Semantic Types and Approximation for Featherweight Java

R.N.S. Rowe, S.J. van Bakel
Department of Computing, Imperial College London, 180 @ig6ate, London SW7 2BZ, UK

Abstract

We consider semantics for the class-based object-oriertiedlus Featherweight Java based uppproxima-
tion. We also define aimtersection type assignment systdorshis calculus and show that it sbundandcomplete
i.e. types are preserved under conversion. We establisiinthe/ith between type assignment and the approxima-
tion semantics by showing an approximation result, whiguseto a sufficient condition for head-normalisation and
termination.

We show the expressivity of our predicate system by definingreoding of Combinatory Logic into our calculus.
We show that this encoding preserves predicate-abilityasa that our system characterises the normalising and
strongly normalising terms for this encoding. We thus destiate that the great analytic capabilities of intersectio
types can be applied to the context of class-based objesttation.

Introduction

Over the years many expressive type systems have been defidéu/estigated for a variety of calculi. Amongst
those, thdntersection type disciplinéTp) [15, 16, 12, 2], first defined for the Lambda Calculug) [11], stands
out as a system that is closed ungeequality and gives rise to a filter model; it is defined as atemsion of
Curry’s basic type system farc, by allowing term-variables to have many, potentially noiifiable, types. This
generalisation leads to a very expressive system: for ebertgymination (i.e. strong normalisation) of terms can
be characterised by assignable types. Furthermore, éttéya type-based models and approximation results show
that intersection types describe the full semantical bigliawf typeable terms. Intersection type systems have also
been employed successfully in analyses for dead code @iimin[18], strictness analysis [28], and control-flow
analysis [10], proving them a versatile framework for redsg about programs. Inspired by this expressive power,
investigations have taken place of the suitability of inémtion type assignment for other computational models:
for example, van Bakel and Fernandez have studied intégeistpes in the context of Term Rewriting Systems
(TRS) [7, 8] and van Bakel studied them in the context of sequelotitid4, 5].

The object-orientecprogramming paradigm has also been the subject of extetigeeetical study over the last
two decades, as exemplified by languages such as C++ [38][2ZBly C# [20], Ruby [37], ECMAscript (or Javascript)
[21] and Python [35]00 languages come in two broad flavours: tigect(or prototype) based, and tekassbased.

A number of formal models has been developed [13, 14, 31,22,,27] which attempt to distill the many features of
oointo a core set of primitive operations. Of these,ghealculus [1] and Featherweight Jawa)([27] have been well
received as elementary models for object based and clagstba, respectively. In an attempt to bring intersection
types to the context afo, van Bakel and de’Liguoro presented a system foitiealculus [6]; the main characteristic
of that system is that it sees assignable types asxanution predicateor applicability predicate rather than as a
functional characterisation as is the view in the contextofind, as a result, recursive calls are typed individually,
with different types. This is also the case in our system.

Semantics is a well-established area of research for botttiinal and imperative languages; for the functional
programming language side, semantics is maddnotational based on Scott’'s domain theory [38], whereas for

Email addresses:nr 07@loc. i c. ac. uk (R.N.S. Rowe)svb@loc. i c. ac. uk (S.J. van Bakel)

Preprint submitted to Elsevier April 19, 2011

imperative languages it is maingperational[34]. In this paper we aim to develop denotational semarfiticslass-
basedoo; in order to be able to concentrate on the essential diffes)ltwve focus on Featherweight Java [27], a
restriction of Java defined by removing all but the most esalefeatures of the full language; Featherweight Java
bears a similar relation to Java las does to languages suchmas [30] and Haskell [26]. We illustrate the expressive
power of our calculus by showing that it is Turing completetigh an embedding of Combinatory Log.(— and
thereby alsa.c. We will use two approaches, by defining both an approximatmsed and type-based semantics for
FJ; to achieve the latter, we introduce a notion of intersectype assignment (we will use the terminolqugdicates
here, to distinguish our notion from the traditional notafrclass types).

For that notion of intersection predicate assignment, wieslvow that the expected properties of a system based
on intersection (i.esoundnessind completenegshold. A notion ofapproximantfor F3programs is defined as a
finite, rooted segment of a (head)-normal form, as usuad;ithuised to show aapproximation resultvhich states
that, for every intersection predicate assignable to a farour system, an approximant of that term exists which
can be assigned the same predicate. Interpreting a terrs bgtibf approximants gives approximation semantics
and the approximation result then relates the approximatia the predicate-based semantics; it demonstrates that
our predicate system is sound and complete with respecetaghroximation semantics, allowing a predicate-based
analysis of termination. As is also the case farand TRS, in our system this result is shown using a notion of
computability; since the notion of reduction we considexésak as in [8], to show the approximation result we need
to consider reduction on predicate derivations.

We then restrict our notion to that of Curry type assignmefar-which we can easily show a principal predicate
property — and show a predicate preservation result: typgigmable tacL-terms in Curry’s system correspond to
predicates in our system that can be assigned to the intedwe-terms. This could easily be extended to the strict
intersection type assignment system far[2]; combined with the results we show in this paper, thismtiraplies
that the collection of predicate-alie expressions correspond to the terms that are typeable insémgection types,

i.e. all A-terms that are semantically meaningful.

Contents of this papern Section 1, we present the calcule$, Featherweight Java without casts, for which in
Section 2 we define an approximation semantics, intergretipressions through finite rooted segments of (infinite)
normal forms. In Section 3, we define our notion of intergaciredicate assignment, and show an subject reduc-
tion and expansion result (soundness and completenesSection 4 we show how to encode Combinatory Logic
into F¥, whilst preserving assignable Curry types. In Section 5 efiné a notion of reduction on derivations that
follows reduction orrs*-expressions, and show that this notion is strongly nosahle. The two approaches of ap-
proximation and intersection types are linked in Sectiowléere we show the approximation result. i.e. every type
assignment for an expression is valid for one if its appraiits, and show that this is a direct consequence of the
strong normalisability of derivation reduction; we als@ahsome characterisation results for head-normalisatidn a
strong normalisation; we apply our result to the intergretaof Combinatory Logic. In Section 7, we give some
detailed examples and observations, followed by our caimiu

An extended abstract of this paper will appear as [36]. InW}8]presented a similar system which here has
been simplified. In particular, we have removed the (fumalpfield updatefeature (which can be modelled using
method call$), which gives a more straightforward presentation of sysamd proofs. We have also decoupled our
intersection predicate system from the existing class system, which shows that the approximation result does not
depend on the class type system in any way.

1. Featherweight Java without casts

In this section, we will define the variant of Featherweightalwe consider in this paper. As in other class-based
object-oriented languages, it defird@sseswhich represent abstractions encapsulating both datee(sinfields and
the operations to be performed on that data (encodeaktisods Sharing of behaviour is accomplished through the
inheritanceof fields and methods from parent classes. Computation isateetbyinstanceof these classes (called

10ne possible solution is to add to every cl@dgor each fieldf; belonging to the class, a method
C update_f;(x) { return new C(this. fy, ..., X this. f,); } .

2

objectg, which interact with one another loalling (also callednvoking methods on each other and accessing each
other’s (or their own) fields. We have removed cast expressiice, as the authors of [27] themselves point out, the
presence oflowncastss unsound; for this reason we call our calcules®. We also leave the constructor method as
implicit.

Before defining the calculus itself, we introduce some matai conventions that we will use in the remainder of
this paper.

Definition 1 (Notation). 1. A sequencs of n elementsiy,...,a, is denoted byi,;; the subscript can be omitted
when the exact number of elements in the sequence is noarglev

. We writea € @, whenever there exists some {1,...,n} such thau = a;.
We user (wheren is natural number) to represent the sequénce, n.

. For a constant term c,; represents the sequencembccurrences of.

. The empty sequence is denotecehand concatenation on sequenceshys,.
. p denotes th@owerse{set of all subsets) construction.

oA WN

We use familiar meta-variables in our formulation to rangeralass name<JandD), field names{), method
names £1) and variablesx). We distinguish the class nandj ect (which denotes the root of the class inheritance
hierarchy in all programs) and the self variablé s2, used to refer to the receiver object in method bodies.

