derivationsD1, . . . ,Dn was assumed, the following
implication holds:

∀Dn [Comp(Di :: Πi ⊢ e’i : φi) ] ⇒ Comp(〈D′,D′
1, . . . ,D′

n, INVK 〉 :: Π′′′ ⊢ new C(e).m(e’n) : σ)

whereD′
i = Di[Π

′′′ P Πi] for eachi ∈ n, with Π′′′ =
⋂

Π′ · Πn. So, by Definition 51, it follows that
Comp(DS :: Π′ ⊢ new C(e)S : 〈m : (φn)→ σ〉). �

Using this result, we can show that all valid derivations arecomputable.

Lemma 58. D :: Π ⊢ e: φ ⇒ Comp(D :: Π ⊢ e: φ).

PROOF. SupposeΠ = x1:φ1, . . . ,xn:φn, then we take the identity substitution

SΠ = {x1 7→D1 :: Π ⊢ x1 : φ1, . . . ,xn 7→Dn :: Π ⊢ xn : φn }

Notice that this is computable inΠ (Lemma 54). Notice also that, by Definition 37,SΠ is applicable toD. Then from
Lemma 57 we haveComp(DSΠ), and since by Proposition 43DSΠ = D it follows thatComp(D). �

Then the key step to the approximation theorem follows directly.

Theorem 59 (Strong Normalisation for Derivation Reduction). If D :: Π ⊢ e: φ then SN(D).

PROOF. By Lemma 58 and Theorem 53(1). �

6. Linking Types with Semantics: The Approximation Result

We will now describe the relationship that the type system from Section 3 has with the semantics that we defined
in Section 2. This takes the form of anapproximation theorem, which states that for every typeable approximant of
an expression, the same type can be assigned to the expression itself, and vice-versa:

Π ⊢ e: φ ⇔ ∃ A∈ A(e) [Π ⊢ A: φ ]

We will show that this result is a direct consequence of the strong normalisability of derivation reduction we achieved
in the previous section: the structure of the normal form of agiven derivation exactly corresponds to the structure of
the approximant which can be typed. This is a very strong property since, as we will explain, it means that typeability
provides a sufficient condition for the (head) normalisation of expressions, i.e. aterminationanalysis forFJ¢.

Finally, the following properties of approximants and predicate assignment lead to the approximation result itself.

Lemma 60. If D :: Π ⊢ a: φ (with D ω-safe) and a⊑ a’ then there exists a derivationD′ :: Π ⊢ a’ : φ (whereD′ is
ω-safe).
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PROOF. By induction on the structure of derivations. �

Lemma 61. Let A1, . . . ,An be approximate normal forms withn ≥ 2 and e be an expression such that Ai ⊑ e for
eachi ∈ n. If there are (ω-safe) derivationsD1, . . . ,Dn such thatDi :: Π ⊢ Ai : φi for eachi ∈ n, then ⊔ An ⊑ e and
there are (ω-safe) derivationsD′

1, . . . ,D′
n such thatD′

i :: Π ⊢ ⊔ An : φi for eachi ∈ n. Moreover, ⊔ An is also an
approximate normal form.

PROOF. By induction on the number of approximants.

n = 2: Then there areA1 and A2 such thatA1 ⊑ e and A2 ⊑ e. By Lemma 10,A1 ⊔ A2 ⊑ e, with A1 ⊔ A2 an
approximate normal form, and alsoA1 ⊑ A1 ⊔ A2 andA1 ⊑ A2 ⊔ A2. Therefore, given thatD1 :: Π ⊢ A1 : φ1

andD2 :: Π ⊢ A2 : φ2 (with ω-safeD1 andD2), it follows from Lemma 60 that there exist derivationsD′
1 and

D′
2 (bothω-safe) such thatD′

1 :: Π ⊢ A1 ⊔A2 : φ1 andD′
2 :: Π ⊢ A1 ⊔ A2 : φ2. The result then follows from the

fact that, by Lemma 10,⊔ A2 = A1 ⊔ A2.

n > 2: By assumption,Ai ⊑ e andDi :: Π ⊢ Ai : φi (with Di ω-safe) for eachi ∈ n. Notice thatAn = A1 · A’n′ where
n = n′ + 1 andA’i = Ai+1 for eachi ∈ n′. ThusA’i ⊑ e for eachi ∈ n′ andDi+1 :: Π ⊢ A’i : φi+1 for each
i ∈ n′. Therefore, by induction,⊔A’n′ ⊑ ewith ⊔A’n′ an approximate normal form, andD′

i :: Π ⊢ ⊔A’n′ : φi+1

(with D′
i ω-safe) for eachi ∈ n′. Then we have by Lemma 10 thatA1 ⊔ ( ⊔ A’n′ ) ⊑ e with A1 ⊔ ( ⊔ A’n′ ) an

approximate normal form,A1 ⊑A1 ⊔ (⊔A’n′ ), and⊔A’n′ ⊑A1 ⊔ (⊔A’n′ ). So by Lemma 60 there is a derivation
D′′′ (with D′′′ ω-safe) such thatD′′′ :: Π ⊢ A1 ⊔ ( ⊔ A’n′ ) : φ1 and (ω-safe) derivationsD′′