Definition 2 (FJ* Syntax). FJ* programsP consist of aclass tableC7, comprising theclass declarationsand an
expression ¢o be run (corresponding to the body of tieé n method in a real Java program). They are defined by
the grammar:

e == Xx|this|new C(®) |e.f| em(®)

fd == Cf

md = Dm(C; X;, ..., C; X;) {return e}

cd == class C extends C' {fd md (C # bj ect)
CT == cd

P == (CT,e)

From this point, all the concepts defined are program deperidemore precisely, parametric on the class table);
however, since a program is essentially a fixed entity, it él left as an implicit parameter in the definitions that
follow. This is done in the interests of readability, and istandard simplification in the literature (e.g. [27]). We
only consider programs which conform to some sensible feethedness criteria: that there are no cycles in the
inheritance hierarchy, and that fields and methods in angngiwanch of the inheritance hierarchy are uniquely
named. An exception is made to allow the redeclaration ohoug, providing that only thbody of the method
differs from the previous declaration (in the parlance abstbasedo, this is calledmethod overridg

We define the following functions to look up elements of cldsBnitions.

Definition 3 (Lookup Functions). The following lookup functions are defined to extract the parof fields and
bodies of methods belonging to (and inherited by) a class.

1. The following functions retrieve the name of a class odffebm its definition:

cN(class C extends D {fd md}) = C
FN(C f) = f

2. By abuse of notation, we will treat tledass tableC7, as a partial map from class names to class definitions:

CT(C) = cd ifcN(cd)=Candcde CT

?In the sense that typeable expressions can get stuck aneinti
3Not a variable in the traditional sense, since it is not useekpress a position in the method’s body where a paramatdrepassed.

3

3. The list of fields belonging to a cla€s(including those it inherits) is given by the functidn which is defined
as follows:

F(Qnj ect) €

F(C) = F(C)-f, ifCT(C)=class C extends C' {fd, md}
andrN(fd;) =f; foralli € 7.

4. The functionMb, given a class nam@ and method name, returns a tupléx, e), consisting of a sequence of
the method’s formal parameters and its body:

Mb(C,m) = (%€ if CT(C) =class C extends C' {fd md}, and there exist
Co,C, such thatlCy m(Cq xq,...,Cy X,) {return €} € md.
Mb(C,m) = Mb(C,m) if CT(C)=classCextendsC' {fd md}, and there are no

Co, Cy, X, esuch thaCy m(Cy xg,...,Cy X,) {return e } € md.
5. The functiorvArs returns the set of variables used in an expression.

We impose the additional criterion that well-formed pragsssatisfy the following property:
if Mb(C,m) = (X;,&) thenvars(ey) \ {this} C {xs,...,X: }

Substitutiorof expressions for variables is the basic mechanism foratgatuin our calculus: when a method is
invoked on an object (theeceive)) the invocation is replaced by the body of the method thatlied, and each of the
variables is replaced by a corresponding argument.

Definition 4 (Reduction). 1. Aterm substitutiors = {x;+—€y,..., X, — €, } is defined in the standard way as a
total function on expressions that systematically reatieoccurrences of the variabledy their correspond-
ing expressiom;. We writee® for S(e).
2. The reduction relation is the smallest relation on expressions satisfying:

new C(g;).f;, — & forclass nam€ with F(C) = T, andi € 7,

new C(&).m(e;) — € forclass nam€ and methodn with Mb(C,m) = (%;,€),
whereS = { this+—new C(®8), x;—€l, ..., X;+—>€) }

We call the left-hand term theedexand the right-hand theontractum
We add the usual congruence rules for allowing reductiorubegpressions, and the reflexive and transitive
closure of— is denoted by—*.

This notion of reduction isonfluentwhich is easily shown by a standard ‘colouring’ argumestig¢adone in [11]
forLC).

2. Approximation Semantics

In this section, we define ampproximation semantider F*. The notion ofapproximantwas first introduced
by Wadsworth in [41] for.c. Essentially, approximants are partially evaluated esgioms in which the locations of
incomplete evaluation (i.e. where reductimaystill take place) are explicitly marked by the elemdntthus, they
approximatethe result of computations; intuitively, an approximant dee seen as a ‘snapshot’ of a computation,
where we focus on that part of the resulting program whichnallonger change (i.e. the observablgpu).

Example 5. To illustrate this concept, consides® extended with numerals and arithmetic, and if-then-elsstact,
and take the class table given in Figure 1. Let the notatipri,: ...: n;: [] be shorthand for thes* expression:

new NonEmpty(n1, new NonEmpty(#p, ... new NonEnpty(ng, new IntList()) ...))
4

class IntList extends bject {

I nt Li st
I nt Li st
I nt Li st

I ntList
I ntList

}
cl ass NonEnmpty ext

int val;
I ntList

I nt Li st
I nt Li st

}
I ntList

Then
%*
%
%

*

*
e el e

%*

square() { return new IntList(); }
removeMul tiplesOf (int n) { return new IntList(); }
sieve() { return new IntList(); }

[istFron{int n) { return new NonEnpty(n, this.listFromn+l)); }
primes() { return this.listFron(2).sieve(); }

ends IntList {

next :

square() { return new NonEnpty(this.val * this.val, this.next.square());

removeMil tiplesOf(int n) {
if (this.val %n ==0) {
return this.next.remveMltiplesO(n);
} else {
return new NonEnpty(this.val, this.next.removeMltiplesOi(n));

}
sieve() {
return new NonEnpt y(
this.val,
this.next.remveMiltiplesCf(this.val).sieve();
)
Figure 1: The class table for the Sieve of Eratosthenesfin
which has the approximant
.square() €
.square() 1. L
.square() 1:4: 1
.square() 1:4:9: 1
1:4:9:[]

}

In this case, the output is finite, and the final approximanheend-result itself. The class table in Figure 1 is also
able to calculate a (infinite) list of prime numbers using tel-known ‘sieve of Eratosthenes’.

Then (where we abbreviatenoveMil ti pl esOf byr M) which has the approximant
new IntList().prines() 1
—* (2:3:4:5:6:7:8:9:10: 11:...).sieve() 1L
—* 2:(3: (45678910.11....).r|\/0(2)) sieve() 2: 1
—* 2030 (((5:6:7:8:9:10: 11:...). rMX(2)). rMX3)).sieve() 2:3: L
—* 2035 (((7:8:9:10: 11 .. .) . rMX(2)) . rMX(3)). rMX5)). sieve() 2:3:5: 1

In this case, the computation is infinite, and so is the outplere is no final approximant since the ‘result’ is never

reached and thug is in

every approximant.

Approximate expressions and approximate normal forms foare defined below.

5

Definition 6 (Approximate Expressions). 1. The set ofipproximate=J* expressions is defined, essentially adding
L as an expression, by the grammar:

a == x|Ll|aflam(a,) |new C(a;) (n>0)

2. The set ofipproximate normal formsA, ranged over bW, is a strict subset of the set of approximate expres-
sions and is defined by the following grammatr:
A = x|L|new C(A) (F(C)=F,) B
| Af | Am(A) (A# L, A#new C(A,))

Notice that we considet .f not in approximate normal form: it can be thathides an expression that reduces to an
objectnew C(A,), in which case the field invocation can run, so disappears.

As can be expected, when we extend the notion of reductiohatdield accesses and method callslothem-
selves reduce ta, we find that the approximate normal forms are normal forntls veispect to this extended reduction
relation.

The notion of approximation is formalised through an appration relation on expressions.

Definition 7 (Approximation Relation). Theapproximation relatioriC is defined as the smallest preorder satisfying:

1 CE A
Af C Af
ACA&Yi<n[ACA] = {newC(A,) LC new C(A,)
Am(Ay) C Am(A)

The relationship between the approximation relation addceton is characterised by the following result.
Lemma8. IfAC eande—* e, then AC €.

PROOF By induction on the definition of the length of reduction seqces; we only show the base case, which gets
shown by induction on the structure of approximate normahf

A= 1: Immediate, sincel. C €’ by definition.
A=x Thene=¢€ =ux.

A=A.f: Thene=e"f with A Ce”. Also, sinceh’ #new C(A,) it follows from Definition 7 thae” # new C(&;).
Thuseis not a redex and the reduction must take plae® jithat ise’ = e”.f with e” — €. Then, by induction,
A Ce” andsoA. fCe"f.

A=A.m(A,): Thene= ey.m(&;) with A C g andA; C e for eachi € 7. SinceA' # new C(A) it follows that
gy #new C(¢€"). Sinceeis not a redex, there are only two possibilities for the re:iducstep:

1. ey — e ande’ = e).m(&;) . Then by inductiorX C e) and so als&\.m(A,) C e).m(&;).
2. — ¢ for somej € 7 ande’ = e.m(€),) with e} = e, for eachk € 71 suchihalk #j. Tﬂen, clearly
Ay C ej for eachk € 71 such thak # j. Also, by inductionA; C €j. ThusA.m(A,) C e.m(€}) .