1 , . . . ,D′′
n′ such that

D′′
i :: Π ⊢ A1 ⊔ ( ⊔ A’n′ ) : φi+1 for eachi ∈ n′. The result then follows from the fact that, by Definition 9,

⊔ An = A1 ⊔ ( ⊔ A’n′ ). �

Lemma 62. If D :: Π ⊢ e: φ (with D ω-safe) andD is in normal form with respect to→D, then there exists A and
(ω-safe)D′ such that A⊑ e andD′ :: Π ⊢ A: φ.

PROOF. By induction on the structure of derivations.

ω: TakeA=⊥. Notice that⊥⊑ e, by Definition 7, and by(ω) we can takeD′ = 〈ω〉 :: Π ⊢ ⊥ : ω.

In theω-safe version of the result, this case is vacuously true since the derivationD = 〈ω〉 :: Π ⊢ e: ω is not
ω-safe.

VAR: Thene= x andD = 〈VAR〉 :: Π ⊢ x: σ (notice that this is a derivation in normal form). By Definition 6,x is
already an approximate normal form andx ⊑ x, by Definition 7. So we takeA = x andD′ = D. Moreover,
notice that, by Definition 34,D is anω-safe derivation.

JOIN: ThenD = 〈Dn, JOIN〉 :: Π ⊢ e: σ1 ∩ . . .∩σn with n ≥ 2 andDi :: Π ⊢ e: σi for eachi ∈ n. SinceD is in normal
form it follows that eachDi (i ∈ n) is in normal form too (and also, ifD is ω-safe then, by Definition 34, each
Di is ω-safe too). By induction, there then existA1, . . . ,An and (ω-safe) derivationsD′

1, . . . ,D′
n such that, for

eachi ∈ n, Ai ⊑ eandD′
i :: Π ⊢ Ai : σi. Now, by Lemma 61 it follows that⊔An ⊑ ewith ⊔An normal and that

there are (ω-safe) derivationsD′′
1 , . . . ,D′′

n such thatD′′
i :: Π ⊢ ⊔ An : σi for eachi ∈ n. Finally, by the(JOIN)

rule we can take (ω-safe)D′ = 〈D′′
n , JOIN〉 :: Π ⊢ ⊔ An : σ1 ∩ . . .∩σn.

FLD: Thene= e’.f andD = 〈D′, FLD〉 :: Π ⊢ e’. f : σ with D′ :: Π ⊢ e’ : 〈 f : σ〉. SinceD is in normal form, so too is
D’. Furthermore, ifD is ω-safe then, by Definition 34, so too isD’. By induction, there is someA and (ω-safe)
derivationD′′ such thatA ⊑ e’ andD′′ :: Π ⊢ A: 〈 f : σ〉. Then by rule(FLD), 〈D′′, FLD〉 :: Π ⊢ A. f : σ and, by
Definition 7,A. f ⊑ e’. f. Moreover, by Definition 34, whenD” is ω-safe so too is〈D′′, FLD〉.

INVK , OBJ, NEWF, NEWM: These cases follow straightforwardly by induction similarto (FLD). �

Lemma 60 above simply states the soundness of type assignment with respect to the approximation relation.
Lemma 62 is the more interesting, since it is this that expresses the relationship between the structure of a derivation
and the typed approximant. The derivationD′ is constructed fromD by replacing sub-derivations of the form〈ω〉 ::

Π ⊢ e: ω by 〈ω〉 :: Π ⊢ ⊥ : ω (thus covering any redexes appearing ine). SinceD is in normal form, there are also
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no typedredexes, ensuring that the expression typed in the conclusion of D′ is an approximate normal form. The
‘only if’ part of the approximation result itself then follows easily from the fact that→D corresponds to reduction
of expressions, soA is also anapproximantof e. The ‘if’ part follows from the first property above and subject
expansion.

Theorem 63 (Approximation). Π ⊢ e: φ if and only if there exists A∈ A(e) such thatΠ ⊢ A: φ.

PROOF. if: There is an approximantA of e such thatΠ ⊢ A: φ, so e→∗ e’ with A ⊑ e’. Then, by Lemma 60,
Π ⊢ e’ : φ, and then by subject expansion (Theorem 20), alsoΠ ⊢ e: φ.

only if: Let D :: Π ⊢ e: φ, then, by Theorem 59,D is strongly normalising. Take the normal formD′; by the
soundness of derivation reduction (Theorem 49),D′ :: Π ⊢ e’ : φ ande→∗ e’. By Lemma 62, there is some
approximate normal formA such thatΠ ⊢ A: φ andA⊑ e’. Thus, by Definition 11,A∈ A(e). �

Termination Analysis

As in other intersection type systems [3, 8], the approximation theorem underpins characterisation results for
various forms of termination. Our predicate system issoundwith respect to the approximation semantics (as shown
by the Approximation Theorem), and so typeability gives a guarantee of termination since our normal approximate
forms of Definition 6 correspond in structure to standard expressions in (head) normal form.

Definition 64 (Normal Forms). 1. The set of (well-formed)head-normal forms(ranged over byH) is defined by:

H ::= x | new C(en) (F (C) = fn)
| H. f | H.m(e) (H 6= new C(e))

2. The set of (well-formed)normalforms (ranged over byN) is defined by:

N ::= x | new C(Nn) (F (C) = fn)
| N. f | N.m(N) (N 6= new C(N))

Notice that the difference between these two notions sits inthe second and fourth alternatives, where head-normal
forms allow arbitrary expressions to be used. Also note thatwe stipulate that a (head) normal expression of the form
new C(e) musthave the correct number of field values as defined in the declaration of classC. Expressions of this
form with either less or more field values maytechnicallyconstitute (head) normal forms, but we discount them as
malformed since they do not ‘morally’ constitute valid objects according to the class table.

Lemma 65. 1. If A 6= ⊥ and A⊑ e, then e is a head-normal form.
2. If A ⊑ e and A does not contain⊥, then e is a normal form.

PROOF. By straightforward induction on the structure ofA using Definition 7. �

Thus any predicate, or more accurately any predicate derivation other than those of the form〈ω〉 :: Π ⊢ e: ω
(which correspond to the approximant⊥), specifies the structure of a (head) normal form via the normal form of its
derivation. From the approximation result, the following characterisation of head-normalisation follows easily.

Lemma 66 (Typeability of (head) normal forms). 1. If e is a head-normal form then there exists a strict predi-
cateσ and predicate environmentΠ such thatΠ ⊢ e: σ; moreover, if e is not of the formnew C(en) then for
any arbitrary strict predicateσ there is an environment such thatΠ ⊢ e: σ.

2. If e is a normal form then there exist strong strict predicateσ, predicate environmentΠ and derivationD such
that D :: Π ⊢ e: σ; moreover, if e is not of the formnew C(en) then for any arbitrary strong strict predicate
there exist strongD andΠ such thatD :: Π ⊢ e: σ.

PROOF. 1. By induction on the structure of head-normal forms.

x: By the(VAR) rule,x:σ ⊢ x: σ for any arbitrary strict predicate.
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new C(en): Notice thatF (C) = f n, by definition of the head-normal form. Let us take the empty predicate
environment,∅. Notice that by rule(ω) we can derive∅ ⊢ ei : ω for eachi ∈ n. Then, by rule(OBJ) we
can derive∅ ⊢ new C(en) :C.

H. f : Notice that, by definition,H is a head-normal expressionnot of the formnew C(en), thus by induction
for any arbitrary strict predicateσ there is an environmentΠ such thatΠ ⊢ H : σ. Let us pick some (other)
arbitrary strict predicateσ′, then there is an environmentΠ such thatΠ ⊢ H : 〈 f : σ′〉. Thus, by rule(FLD)
we can deriveΠ ⊢ H. f : σ′ for any arbitrary strict predicateσ′.

H.m(en): This case is very similar to the previous one. Notice that, bydefinition,H is a head-normal expression
not of the formnew C(en), thus by induction for any arbitrary strict predicateσ there is an environment
Π such thatΠ ⊢ H : σ. Let us pick some (other) arbitrary strict predicateσ′, then there is an environment
Π such thatΠ ⊢ H : 〈m : (ωn)→ σ′〉. Notice that by rule(ω) we can deriveΠ ⊢ ei : ω for eachi ∈ n.
Thus, by rule(INVK ) we can deriveΠ ⊢ H.m(en) : σ′ for any arbitrary strict predicateσ′.

2. By induction on the structure of normal forms.

x: By the(VAR) rule,x:σ ⊢ x: σ for any arbitrary strict predicate, and in particular this holds for any arbitrary
strongstrict predicate. Also, notice that derivations of the form〈VAR〉 are strong by Definition 34.

new C(Nn): Notice thatF (C) = fn by the definition of normal forms. Since eachNi is a normal form for
i ∈ n, it follows by induction that there are strong strict predicatesσn, environmentsΠn and derivations
Dn such thatDi :: Πi ⊢ Ni : σi for eachi ∈ n. Let the environmentΠ′ =

⋂

Πn; notice that, by Definition 16,
Π′ P Πi for eachi ∈ n, and also that since eachΠi is strong so isΠ′. Thus,[Π′ P Πi] is a weakening for
eachi ∈ n andDi[Π

′ P Πi] :: Π′ ⊢ Ni : σi for eachi ∈ n. Notice that, by Definition 31, weakening does
not change the structure of derivations, therefore for eachi ∈ n, Di[Π

′ P Πi] is a strong derivation. Now,
by rule(OBJ) we can derive

〈D1[Π
′
P Π1], . . . ,Dn[Π

′
P Πn], OBJ〉 :: Π

′ ⊢ new C(Nn) :C

Notice thatC is a strong strict predicate, and that since each derivationDi[Π
′ P Πi] is strong then, by

Definition 34, so is〈D1[Π
′ P Π1], . . . ,Dn[Π′ P Πn], OBJ〉.