A=new C(A,): Thene=new C(&;) with A; C e for eachi € 7. Alsoe; — e; for somej € 7 ande’ = new C(en)
whereej = g for eachk € 71 such thatk 7 j. Then, clearlyA; C e for eachk € 7 such thatk 7 j and by
inductionA; C €. Thus, by Definition 7new C(A,) C new C(ej) . O

Notice that this property expresses that the observablevi@lr of a program can only increase (in termsCof
through reduction.
We also define gin operation on approximate expressions.

Definition 9 (Join Operation). 1. Thejoin operation_| on approximate expressions is a partial mapping defined
as the reflexive and contextual closure of:

lUa=1lUa=a
2. We extend the join operation to sequences of approximxgtessions as follows:
Lle=1 Ua-a;=al(Uay)

The following lemma shows that acts as an upper bound on approximate expressions, antlithefioised over
the set of approximateormalforms.

Lemma 10. 1. Leta,a and g be approximate expressions, then

aaly&aylay = ggUpCyy&agCaglaa&kayplaUay
(all_laz)ua3 = all_l(azl_la3)
qla = aldy

Moreover, if 3 and g arenormal then so is aLl & (when it is defined).
2. UA, = A U...UA,.

PROOF 1. By induction on the structure of expressions in appratémormal form; we show a more illustrating
case.
ap =ay.f, =aj.f,a] Ca’, a) Ca: Byinduction, we have; Lla, C a’,aj C a} Uaj, anda, C ap U
ay. Then, by Definition 7, it immediately follows thag; Lia3). f Ca'. f, a}. f C (aj Uay). f, and
ay. f C (aj Uajy). f. Then, by Definition 9g; Ll ay = (a} Lla3). f.
Moreover, ifa; anda, are normal, then by definition so asg anda’, with botha’; anda’ being
neither L, nor of the formnew C(a7,). Then by inductiora) LI a, is also normal, and by Definition 9
the join is neither equal td. nor of the formnew C(a7,). Thus, by Definition 7(a} La). f =a LU ay
is an approximate normal form.

2. By induction on the length of sequences. O
Definition 11 (Approximants). The functionA returns the set adpproximantof an expressioe and is defined by:
Ae)={A|Je [e="e &ALCE]}

Thus, an approximant of some expression is an approximateaidorm that approximates some (intermediate)
stage of execution of that expression.

As for models ofLc, our approximation semantics equates pairs of exprestiansre in the reduction relation,
as shown by the following theorem.

Theorem 12. ¢; —»* & = A(e) = A(e).

PROOF D! g = e &Ac A(e) = (Definition 11)
g > &dglee>"eg&ACe] =
Je;[e; —" 63 & AL €] = (Definition 11)
Ac A(e)
C: g &Ac Ale) (Definition 11)

g e &dele > e &AL 6]
Jdes,eue 2" e &e >* e &e > s &e; > e &AL 6] (Lemma 8)

Je (e " e &AL g (Definition 11)

Ac Ale) O

This result allows us to define a semanticsHdrby interpreting expressions by the set of their approxistant

=
= (Church-Rosser)
=
=

Definition 13 (Approximation Semantics). An approximation moddbr anFJ* program is a structurgo(A), - 1),
where the interpretation functidh ||, mapping expressions to elements of the doma(), is defined by[le]] =
Ale).

7

3. Type Assignment

Having defined a semantics fes®, we continue by considering a type systemrdrwhich is sound and complete
with respect to these semantics in the sense that every sgignable to an expression is also assignable to an
approximant of that expression and vice-versa. Notice giate in approximants redexes are replaced.byhis
result is not an immediate consequence of subject redyctioreover, it is the type derivation itself which deterrmine
the approximantin question. This relationship is formedign the next section.

The type assignment system defined below follows inithersection type disciplineit is influenced by the
predicate system for the object calculus [6], and is ultehyabased upon the strict intersection type systen.tor
(see [2] for a survey). Our types can be seen as describincpibeilities of an expression (or rather, the object to
which that expression evaluates) in terms of (1) the opmmatihat may be performed on it (i.e. accessing a field or
invoking a method), and (2) theutcomeof performing those operations, where dependencies battheeinputs
and outputs of methods are tracked using (type) variableshi$ way, our types express detailed properties about
the contexts in which expressions can safely be used. Muar#iuely, they capture a certain notion observational
equivalence two expressions with the same set of assignable types wililiservationally indistinguishable. Our
types thus constitutsemantic predicateso for this reason (and also to distinguish them from theaaly existing
Java class types) we call them predicates.

Definition 14 (Predicates). The set ofpredicates(ranged over byp, ¢) and its subset o$trict predicates (ranged
over byo) are defined by the following grammar (whepeanges over a denumerable sepaddicate variablesand
Cranges over the set of class names):

A wlo[pny
o z= ¢@|C|(f:o)| (m:(¢1,...,u) = 0) (1>0)

The key feature of predicates is that they may group infoienabout many operations together imersections
from which any specific one can be selected for an expressiaiemanded by the context in which it appears. In
particular, an intersection may combine two or more diffiér@ven non-unifiable) analyses of teamefield or
method.

In the language of intersection type systems, our prediGaestrict in the sense of [2], since they must describe
the outcome of performing an operation in terms of a(notsiegleoperation rather than an intersection. We include
a predicate constant for each class, which we can use to bjpets which therefore always have a type, like for the
case when an object does not contain any fields or methods ths tase fothj ect) or, more generally, because
no fields or methods can be safely invoked. The predicatetaoing is atop (maximal) type, assignable to all
expressions.

The subpredicateelation facilitates the selection of individual behavi®from an intersection.

Definition 15 (Subpredicate Relation). The subpredicate relaticniis the smallest preorder satisfying the following
conditions:

¢ < w forallg
pny & ¢
gy &y
¢Lp &Ly = ¢dyny’

We write ~ for the equivalence relation generateddtyextended by

o~ = (f:o) ~ (f:0)
Vien[¢pi~¢il&o~oc = (m:pr,...,pu) = 0) ~ (m:(¢y,...,P,) = 0')

We consider predicates modute; in particular, all predicates in an intersection are défé andw does not
appear in an intersection. Notice also thas associative, so we will abuse notation slightly and weiter...no,
(wheren > 2) to denote a general intersection. In a further abuse otiootap; n...N ¢, will denote the predicate
¢1 whenn = 1, andw whenn = 0.

 IIkepgy ... HEeu:¢n B . ———— (¢ <0)
(089): ITFnew C(&;) :C (FO="1.) (VAR): ILx¢Ex:0o

(INVK) : I[Ie:(m:(¢y) >0y IlFer:¢p ... [1F e,y (FLD) : ITt+e:(f:0)
ITFem(s) o [Tte.fio
. this:p, X1, X:¢pn &0 IIEnew C(€) :yp o
(NEWM): TTF new C(®) : (m: (r) — o) (Mb(Cm) = (%i.&))
(NEWF) - IMEe:¢y ... ITke ¢y (FO =T icmo—)

ITFnew C(&,) : (f;:0)

MFe:oy ... 1 e:oy
(JOIN) : (n>2) (w):
ITteN...Noy

Figure 2: Predicate Assignment fod®

Definition 16 (Predicate Environments). 1. A predicate statemengs of the forme:¢, whereeis called thesub-

jectof the statement.

2. An environmentl is a set of predicate statements with (distinct) variabkesubjects]I, x:¢ stands for the
environmenfIU {x:¢ } (so then either does not appear ifl or x:¢ € IT), andx:¢ for @, x:¢.

3. We extendd to environments by: IT' SIT < Vxgp e I13 ¢’ ¢ [x¢p’ € IT'].

4. If TT, is a sequence of environments, tf@iI, is the environment defined as followspy N... "¢y € NTT,,
if and only if, { x:¢1, ..., x:¢ } is the non-empty set of all statements in the union of therenments that have
x as the subject.

We will now define our notion of predicate assignment, whih Blight variant of the system defined in [9].

Definition 17 (Predicate Assignment).Predicate assignment far® is defined by the natural deduction system given
in Figure 2.