N. f : Notice that, by definition,N is a normal expressionnot of the formnew C(Nn), thus by induction for any
arbitrary strong strict predicateσ there is a strong environmentΠ and derivationD such thatD :: Π ⊢ N: σ.
Let us pick some (other) arbitrary strong strict predicateσ′, then there are strongΠ andD such that
D :: Π ⊢ N: 〈 f : σ′〉. Thus, by rule(FLD) we can derive〈D, FLD〉 :: Π ⊢ N. f : σ′ for any arbitrary strong
strict predicateσ′. Furthermore, notice that sinceD is strong it follows from Definition 34 that〈D, FLD〉
is also strong.

N.m(Nn): Since eachNi for i ∈ n is a normal form it follows by induction that there are strongstrict predicates
σn, environmentsΠn and derivationsDn such thatDi :: Πi ⊢ Ni : σi for eachi ∈ n. Also notice that,
by definition,N is a normal expressionnot of the formnew C(Nn), thus by induction for any arbitrary
strict predicateσ there is a strong environmentΠ and derivationD such thatD :: Π ⊢ N: σ. Let us
pick some (other) arbitrary strong strict predicateσ′, then〈m : (σn)→ σ′〉 is also strong and there are
Π andD such thatD :: Π ⊢ N: 〈m : (σn)→ σ′〉. Let the environmentΠ′ =

⋂

Π · Πn notice that, by
Definition 16,Π′ P Π andΠ′ P Πi for eachi ∈ n, and also that sinceΠ is strong and eachΠi is strong
then so isΠ

′. Thus, [Π′ P Π] is a weakening and[Π′ P Πi] is a weakening for eachi ∈ n. Then
D[Π′ P Π] :: Π′ ⊢ N: 〈m : (σn)→ σ′〉 andDi[Π

′ P Πi] :: Π′ ⊢ Ni : σi for eachi ∈ n. Notice that, by
Definition 31, weakening does not change the structure of derivations, thereforeD[Π′ P Π] is strong and
for eachi ∈ n, Di[Π

′ P Πi] is also strong. Now, by rule(INVK )

〈D[Π′
P Π],D1[Π

′
P Π1], . . . ,Dn[Π

′
P Πn], INVK 〉 :: Π

′ ⊢ N.m(Nn) : σ′

for any arbitrary strong strict predicateσ′. Furthermore, by Definition 34, we have that

〈D[Π′
P Π],D1[Π

′
P Π1], . . . ,Dn[Π

′
P Πn], INVK 〉

is a strong derivation. �
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Theorem 67 (Head-normalisation).Π ⊢ e: σ if and only if e has a head-normal form.

PROOF. if: Lete’ be a head-normal ofe. By Lemma 66(1) there exists a strict predicateσ and a predicate environment
Π such thatΠ ⊢ e’ : σ. Then by subject expansion (Theorem 20) it follows thatΠ ⊢ e: σ.

only if: By the approximation theorem, there is an approximantA of esuch thatΠ ⊢ A: σ. Thuse→∗ e’ with A⊑ e’.
Sinceσ is strict, it follows thatA 6= ⊥, so by Lemma 65e’ is a head-normal form. �

Recall the Lambda Calculus characterisation of normalisability in ITD:

B ⊢ M : σ with B andσ strong⇔ M has a normal form

An analogous result does not hold forFJ¢ (see the third example in Example 35 for a counterexample), however we
can obtain such a resultmodulocertain kinds of derivations – namely theω-safe derivations (and also, as we will
explain, modulo certain kinds of programs – namelyOOCL ones).

One half of the implication holds in general:

Theorem 68 (Normalisation). D :: Π ⊢ e: σ with D andΠ ω-safe only if e has a normal form.

PROOF. By the approximation theorem, there is an approximantA of eand derivationD′ such thatD′ :: Π ⊢ A: σ and
D →∗

D
D′. Thuse→∗ e’ with A⊑ e’. Also, since derivation reduction preservesω-safe derivations (Lemma 50), it

follows thatD′ is ω-safe and thus by Lemma 36 thatA does not contain⊥. Then by Lemma 65 we have thate’ is a
normal form. �

On the other hand, the reverse implication does not hold in general since our notion ofω-safe typeability is too
fragile: it not preserved by (derivation) expansion – consider that while anω-safe derivation may exist forΠ ⊢ ei : σ, no
ω-safe derivation may exist forΠ ⊢ new C(en).fi : σ (due to non-termination in the other expressionsej) even though
this expression has the same normal form asei. A completeness resultdoeshold when we restrict our attention to the
image ofCL terms inOOCL, as shown later in Theorem 73.

We can however show that the set of strongly normalising expressions are exactly those typeable using strong
derivations. This follows from the fact that in such derivations, all redexes in the typed expression correspond to
redexes in the derivation, and then any reduction step that can be made by the expression (via→) is then matched by
a corresponding reduction of the derivation (via→D).

Theorem 69 (Strong Normalisation for Expressions).e is strongly normalisable if and only ifD :: Π ⊢ e: σ with
D strong.

PROOF. if: SinceD is strong, all redexes ine are typed and therefore each possible reduction ofe is matched by a
corresponding derivation reduction ofD. By Lemma 50 it follows that no reduction ofD introduces subderiva-
tions of the form〈ω〉, and so sinceD is strongly normalising (Theorem 59) so too ise.

only if: By induction on the maximum lengths of left-most outer-mostreduction sequences for strongly normalising
expressions, using the fact that all normal forms are typeable with strong derivations and that strong typeability
is preserved under left-most outer-most redex expansion. �

We will illustrate our results by applying them in the context of OOCL.

Definition 70 (OOCL normal forms). Let the set ofOOCL normal forms be the set of expressions

{ e | there exists aCL termt such thate is the normal form of⌈⌈t⌋⌋ }

Notice that it can be defined by the following grammar:

e ::= x | e.app(e’) (e 6= new C(en)) |
new K() | new K1(e) | new S() | new S1(e) | new S2(e1,e2)
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EachOOCL normal form corresponds to aCL normal form, the translation of which can also by typed with an
ω-safe derivation for each predicate assignable to the normal form.

Lemma 71. If e is anOOCL normal form, then there exists aCL normal form t such that⌈⌈t⌋⌋ →∗ e and for allω-safe
D andΠ such thatD :: Π ⊢ e: σ, there exists anω-safe derivationD′ such thatD′ :: Π ⊢ ⌈⌈t⌋⌋ : σ.

PROOF. By induction on the structure ofOOCL normal forms. �

We can also show thatω-safe typeability is preserved under expansion for the images ofCL terms inOOCL.

Lemma 72. Let t1 and t2 beCL terms such that t1 → t2; if there is anω-safe derivationD and environmentΠ, and
a strict predicateσ such thatD :: Π ⊢ ⌈⌈t2⌋⌋ : σ, then there exists anotherω-safe derivationD′ such thatD′ :: Π ⊢
⌈⌈t1⌋⌋ : σ.

PROOF. By induction on the definition of reduction forCL. �

This property of course also extends to multi-step reduction.
Together with the lemma preceding it (and the fact that all normal forms can by typed with anω-safe derivation),

this leads to both a sound andcompletecharacterisation of normalisability for the images ofCL terms inOOCL.

Theorem 73. Let t be aCL-term: then t is normalisable, if and only if, there areω-safeD andΠ, and strict predicate
σ such thatD :: Π ⊢ ⌈⌈t⌋⌋ : σ.

PROOF. if: Directly by Theorem 68.

only if: Let t’ be the normal from oft; then, by Theorem 22,⌈⌈t⌋⌋ → ⌈⌈t’⌋⌋. It is straightforward to show that then⌈⌈t’⌋⌋
is normalisable as well; letebe the normal form of⌈⌈t’⌋⌋. Then by Lemma 66(2) there are strong strict predicate
σ, environmentΠ and derivationD such thatΠ ⊢ e: σ. SinceD andΠ are strong, they are alsoω-safe. Then,
by Lemma 71 and 72, there existsω-safeD′ such thatD′ :: Π ⊢ ⌈⌈t⌋⌋ : σ. �

7. Some Worked Examples

We will now give a more concrete idea of how the concepts outlined in the previous section work, by giving
a couple of examples. The first is based upon the familiar concept of a fixed-point combinator from the world of
functional programming: we will show how a simple yet non-trivial predicate can be derived for our construction, and
then demonstrate how this derivation reduces to a normal form whose structure directly corresponds to an approximant
of the original term. The second example is actually a non-example demonstrating how a non-terminating program
(i.e. one having no approximants other than⊥) is not typeable.