The predicate assignment rules in fact operate on the lagjeaf approximate expressions, but for clarity we abuse
notation slightly and use the meta-variabli®r expressions rather than Note that there is no special rule for typing
1, meaning that if_Lappears in a term, then some part of that term, containirtglthe typed withw.

The rules of our predicate assignment system are fairlyg$tifarward generalisations of the rules of the strict
intersection type assignment system far to 00: e.g. (FLD) and (INVK) are analogous t0—E); (NEWF) and
(NEWM) are a form of(—1); and (oBJ) can be seen as a univergal)-like rule for objectsonly. The only non-
standard rule from the point of view of similar work fors and traditional nominabo type systems i$NEWM),
which derives a predicate for an object that presents alysisalf a method that is available in that object. It makes
sense, however, when viewed as(anl) rule. Like that rule, the analysis involves typing the bodlyhe abstraction
(i.e. the method body), and the assumptions (i.e. requingshen the formal parameters are encoded in the derived
predicate (to be checked on invocation). However, a metloaty lmay also make requirements on tleeeiver
through the use of the variabidi s. In our system we check that these hatdhe same timas typing the method
body (so-calleaarly self typing*. This checking of requirements on the object itself is whheeexpressive power
of our system resides. If a method calls itself recursivibig, recursive call must be checked, but — crucially — carrie
adifferentpredicate if a valid derivation is to be found. Thus only mesixe calls which terminate at a certain point
(i.e. which can then be assignedor C, and thus ignored) will be permitted by the system.

As is standard for intersection type assignment systenmrssymtem exhibits both subject reductiand subject
expansion. First we show:

4Late self typing would check the type of the receiver at thiepof method invocation.
9

Lemma 18 (Weakening). LetIT’ QIT; thenIIF e:¢ = IT' F e:¢.

PROOF. By easy induction on the structure of derivations. The ltase of(w) follows immediately, and fofvAR)
it follows by transitivity of the subpredicate relation. O

Lemma19. 1. (Replacement) If X;:¢1,...,%::¢p, = €:¢ and there exist$l ande, such thatll - g;: ¢; for each
iem, thenll+ e’:¢ whereS = {x; > €y,..., % — €, }.
2. (Extraction) For an expression e and term substitut®s: { x; — ey, ..., %, — €, } withvARs(e) C {Xy,..., % },
if I[TH €°:¢, then there argh, such thafl1 - e;:¢; for eachi € 7 and X:¢1, ..., Xy - €:¢.

PROOF 1. By induction on the structure of derivations.
(w): Immediate.
(VAR): Thene= x; for somei € 77 ande® = g;. Also, ¢ = o with ¢; < o, thusp; =01 n...noy, ando = o; for
somej € 7. Sincell - g;: ¢; it follows from rule (JOIN) thatI1 - €;: 0} for eachk € 7. So, in particular,
I+ € 10;.
The other cases follow straightforwardly by induction.
2. Also by induction on the structure of derivations.
(w): Bythe(w) rule,IT+ g:w for eachi € m andx;:w, ..., X;:w F e:w.
(VAR): Theng is a strict predicate (hereafter calledl andx:y € IT with ¢ < . Also, it must be thae = x;
for somei € 77 ande; = x. We then takep; = o and¢; = w for eachj € 77 such thay # i. By assumption
ITH x:o (thatisITH e:¢;). Also, by the(w) rule, we can derivél - & :w for eachj € 77 such thaf # i.
Lastly, by(VAR) we havex;:w, ..., X;:0, ..., X;:w = X;: 0.
(NEWF): Thene® = new C(€},) and¢ = (f:0) with F(C) = T, andf = f; for somej € 1. Also, there is
@, such thaf 1 - e}, : ¢ for eachk’ € n’, ando < ¢;. There are two cases to consider éor
(a) e = x; for somei € . Thene; = new C(e}). Take¢; = (f:0) and¢y = w for eachk € 7 such
thatk # i. By assumption we havE - new C(€),) : (f:0) (thatisITt e:¢;). Also, by rule(w)
[T+ e:w for eachk € 7 such thatk # i, and lastly by rule(vAR) IT F x;: (f:0) whereIl’ =
X1, .. X (fo), L X -
(b) e=new C(ej,) with e} = e}, for eachk’ € n’. Notice varRs(e}) C VARS(e) C {X,...,Xu }
for eachk’ € n’. So, by induction, for eack’ € n’ there isg,,, such thatll - :¢, for each
i €7 andlly - efr:¢p wherelly = Xp:¢y,..., Xu:y, . Let the environmentl’ = NTL,,, that is
I = X331, 0. 0Pyt Xnipr, 0.0y - Notice thall T’ S Ty for eachk” € n’, so by Lemma 18

IT e} : ¢y for eachk € n’. Then by(NEWF) IT' - new C(€],) : (f:c). Lastly, by(JoIN) we can
derivell - g:¢1,n...n¢,, for eachi € 7.

The other cases are similar to that {forewF). O
We can now show that type assignment is closed under reduasiovell as under expansion.
Theorem 20 (Subject reduction and expansion)Let e— €’; thenI1 + e: ¢ if, and only if, IT - €’: ¢.

PROOF By induction on the definition of reduction. We show the safee the two kinds of redex and one inductive
case (the others are similar). We show only the reasoninthécase thap is strict; whenp = w the result follows
immediately since we can always type bethnde’ using the(w) rule, and wherp is an intersection we can reason
that the result holds for each strict predicate in the imtetion, and then apply theoin) rule.

F(C)=T, = new C(&,) .fj — ¢, jemn: ift Assumellt new C(&,) .fj:a. The last rule applied in this derivation
must be(FLD) soTT1F new C(&;) : (f;:0). This in turn must have been derived using (hewF) rule
and so there arg;, ..., ¢, such thal 1 - e;: ¢; for eachi € 7. Furthermoreg < ¢; and so it must be that
¢j=0. Thusll-e:0.

10

class Conbinator extends bject {
Conbi nat or app(Conbi nator x) { return this; }

}

class K extends Conbinator {
Conbi nat or app(Conbinator x) { return new K;(x); }

}
class K; extends K {
Conbi nat or x;
Conbi nat or app(Conbinator y) { return this.x; }
}

class S extends Conbinator {
Conbi nat or app(Conbi nator x) { return new S;(x); }

}
class S; extends S {
Conbi nat or x;
Conbi nat or app(Conbinator y) { return new S(this.x, y); }
}
class S, extends S {
Conbi nat or ;
Conbi nat or app(Conbi nator z) { return this.x. app(z).app(this.y.app(z)); }
}

Figure 3: The class table for Object-Oriented Combinatagit (0OOCL) programs

only if: Assumellt- g :c. Notice that usindw) we can derivé11- g : w for eachi € 7 such thai # j. Then,
using the(NEWF) rule, we can derivél - new C(&;) : (f;:c) and by(FLD) alsoIlF new C(&;) .f;:c.

Mb(C,m) = (X;,&) = new C(€).m(g;) — &° whereS = {this s new C(€),X; > €,...,% > & }:

it Assumell - new C(€)).m(®;) :c. The last rule applied in the derivation must f&vk), so there
is ¢, such thatlT - new C(€) : (m:(¢,) — o) andTI I~ g:¢; for eachi € 7. Furthermore, the last
rule applied in the derivation dfl - new C(€’) : (m:(¢,) — o) must be(NEWM) and so there is some
predicatap such thaf 1 new C(€') :y andIT’ I e,:0 wherelT =t hi s:9,X;:¢;, . .., Xu:¢y. Then from
Lemma 19(1) it follows thafl + &,°:c.

only if: Assume thall+ e°:c. Then by Lemma 19(2) it follows that there 4s ¢, such thatll’ - ey:¢
whereIl" = this:y,X;:j, ..., %u:¢pn With IT - new c(e) ;¢ andIl - g:¢; for eachi € m. By the
(NEWM) rule we can then derivel - new C(€) : (m:(¢,) — o), and by the(invk) rule thatTT

new C(¢€’).m(&,) :0.

e—e = ef—elf: if: Assume thalll e.f:g. The last rule applied in the derivation must @®D) and so we
have thaf 1+ e: (f:0). By inductionITF e': (f:0), and so by(FLD) thatIT+ e'f:c.

only if: Assume thallF e!f:o. The last rule applied in the derivation must /eD) and so we have that
[T+ e':(f:o). By induction,IT+ e: (f:co), and so by(FLD) thatIT+ e.f:c. O

4. Expressivity

In this section we consider the formal expressivity of oarcalculus and predicate system. We show #iis
Turing complete by defining an encoding of Combinatory Ldgic). Through the approximation result of the next

11

section all normalisableocL-expressions can be assigned a non-trivial predicate irsyaiem. Thus, we have a
predicate-based characterisation of all (terminatingmoatable functions itwo (see Theorem 73).

Combinatory Logic is a Turing complete model of computatefined by H.B. Curry [17] independently o€.
It is a higher-orderrs consisting of the function symbo& K and the following rewrite rules:

Kxy — x
Sxyz — xz(yz)

Our encoding otL in F&* is based on a Curryfied first-order version of the system afsmee[7] for details), where the
rules forS andK are expanded so that each new rewrite rule heingleoperand, allowing for the partial application
of function symbols. Application, the basic engine of reilutin TRS, is modelled via the invocation of a method
namedapp. The reduction rules of CurryfiedL each apply to (or are ‘triggered’ by) different ‘versiong’tbhe S
andK combinators; in our encoding these rules are implementetidpodies of five different versions of thep
method which are each attached to different classes raypeg¢he different versions of tHeandK combinators. In
order to make our encoding a valid (typeable) program inJalla, we have definedGnbi nat or class containing
anapp method from which all the others inherit, essentially agts arinterfaceto which all encoded versions 8f
andK must adhere.

Definition 21. The encoding of Combinatory Logic() into theF* programoocL (Object-Oriented Combinatory
Logic) is defined using the execution context given in Fighieed the functiorf - || which translates terms af. into
FJ* expressions, and is defined as follows:

x| = x
Tl = [t:1]. app(Tt2])
K] = newK()

Sl = new ()

The reduction behaviour @iocL mirrors that ofcL.
Theorem 22. Ift, t, are terms ofcL and t; —* ty, then[[t; | —* [t] in cocL.
PROOF By induction on the definition of reduction itL; we only show the case f&:

[Stitats]l

(new S().app([t])). app(21)). app(Tts])

(new Si([Tt11)) . app([¢21l)) . app(Mts])

new Sy(this.x,y)).app([[tsl]) [thissnew Si([[t1]), y+r [tall]

new Sy(new Sy([t11).x, [t21)). app([[t3])

new Sy(Tt 1, Tt2l) . app([tall)

this.x.app(z).app(this.y.app(z)) [this+snew Sy([ti], [tal), z— Ttsl]
((new Sy([t1], Ttall) . x. app(Tt3l)). app(new Sy([Tt1]. Tt2ll).y. app(Ttsl))
(ltrll. app(Ttsl)) . app((Tt2]) . app(Ttsl)))

Tt1t3(t2t3)]

The case foK is similar, and the rest is straightforward. O

Ll Lk

(
(
(
(
(

el

Given the Turing completeness of, this result shows thats® is also Turing complete. Although we are sure
this does not come as a surprise, it is a nice formal propertgur calculus to have. In addition, our type system can
perform the same ‘functional’ analysis @® does fon.c andcL. This is illustrated by &ype preservationesult. We
describe Curry’s type system far and then show we can give equivalent types@iCL programs.

Definition 23 (Curry Type Assignment for cL). 1. The set ofsimple typeqor Curry types) is defined by the
following grammar:
T = @lT—>T
12

(vaAR) —— (VAR)

this:(x:co),y:¢’ Fthis:{x:c) this:Kx:oFx:0
: — (FLo) — (NEWF)
this:(x:0),y:0' Fthis. x:o thi s:K,x:o - new Ky(x) :(x:0)
: ; (NEWM) ——————— (0BJ)
thi s:K,x:o - new Ky(x) :(app:(¢’) = 0) @+ new K() :K
(NEWM)

@ Fnew K() : (app: (o) — (app:(c’) — o))

Let oq = (app:(0) — (app:(¢’) = ¢”)), and o» = (app:(c) — '), II' = this:(x:01),y:05, and IT =
this:(x:oq) N (y:02),z:0. Then

TR this(y (app (o) = oy %)
. ~— (FLD) (VAR)
: . —— (vAR) IT-this.y:(app:(c) = o') H}—z:a(INVK)
ITthis:(x:(app:(c) — (app:(c’) = ")) (L) (var) TTFthiSy. app(z) -0
ITHthis.x:(app:(c) — (app:(¢’) — ")) Mkz:0 " :
TTHthis.x.app(z) :{app:(c’) = ") (NEWM) X
ITHthis.x. app(z).app(this.y.app(z)) :0” (1Nvic)
: e (g Ty
IT +thi S:<XZO’1> Y2 (NEWF)
T this oy (0 TUFnew Sy(this.xy):(y:o)
_ (NEWF) - ——————(08))
1"+ new Sy(this.x,y):(x:o1) : OF new §() :S
7T new Sy(this. x.y) oy n(yoog) o™ Thissxo Fxooy (%)
. (NEWM) . (NEWF)
IT - new Sy(this.x,y) :{(app:(c) —¢") thi s:S,x:01 Fnew S(x) : (x:01) "
this:S,x:0q Fnew S;(x) :{(app: (c3) — (app:(¢) = o’')) (NEWM)
(NEWM)

@+ new S() : (app: (1) — (app: (c2) — (app: () = o))

Figure 4: Derivation schemes for the translation$ @nd K

2. A basis Bis a mapping from variables to Curry types, written as a setattments of the formet in which
each of the variablesis distinct.

3. Simple types are assignedao-terms using the following natural deduction system:

Bl ti:t— T Bl tyT

VAR) :
() BFCL tltziT/

(x:T €B) (—)E) .

Bl xT

(K): B KTt—1T =T (S): B, Si(t =T =)= (=) —»1—=1"

To show type preservation, we need to define what the equivafeCurry’s types are in terms of predicates. To
this end, we define the following translation of Curry types.

Definition 24 (Type Translation). The function[-]/, which transforms Curry types into predicateis defined as
follows:
Toll =

%
Tt—=7l = (app:(Mzl) = T71)
Itis extended to bases as followB]| = {x:[[t]] | xT € B}.

We can now show the type preservation result.

5Note we haveverloadedthe notation{HJ , which we also use for the translation @f terms tor &* expressions.

13

Theorem 25 (Preservation of Types)If B ¢, t:r then[[Bl - [t]: [z].

PrROOF. By induction on the derivation @& -, t:7. The cases fofvar) and(—E) are trivial. For the rule$K) and
(S), Figure 4 gives derivation schemas for assigning the tatinsl of the respective Curry type schemes todloeL
translations oK andS. O

Furthermore, since Curry’s well-known translation of tira@y typedLc into CL preserves typeability, we also
construct a type-preserving encodingLaf into FJ*. It is straightforward to extend this preservation resailfull-
blown strict intersection types. We stress that this re®atly demonstrates the validity of our approach. Indeed,
our type system actually has more power than intersectio@ systems focL, since there not all normal forms are
typeable using strict types, whereas in our system they are.

5. Strong Normalisation of Derivation Reduction

The approximation result we show in the next section is, asther systems [3, 8], a direct consequence of the
strong normalisability of derivation reductidwhich we will define in this section.

The notion oderivation reductioris essentially a form of cut-elimination on predicate dativns, defined through
the following two basic ‘cut’ rules:

[e W
HFG]Z(Pl HFen“Pﬂ
I new C(&,) : (f;:0)

NEWF) —o IlFe:0o

(FLD)
IT-new C(&,) f;:0
\ : D, / \ Dselfg\ / e
thlszlp,xlqul,...,xn:qbil—ebzaj[FneWC(e):w(NEWM) \ D / \ D, / o TIFesw
ITHnew C(€) :(m:(pn) — 0) I[T-e:pr - II-e, ¢y

— (INVK)
ITFnew C(€').m(&,) :0
whereD,S is the derivation obtained frof, by replacing all sub-derivations of the forfwAR) :: 1, X;:¢p; = X;: 0 by
appropriately typed sub-derivationsBf, and sub-derivations of the for(vAR) :: Lt hi s:¢ I t hi s : ¢ by appropri-
ately typed sub-derivations @ Similarly, e,5 is the expression obtained frogp by replacing each variable by
the expressior;, and the variablehi s by new C(€). This reduction creates exactly the derivation for a canina

as suggested by the proof of the subject reduction, but iBoixip all its details, which gives the expressive power
to show the approximation result. An important feature afvdgion reduction is that sub-derivations of the form
(w) :: T+ e:w do notreduce (althougle might) - they are already in normal form. This is crucial fbetstrong
normalisability of derivation reduction, since it decoeplthe reduction of a derivation from the possibly infinite
reduction sequence of the expression which it types.