A Fixed-point Construction

The fixed-pointof a function f is a valuex such thatx = f (x). A fixed-pointcombinatoris a (higher-order)
function that returns a fixed-point of its argument (anotherfunction). Thus, a fixed-point combinatorg has the property
that g f = f (g f ) for any functionf . Turing’s well-known fixed-point combinator in theλ-calculus is the following
term:

Tur = ΘΘ = (λxy.y(xxy))(λxy.y(xxy))

ThatTur provides a fixed-point constructor is easy to check:

Tur f = (λxy.y(xxy))Θ f →∗
β f (ΘΘ f ) = f (Tur f )

The termTur itself has the reduction behaviour

Tur= (λxy.y(xxy))Θ →β λy.y(ΘΘy)
→β λy.y((λz.z(ΘΘz))y)
→β λy.y(y(ΘΘy))

...
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which implies it has the following set of approximants:

{⊥, λy.y⊥, λy.y(y⊥), . . .}

Thus, ifz is a term variable, the approximants ofTur z are⊥,z⊥,z(z⊥), etc. As well as satisfying the characteristic
property of fixed-point combinators mentioned above, the term Tur satisfies the stronger property thatTur M →∗

β

M(Tur M) for any termM.
It is straightforward to define anFJ¢ program which mirrors this behaviour:

class T extends Combinator {
combinator app(Combinator x) {

return x.app(this.app(x));
}

}

Following from the example of Section 4 we have implemented the fixed point combinatorTur using a classT which
conforms to theCombinator ‘interface’, in which term application is modelled via anapp method. The body of the
app method in the classT encodes the reduction behaviour we saw forTur above.

For anyFJ¢ expressione:

new T().app(e) → e.app(new T().app(e))

So, takingM = new T().app(e), we have

M → e.app(M)

Thus, by Theorem 12, the fixed pointM of e (as returned by the fixed point combinator classT) is semantically
equivalent toe.app(M), and sonew T().app(·) does indeed represent a fixed-point constructor.

The (executable) expressione= new T().app(z) has the reduction behaviour

new T().app(z) → x.app(this.app(x)) [new T/this,z/x]
= z.app(new T.app(z))
→ z.app(z.app(new T.app(z))
...

so has the following (infinite) set of approximants:

{⊥, z.app(⊥), z.app(z.app(⊥)), . . .}

Notice that these exactly correspond to the set of the approximants for theλ-term Tur z that we considered above.
The derivationD1 in Figure 8 shows a possible derivation assigning the predicateϕ to e. In fact, the normal form of
this derivation corresponds to the approximantz.app(⊥), which we will now demonstrate.

The derivationD1 comprises atyped redex, i.e. a derivation of the form〈〈·, ·, NEWM〉, ·, INVK 〉, thus it will reduce.
The derivationD2 shows the result of preforming the reduction step. In this example, the predicateω is assigned to the
receivernew T(), since that is the predicate associated withthis in the environmentΠ2 used when typing the method
body. It would have been possible to use a more specific predicate forthis in Π2 (consequently requiring a more
structured subderivation for the receiver), but even had wedone so the information contained in this subderivation
would have been ‘thrown away’ by the derivation substitution operation during the reduction step, since the occurrence
of the variablethis in the method body is still covered byω (i.e. any information aboutthis in the environmentΠ2

is not used).
The derivationD2 is now in normal formsince although the expression that it types still contains aredex, that

redex is covered byω and so no further (derivation) reduction can take place there. The structure of this derivation
therefore dictates the structure of an approximant ofe: the approximant is formed by replacing all sub-expressions
typed withω by the element⊥. When we do this, we obtain the derivationD3 as given in the figure.

Although this example is relatively simple (we chose the derivation corresponding to the simplest non-trivial
approximant), it does demonstrate the central concepts involved in the approximation theorem.
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D1 ::

(VAR)
Π2 ⊢ x : 〈app : (ω)→ ϕ2〉

(ω)
Π2 ⊢ this.app(x) : ω

(INVK )
Π2 ⊢ x.app(this.app(x)) : ϕ

(ω)
Π1 ⊢ new T() : ω

(NEWM)
Π1 ⊢ new T() : 〈app : (〈app : (ω)→ ϕ〉)→ ϕ〉

(VAR)
Π1 ⊢ z : 〈app : (ω)→ ϕ〉

..

..

..

.

(INVK )
Π1 ⊢ new T().app(z) : ϕ

D2 ::

(VAR)
Π1 ⊢ z : 〈app : (ω)→ ϕ〉

(ω)
Π1 ⊢ new T().app(z) :ω

(INVK )
Π1 ⊢ z.app(new T().app(z)) : ϕ

D3 ::

(VAR)
Π1 ⊢ z : 〈app : (ω)→ ϕ〉

(ω)
Π1 ⊢ ⊥ : ω

(INVK )
Π1 ⊢ z.app(⊥) : ϕ

Π1 = {z:〈app : (ω)→ ϕ〉}, Π2 = {this:ω,x:〈app : (ω)→ ϕ〉}

Figure 8: Predicate Derivations for the Fixed-Point Construction Example

(VAR)
this:ψ ⊢ this : 〈m : ()→ ϕ〉

(INVK )
this:ψ ⊢ this.m() : ϕ

D′

∅ ⊢ new C() : ψ
(NEWM)

D :: ∅ ⊢ new C() : 〈m : ()→ ϕ〉
(INVK )

∅ ⊢ new C().m() : ϕ

(VAR)
this:〈m : ()→ ϕ〉 ⊢ this : 〈m : ()→ ϕ〉

(INVK )
this:〈m : ()→ ϕ〉 ⊢ this.m() : ϕ

(VAR)
this:〈m : ()→ ϕ〉 ⊢ this : 〈m : ()→ ϕ〉

(INVK )
this:〈m : ()→ ϕ〉 ⊢ this.m() : ϕ

DOES NOT EXIST...

∅ ⊢ new C() : 〈m : ()→ ϕ〉
(NEWM)

∅ ⊢ new C() : 〈m : ()→ ϕ〉

..

..

.

(NEWM)
∅ ⊢ new C() : 〈m : ()→ ϕ〉

(INVK )
∅ ⊢ new C().m() : ϕ

Figure 9: Predicate Derivations for a Non-Terminating Program

An Unsolvable Program

Let us now examine how the predicate system deals with programs that do not have a head-normal form. The
approximation theorem states that any predicate which we can assign to an expression is also assignable to an approx-
imant of that expression. As we mentioned in Section 2, approximants are snapshots of evaluation: they represent the
information computed during evaluation. But by their very nature, programs which do not have a head-normal form
do not compute any information as they have no observable behaviour. Formally, then, the characteristic property
of unsolvable expressions (i.e. those without a head-normal form) is that they donot have non-trivial approximants:
their only approximant is⊥. From the approximation result it therefore follows that wecannot build any derivation
for these expressions that assigns a predicate other thanω (since that is the only predicate assignable to⊥).

To illustrate this, consider the following program which constitutes perhaps the simplest example of unsolvability
in OO:

class C extends Object {
C m() { return this.m(); }

}

This program has a methodm which simply calls itself recursively.
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Figure 9 shows two candidate derivations assigning a non-trivial predicate to the expressionnew C().m(), the
first of which we can more accurately call a derivationschemasince it specifies the form that any such derivation
must take. When we are trying to assign a non-trivial predicate to the invocation of the methodm onnew C(), we can
proceed without loss of generality by building a derivationassigning a predicate variableϕ, since we may then simply
substitute any suitable (strict) predicate forϕ in the derivation.

The derivation we need to build assigns the predicateϕ to a method invocation so we must first build a derivation
D that assigns the method predicate〈m : ()→ ϕ〉 to the receivernew C(). Thisderivation is constructed by examining
the method body –this.m() – and finding a derivation assigning to itϕ. This analysis reveals that the variablethis
must be assigned a predicate for the methodm which will be of the form〈m : ()→ ϕ〉; new C() (the receiver) must
also satisfy the predicateψ used forthis. Finally, in order for the(VAR) leaf of the derivation to be valid the predicate
ψ must satisfy the constraint thatψ P 〈m : ()→ ϕ〉.

The second derivation of Figure 9 is an attempt at instantiating the schema that we have just constructed. In order
to make the instantiation, we must pick a concrete predicatefor ψ satisfying the aforementioned constraint. Perhaps
the simplest thing to do would be to pickψ = 〈m : ()→ ϕ〉. Next, we must instantiate the derivationD′ assigning this
predicate to the receivernew C(). Here we run into trouble because, in order to achieve this, we must again type the
body of methodm, i.e. solve the same problem that we started with – we see thatour instantiation of the derivation
D′ must be of exactly the same shape as our instantiation of the derivationD; of course, this is impossible sinceD′

is a proper subderivation ofD and so no such derivation exists. Notice however, that the receivernew C() itself is
not unsolvable – indeed, it is a normal form – and so wecanassign to it a non-trivial predicate: using the(OBJ) rule,
∅ ⊢ new C() :C.

Some Observations

In this paper we have shown how theITD approach can be applied to class-basedOO, preserving the main expected
properties of intersection type systems. There are howeversome notable differences between our type system and
previous work onLC andTRS upon which our research is based.

Firstly, we point out that when considering the encoding ofCL (and via that,LC) in FJ¢, our system providesmore
than the traditional analysis of terms as functions: there are untypeableLC andCL terms which have typeable images
in OOCL. Let δ be the followingCL term: S (S K K) (S K K). Notice thatδ δ →∗ δ δ, i.e. it is unsolvable, and thus
can only be given the typeω (this is also true for⌈⌈δ δ⌋⌋). Now, consider the termt = S (K δ) (K δ). Notice that it is
a normal form (⌈⌈t⌋⌋ has a normal form also), but that for any termt’ , S (K δ) (K δ) t’ →∗ δ δ. In a strict system, no
functional analysis is possible fort sinceφ → ω is not a type and so the only way we can type this term is usingω7.