Definition 26 (Notation for Derivations). The meta-variabl® ranges over derivations. We will use the notation
(Dy, ..., Dy,r) :: I1 e:¢ to represent the derivation concluding with the judgenidrit e:¢ where the last rule
applied isr andDy, ..., D, are the (sub) derivations for each of that rule’s premisgsaliuse of notation, we may
sometimes writdD :: T1+ e:¢ for D = (Dy,..., Dy, r) :: T+ e: ¢ when the structure dP is not relevant, and simply
write (Dy, ..., Dy, r) when the conclusion of the derivation is not relevant or iplied by the context.

We also introduce some further notational concepts to aid describing and reasoning about the structure and
reduction of derivations. The first of these is the notiorpositionwithin an expression or derivation. We then
extend expressions and derivations with a notion of plalcknpso that we can refer to and reason about specific
subexpressions and subderivations.

6As in [8], we need to consider derivation reduction; sinaiution on expressions igeak the ‘normal’ approach (as used in [2]) to show the
approximation result does not work.

14

Definition 27 (Position). Thepositionp of one (sub) expression — similarly of one (sub) derivatiavithin another,
denoted bypos(e, €') — or pos(D, D) — is a partial function on a pair of expressions or derivatj@and returns, if
defined, a non-empty sequence of integers:

1. Positions within expressions are defined inductivelyotlews:

pos(ee) = 0
C pos(e’, e.f) = 0-p
pos(e’, e) = p { os(e’, em() = 0-p
o pos(e, em(s;)) =]p
pos(e’,) =pwithjen = {pos(e new C(&;)) = j-p

2. Positions within derivations are defined inductively @lfofvs:

pos(D, D)
pos(D, D')
pos(D, Dj) = pwithjen

0

pos(D, (Dy, D',NEWM))
pos(D, (D,,J0IN)) = p
pos(D, (D’,FLD)) =
{pos(D, (D', Dy, INVK)) =

4

pos(D, D') = p <

pos(D, (D, Dy, INVK)) =

pos(D,Dj) =pwithjen = { os(D, <D ,0BJ)) =
pos(D, (D, NEWF)) =

—_— —— O O
I I I T T

Notice that due to théioiN) rule, sub-derivations indicated by positions in derivasi@re not necessarily
unigue.

3. We define the following terminology:
 We say thae’ (D') appears at positiop within e (D) if pos(€’, €) = p (pos(D’, D) = p).
+ We say that positiop exists within gD) if there exists some’ (D') that appears at positignwithin e
(D).

Definition 28 (Expression Contexts). 1. An expression context is an expression containing a unique ‘hole’
(denoted by]) defined by the following grammar:

¢ o= []|c¢f| em(e) | em(...,._1,¢€.q,...) | newC(...,& 1,&,€,1,...)

¢[e] denotes the expression obtained by replacing the hdenith e.
3. We write,, to indicate that the hole i appears at positiop.
4. Context, wherep = 0, for somen > 1, are callecheutral
5. Expressions of the fori@[x] where€ is neutral are also called neutral.

The following is easy to show:
Proposition 29. Approximate expressions of the fornf And Am(A) are neutral.

We also use the notion aferivation contexthat is like a derivation, but concluding with a statemesigising a
strict predicate to a neutral context, essentially addiegnference rule:

(M

I []:o
Definition 30 (Derivation Contexts). 1. A derivation contex® , ,, where we mark at which position the hole
appears, and which strict type it gets assigned, is indelgtiefined as a generalisation over derivations by:

(@) D(o,0) = ([]) : 11+ []: 0 is a derivation context.
15

(b) 1f Dy ITF C:(f:07) is a derivation context, theﬁ’((9,FLD) :: ITF €.f:¢” is also a deriva-
tion context. R
(©) if Doy ITE C: (m: (¢n) — ¢') is a derivation context an®,, is a sequence of derivations such that
D; :: 11+ e:¢; for eachi € 7, then@’(ohpm = (@,ﬁ,mv@ = I+ ¢€m(®,;) ;o' is also a derivation
context.
2. ForaderivatiorD :: IT+ e:o and derivation contex® ,) :: I+ €:0”, we write® , ,y[D] :: T+ €[e] :0” to
denote the derivation obtained by replacing the hol® iny D.

0-por) —

We now define an expliciderivation weakeningperation on derivations, which is straightforwardly exted
to derivation contexts. This will be crucial in defining owtion of computabilitywhich we will use to show that
derivation reduction is strongly normalising.

Definition 31 (Weakening). A weakeningwritten [T’ < IT] whereIT’ < IT, is an operation that replaces environ-
ments by sub-environments. For derivatidds: I1 - e:¢, D[I1' < I1] is defined as the derivatioR’ of exactly

the same shape (using the same rules in the same ordernddtiei same type for the same expression, but using a
different context) a® such thatD’ :: IT' - e: ¢.

The following two basic properties of the weakening operatin derivations will be needed later when showing
that it preserves computability.

Proposition 32. LetI14,I1,,I13 and Il be predicate environments such thdg < I1;, andIls < Iy; [Ty < Iy,
andIl, <Il3; and D be a derivation such thab :: I'1; - e:¢. Then

1. (D[, <111))[I1y < 1] = D[I1, < TL].
2. (D[, < IL1])[I1y <11, = (D[I13 < I114]) [I1 < I13].

PrROOF Easy. O

We also show the following property of weakening for deiimatcontexts and substitutions, which will be used
in the proof of Lemma 55 to show that computability is preselrisy derivation expansion.

Lemma 33. Let®, ;) :: 1T+ €, :¢ be a derivation context an® :: IT - e: ¢ be a derivation. Also, lefi T’ < T1) be
a weakening. Then
DD ST] = D, [T ST[DIT <T1]]

PrROOF By induction on the structure of derivation contexts. d

We now define two sets of derivations: the strong anslafe derivations. The idea behind these kinds of derimatio
is to restrict the use of th@w) rule in order to preclude non-termination (i.e. guaranteemalisation). In strong
derivations, we do not allow thev) rule to be used at all. This restriction is relaxed slighty &-safe derivations
in thatw may be used to type the arguments to a method call. The ideadbttis is that when those arguments
disappear during reduction it is ‘safe’ to type them withsince non-termination at these locations can be ignored.
We will show later that our definitions do indeed entail theidkd properties, since expressions typeable using strong
derivations are strongly normalising, and expressionskwban be typed witlw-safe derivations using an-safe
environment, while not necessarily being strongly norsiagj, have a normal form.

Definition 34 (Strong and w-safe Derivations). 1. Strong derivationgre defined as in Definition 17, but by ex-
cluding rule(w).
2. w-safe derivations are defined inductively as follows:
* (VAR) 1 x:¢ - x: 0 is w-safe for anyp ando.
* (D,,30IN), (D,,0BJ) and(D,, NEWF) arew-safe, if each derivatio; is w-safe.
» (D,FLD) is w-safe, if D is w-safe.
16

- . (VAR) . (vAR)
this:(x:@1),y:p2 Fthis:(x:¢pq) thisKx:g1Fx:¢9p

- - (FLD) - (NEWF)
this:(x:¢q),y:@abFthis. x:¢q thi s:K,x:¢1 Fnew Ky(x) : (x:¢1) (NEWM)
NEW
this:Kx:pq - new Ki(x) : (app: (¢2) — ¢1)
. (VAR)
: X:1,Y:@z F new K() :K
(NEWM) ——————— (VAR)
X:@1,y:2 - new K() : (app: (¢1) — (app: (92) = ¢1)) X:1,Y:p2 F X: g (Vi) (var)
X:g1,y:@p - new K(). app(x) : (app: (¢2) — ¢1) X1,y 92 -y o (INVK)
X:1,Y:92 = new K() . app(x) . app(y) : ¢1
. - (VAR) ————— (VAR)
this:(x:¢),y:whkthis:(x:¢) thisKx:pkx:¢
- - (FLD) - (NEWF)
this:(x:¢),y:whkthis. x:¢ this:Kx:¢ Fnew Ki(x) : (x:¢) (NEWM)
NEW
thi s:Kx:¢ - new Ki(x) : (app: (w) — @) (08) ot ool w (w)
: x:@ Fnew K() :K
(NEWM) ——— (VAR)
x:@ - new K() : (app:(¢) — (app: (w) — ¢)) X:phk X (i)
x:@ - new K().app(x) :(app: (w) — ¢) (i)

x:q = new K() . app(x). app([65]) : ¢

this:K,x:wkx:w (@)
, (oB)) —— (oBY)
thi s:K,x:w - new Kq(x) :Kq @ Fnew K() :K
(NEWM) —————— (w)
@+ new K() : (app: (w) — Ky) @FW(S(SJJ:(U(:
INVK

@+ new K() . app([66]) :K;

Figure 5: Derivations for Example 35

« (D,D,,INVK) is w-safe, if D is w-safe and for eacl; eitherD; is w-safe orD; is of the form(w) ::
Ik e:w.

« (D,D',NEWM) is w-safe, if bothD andD’ arew-safe.

We call a predicatep strongif it does not containv. We call a predicate environmeht strong if for all
x:¢p € I1, ¢ is strong. Similarly we calll w-safe if, for allx:¢ € I1, either¢ is strong orp = w.

Notice thatw can appear inv-safe derivations, but can never be the derived type, andtha-safe derivation can
have subderivations that are notsafe.

Example 35. Figure 5 shows, respectively,
* a strong derivation typing a strongly normalising expiess
» anw-safe derivation of a normalising (but not strongly norrsaig) expression; and

« a nonw-safe derivation deriving a non-trivial predicate for a llbaormalising (but not normalising) expres-
sion,

whered is thecL termS (S K K) (S K K) —i.e.dd is an unsolvable term.

Lemma 36. If D :: 11+ A: ¢ with w-safeD andIl, then A does not contaih; moreover, if A is neutral, thegr does
not containcw.

PROOF By induction on the structure of derivations.

(w): Vacuously true, sincéw) derivations are nat-safe.
17

(vAR): ThenA = x and so does not contaih. Sincex is neutral, we must also show thatdoes not contaim.
Notice thaty is strict and that there is somge< ¢ such that:y € IT. Sinceg¢ is strict andyp < ¢, p # w and
sincell is w-safe it follows thatp does not contaiww; therefore, by, neither doeg.

(D', Dy, INvK): ThenA= A.m(A,) andg¢ is strict, hereafter called. Also D’ :: TTF A': (m:(¢,) — o) with D’
w-safe, andD; :: I1+ A;: ¢; for eachi € n1. By induction,A” does not contain_. Also, notice that\ must be
neutral, and therefore so must Then it also follows by induction thdtn: (¢,) — o) does not contaiiw.
This means that ng; is equal taw, and so it must be that ea@h is w-safe; thus by induction, nd; contains
1 either. Consequentlyy .m(A,) does not containi ando does not contaim.

(Dy, D',NEWM): ThenDy :: I1' F e,:0 with t hi s:p € IT" andD’ :: T1+ A:4p. SinceD is w-safe so also i®’ and
by induction,A does not contain_.

The other cases follow straightforwardly by induction. O

Continuing with the definition of derivation reduction weipioout that, just as substitution is the main engine for
reduction on expressions, a notion of substitution fondgions, in which instances of tH@ARr) rule are replaced
by subderivations, will form the basis of derivation redoict

Derivation substitution is formally defined as follows.

Definition 37 (Derivation Substitution). A derivation substitutioris a partial function from derivations to deriva-
tions, defined by:

1. LetDy 1T Fep:¢pq, ..., Dy IT' F €,: ¢, be derivations, ang, . . ., x, be distinct variables, thefi = { x; —
Dy,...,. %, — Dy } is a derivation substitutiorb@sed ol T’). When eaclD; is strong (v-safe) then we say that
S is also strongd@-safe).

2. If D :: 11+ e:¢ is a derivation such thal C x;:¢1,...,X::¢,, andS a derivation substitution, then we say that
S is applicableto D, and the result of applyin§ to D (written D) is defined inductively as follows (whefe
is the term substitution induced I} i.e.S = {x; > €7,..., %X, — €, }):

D = (vAR) :: I1+ x:0: Then there are two cases to consider.
(a) Eitherx:o € IT and sax = x; for somei € 71 with D; :: IT I g;:¢: thenD® = D;; or
(b) x:¢ € ITwith ¢ =0y n...n0, ando = o; for somej € n’. Also in this casex = x; for somei € 7,
so thenD; = (D}, ..., D.,,30IN) =: TI' I- g: ¢ and DS = D11 g:0;.
D = (Dyp,D/,NEWM) :: T+ new C(®) : (m:(¢) — o): Then
DS = (Dy, D'S,NEWM) :: T+ new C(€) S: (m:(§) — o)

D= (Dy,...,Dy,r) :T1Fe:¢,r¢ { (vAR),(NEWM) }: ThenDS = (D;5,...,D,S,r) = T - €3:¢.

Notice that the last case includes the base case of derigaifcthe form(w) :: TTF e:w as a special case.

3. We extend the weakening operation to derivation subistita as follows: for a derivation substitutidh =
{x1—=>Dy::11Fe:pq,..., % — Dy 11F €,: ¢, }, S[IT <11 is the derivation substitutiofix; — Dy [IT' <
I1],..., % — Dy[IT <11 }.

Notice that when we substitute

Lo/ L2 |
HFe:zpl HFG:(PZ
(JOIN)
HFei(Plﬂ(Pz

in the derivation fox:¢; N ¢ - X:¢p1, we do not build

Lo] L2 |

IT-e:¢; ITFe:¢;
(JOIN)

HFei(Plﬂ(Pz ,

HFe:fé

since we do not have a rule that allows for the last step - aftethe notion of predicate assignment is strict — but

define the result of this substitution as:
-n

H)—e:qbl

so let the collection of derivations used (imoIN) ‘distribute.’ It is because the system is strict that we aneghe
correct sub-derivation is present.

Example 38. Consider the derivations below for two expressionamd :

D/ D”
\mem ? >+>/ }mé“’”/ }mé;q)z/()
(m: n g JOIN
P2 DIl g:pings

and also the following derivation of the method invocation(¥) , where the environment
I =x(m:(@1n@a) = 7),Y: 91N @3:

—— (VAR) ——— (vAR)
(VAR) rEyigr ry:g> (301N)
I - x:{m: (p1n @) — 0) ITEy:p1ng;

DIl - xm(y) o

(INVK)

Let S denote the derivation substitutidrx— Dy, y+— D, }; then the result of substitutin®; for x andD; for y in
D is the following derivation, where instances of theRr) rule in D have been replaced by the appropriate (sub)
derivations inD; andD:

(N
| Dy / HFe:gr TIFe:gn
IIte:(m:(p1nga) —0) I[Ie:p1ng;

DS::H)—el.m(ey):a

(30IN)

(INVK)

Lemma 39 (Soundness of Derivation Substitution)Let D :: ITF e: ¢ andS be a derivation substitution based on
IT and applicable taD; thenDS :: IT' I €°: ¢ whereS is the term substitution induced k5

PrROOFE By easy induction on the structure of derivations. O
Derivation substitution preserves strong amdafe derivations.

Lemma 40. If D is strong (v-safe) then, for any strong.-safe) derivation substitutio§ applicable toD, D° is
also strong (v-safe).

PROOF By straightforward induction on the structure of dericat. O
We also show that the operations of weakening and derivatibstitution are commutative.

Lemma 41. LetD :: I1"” I- e: ¢ be a derivation andS be a derivation substitution based dhand applicable taD,
and let[IT’ < I1] be a weakening. TheRS[IT < I1] = DSIV<I],

PROOFE By induction on the structure of derivations. O

Definition 42 (Identity Substitutions). Each environmentl induces a derivation substitutia®y; which is called
theidentity substitutiorfor IT. LetIT = X;:¢b1, ..., Xu:¢n; thenSy £ {x; + Dy, ..., %, — D, } where for each € 7:

o If ¢ = wthenD; = (w) =TT+ X:w;

* If ¢; is a strict predicate thenD; = (VAR) = ITF x;:0;
19

el e = Dilltew & (w):IlFe:w
D:llke:(f:o) & D :llFe:(f:c) = (D,rD) LF (D', FLD)

Dullke:(m:(pn) = 0) & D' uTl-e€:(m:(pn) = 0) &Vicn [D;: 11+ :¢]
= (D, Dy, INvK) L2 (D', Dy, INVK)

Mb(C,m) = (X;,6) & thisap,Xg:y,..., Xn:pn - €:0 & D : T+ new C(8) :¢p L D
= (Dyp, D,NEWM) & (Dp, D',NEWM) :: TT+ new C(&) : (m: () — o)

Vien (n>2) [Dj:1lkeo; & DizllFe:0;] = (DyJoN) & <ﬂ,JOIN>
Dullke:(m:(pn) »0) &Ijei [Dj=11Feg:¢; & D}&Vi#je% [D; 11 1 ¢;]]
= (D, Dy, INVK) P (D,D',,,INVK) : T+ em(€)) : o

F(C)=T,&3jen [Dj:11Fe:¢; & D}&Vi#je% (D 11H &1 ¢]]
= (Dy,08BJ P (D',,083) :: T1+ new C(€}) :C

F(CO) =T, &3jen [Dj:llFe:¢; & Di&Vi£jen [Dinlle:¢;] &¢;~o]
= (D,,NEWF) LY (D',,NEWF) :: TT+ new C(€}) (f:0)
For the last three cases, &, ejandVi#jen (D) =D; &€, =¢g].