In our type system however we may assign several forms of predicate to⌈⌈t⌋⌋. Most simply we can derive∅ ⊢
⌈⌈t⌋⌋ :S3, but even though a ‘functional’ analysis via theapp method is impossible, it is still safe to access the fields
of the value resulting from⌈⌈t⌋⌋ – both∅ ⊢ ⌈⌈t⌋⌋ : 〈x :K2〉 and∅ ⊢ ⌈⌈t⌋⌋ : 〈y :K2〉 are also easily derivable statements.
In fact, we can derive even more informative types: the expression⌈⌈K δ⌋⌋ can be assigned predicates of the form
σKδ = 〈app : (σ1)→ 〈app : (σ2 ∩ 〈app : (σ2)→ σ3〉)→ σ3〉〉, and so we can also assign〈x : σKδ〉 and 〈y : σKδ〉 to
⌈⌈t⌋⌋. Notice that the equivalentλ-term tot is λy.(λx.xx)(λx.xx), which is aweakhead-normal form without a head-
normal form. The ‘functional’ view is that such terms are observationally indistinguishable from unsolvable terms.
When encoded inFJ¢ however, our type system shows that these terms become meaningful (head-normalisable).

The second observation concernsprincipal types. In theLC, each normal form has auniquemost-specific type:
i.e. a type from which all the other assignable types may be generated. This property is important for practical type
inference. It is not clear if our intersection type system forFJ¢ does enjoy such a property. Consider the following
program:

class D extends Object {
D m() { return new D(); }

}

7In other intersection type systems (e.g. [12])φ → ω is a permissible type, but is equivalent toω (that isω ≤ (φ → ω)≤ ω) and so semantics
based on these type systems identify terms of typeφ → ω with unsolvable terms.
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(OBJ)
∅ ⊢ new D() :D

(OBJ)
this:D ⊢ new D() :D

(OBJ)
∅ ⊢ new D() :D

(NEWM)
∅ ⊢ new D() : 〈m : ()→ D〉

(OBJ)
this:D ⊢ new D() :D

(OBJ)
this:D ⊢ new D() :D

(NEWM)
this:D ⊢ new D() : 〈m : ()→ D〉

(OBJ)
this:D ⊢ new D() :D

(NEWM)
∅ ⊢ new D() : 〈m : ()→ 〈m : ()→ D〉〉

..

(OBJ)
this:D ⊢ new D() :D

(OBJ)
this:D ⊢ new D() :D

(NEWM)
this:D ⊢ new D() : 〈m : ()→ D〉 (OBJ)

this:D ⊢ new D() :D
(NEWM)

this:D ⊢ new D() : 〈m : ()→ 〈m : ()→ D〉〉
(OBJ)

∅ ⊢ new D() :D
(NEWM)

∅ ⊢ new D() : 〈m : ()→ 〈m : ()→ 〈m : ()→ D〉〉〉

Figure 10: Predicate Derivations for a Program without a Principal Type

The expressionnew D() is a normal form, and so we can assign it a non-trivial predicate, but observe that the set of
all predicates which may be assigned to this expression is the infiniteset{D, 〈m : ()→ D〉, 〈m : ()→ 〈m : ()→ D〉〉, . . .},
as illustrated in Figure 10. None of these types may be considered themostspecific one, since whichever predicate
we pick we can always derive a more informative (larger) one.On the one hand, this is exactly what we want: we may
make a series of any finite number of calls to the methodm and this is expressed by the predicates. On the other hand,
this seems to preclude the possibility of practical type inference for our system. Notice however that these predicates
are not unrelated to one another: they each approximate the ‘infinite’ predicate〈m : ()→ 〈m : ()→ . . .〉〉, which can be
finitely represented by the recursive typeµX.〈m : ()→ X〉. This type concisely captures the reduction behaviour of
new D(), showing that when we invoke the methodm on it we again obtain our original term. InLC such families of
types arise in connection with fixed-point operators. This is not a coincidence: the classD wasrecursivelydefined,
and in the face of such self-reference it is not then surprising that this is reflected in our type analysis.

Conclusions & Future Work

We have considered an approximation-based denotational semantics for class-basedOO programs and related this
to a predicate-based semantics defined using an intersection type approach. Our work shows that the techniques and
strong results of this approach can be transferred straightforwardly from other programming formalisms (i.e.LC and
TRS) to the OO paradigm. Through characterisation results we have shown that our predicate system is powerful
enough (at least in principle) to form the basis for expressive analyses ofOO programs.

Our work has also highlighted where theOO programming style differs from its functional cousin. In particular
we have noted that because of theOO facility for self-reference, it is no longer clear if all normal forms have a most
specific (or principal) type. The types assignable to such normal forms do however seem to be representable using
recursive definitions. This observation further motivatesand strengthens the case (by no means a new concept in the
analysis ofOO) for the use of recursive types in this area. Some recent work[32] shows that a restricted but still highly
expressive form of recursive types can still characterise strongly normalising terms, and we hope to fuse this approach
with our own to come to an equally precise but more concise andpractical predicate-based treatment ofOO.

We would also like to reintroduce more features of full Java back into our calculus, to see if our system can
accommodate them whilst maintaining the strong theoretical properties that we have shown for the core calculus. For
example, similar toλµ [33], it seems natural to extend our simply typed system to analyse the exception handling
features of Java.
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