Figure 6: The advance operation on derivations

* If ¢; = 011...N 0w, for somen; > 2 thenD; = (D, ,JOIN) :: T F X;:09N... "0y, With D} = (VAR) :: TT
x;:0; for eachj € ;.

Notice that for every environmeit, the identity substitutiod is alsobased or1.
We can of course show th&} is indeed the identity for the substitution operation oriva@gions using 1.
Proposition 43. LetD :: I+ e: ¢ and Sty be the identity substitution fdd; thenDSn = D.

Before defining the notion of derivation reduction itselg first define the auxiliary notion @fdvancinga deriva-
tion. This is an operation which contracts redexes at sorengiosition in expressions covereddyin derivations.
This operation will be used to reduce derivations whichadtrce intersections.

Definition 44 (Advancing). 1. Theadvanceperatiorv on expressions contracts the redex at a given position
in eif it exists, and is undefined otherwise. It is defined as thallest relation on tuplegp, €) and expressions
satisfying the following properties (where we wrie?, e’'to mean((p,e),e’) € ~):

F(C) =T, & e=¢ynew C(&) f;] withien = e & ¢fe]
Mb(C,m) = (%,&) & e=<,new C(€).m(ey)] = el Glef]
whereS = {this — new C(€’),%; —€f,...,X; — € }
2. We extend~ to derivations via the rules in Figure 6, (where we wite.2, D’ to mean((p,D),D’) € ~)
Notice that the advance operation does not changstthetureof derivations. Exactly the same rules are applied
and the same predicates derived; only subexpressions @afedigped withw are altered.

The following lemma states that this always generates &cbderivation.

Lemma 45 (Soundness of Advancing)Let D :: IT+ e:¢; if a redex appears at positiop in e and no derivation
redex appears gt in D (so e & ¢ for some €), then there exis® such thatD £ D', andD’ :: T1+ €':¢.

PrRoOOF By well-founded induction on pairs of position and deriwat(p, D). O
20

({(D,,,NEWF),FLD) :: T+ new C(®) f;:0 5 D (F(C)=T,Vien)
({Dy, D',NEWM), D, INVK) :: T new C(€).m(&;) :0 & D°
(Mb(C,m) = (X;,8) &S = {this—=D',x;—~Dy,..., %Dy })
D:Ilte:(fio) K D :1lFe:¢p =
(D,FLD) =TT+ e.f:c ©F (D,FD):11ke€. fio
D 5D :ullke:¢p = o L
(D, Dy,INVK) :: TT-em(&;) :c %F (D', Dy, INvK) =TT+ em(&,) :o
EIjEﬁ[Dj_’”DD;-::HI—e}:M =
(D,Dy,...,Dy,INVK) : TTem(&;) :0 18 (D,Dj,...,Dl,INVK) :: TIF em(€)) :c
Vi£jen [Di=D; &e =g]
Eljeﬁ[Dj::Hl—(-‘ﬁ:iy&D}::Hl—e}:¢;&¢j~0]:> ‘ - B
(Dy,NEWF) :: TT+-new C(&,) : {f:c) L& (D'y,NEWF)::T1Fnew C(€}) :(f:0)
(Vi#£jen [D;=D; &e;=g])
D:Ilknew C(8) :p £ D' :TlF ey =
(Do, D,NEWM) :: TT+new C(®8) : (m:(p) =) £ (Dy, D' ,NEWM) :: T1F e:(m:(p) — o)
/ (Dy:this:p,Xg:p,..., Xnipn F &:0)
7] (Y
EI]En[Dj..Hl—gxp]_’LE-..Hl—e].(pj]:> ‘ L B
(Dy,0BJ) :: T1new C(&,) :C ¢ (D',,0BJ) :: 11+ new C(ey) :C
(Vi£jen [D;=D; &e;=g])
3jen D b Dj&Vi#jen [D; % D) v D & D] =
(Dy,..., Dy, 30IN) :: T1F-e:01n...n0, b (D},..., D), I0IN)

Figure 7: Derivation reduction

The advance operation preserves strong (arghfe) typeability.
Lemma 46. If D £, D’ is defined, an® is strong (v-safe), therD’ is also strong ¢ -safe).
PrRooOFE By induction on the definition of the advance operation ferihtions. O

The notion of derivation reduction is defined in two stageg&stfFthe more specific notion of reduction at a
certain position (i.e. within a given subderivation) isradtuced. The full notion of derivation reduction is then a
straightforward generalisation of this position-speaiiduction over all positions.

Definition 47 (Derivation Reduction). 1. The reduction of a derivatidP at positionp to D’ is denoted byD %,
D', and is defined inductively using the rules in Figure 7.
2. The full reduction relation on derivatiors 5 is defined as the smallest relation on derivations satigfttie
condition:
dp[DL D] = D—pD

The reflexive and transitive closure of 5 is denoted by— 7.
3. We writeSN(D) whenever the derivatiof is strongly normalising with respect te %,

Similarly to reduction for expressions,® % D’ then we callD a derivation redexand D’ its derivation con-
tractum

The following properties hold of derivation reduction. Trexe used in the proofs of Theorem 53 and Lemma 57.

Lemma48. 1. SN(D,FLD)::I1e.f:c) < SND:IIte:(f:0)).
2. SN((D,Dy,...,Dy,INVK) :: I1+em(&;) :0) = SND)&Vien [SND;)].
3. For neutral context®', SND :: T+ €[x]: (m:(pn) — o)) &Vien [SND; :: 11+ e:¢;)] =
SN(D, Dy, ..., Dy, INVK) :: TTF €[X].m(&;) :0).
21

. SN((D,,,083) :: TT+new C(&;) :C) < 3¢, [Vicn [SND; =11+ ¢g:¢;)]].
. SN(Dy, ..., Dy,30IN) =11 e:oyn...n0y) < Vien [SND; :I1Fke:q;)].
.SND[IT' CII| = 1"+ e:¢) < SND:IlFe:p) .
. Let C be a class such tha&(C) = T,,, then for allj € : SN(D,,, NEWF) :: IT new C(&) Hfiio) &
8. Let C be a class such tha(C) = T, then for allj € 7i: SN(D(,, ;) [Dj] : ITF &y [g]:0) &
ViZjen [3¢ [SND =11 e:9)]] = SND(, - [((Dn,NEWF),FLD)] :: TTH €ynew C(&5) f]:0).
9. Let C be a class such thadith(C,m) = (X;,&) andDy :: t hi s:w,@ F e, :0”, then for all derivation contexts

~N o O~

D(,,07) and expression contexts SN(D ;1) [Db‘i: ITH €p[ep®]:07) & SN(Dy :: I new C(€)) &
Vien [SND;:ITF :¢;)] = SND (o [(D, Dy, INVK)] : ITH €p[new C(€') .m(&;)]:0).
where D = (D, Dy, NEWM) :: TTFnew C(€) : (m:(¢y) — o),
S = {this—Dyx =Dy, .o, Xu— Dy }, and
S = {this—new C(€),x+>€,..., X6y }.
PrRooFk These all follow straightforwardly from Definition 47. O

Our notion of derivation reduction is not ongpund(i.e. produces valid derivations) but, most importantlg w
can show that it corresponds to reduction on expressions.

Theorem 49 (Soundness of Derivation Reduction)lif D :: I1 - e:¢ and D —5 D', thenD’ is a well-defined
derivation, that is there exists some e such tB¥t:: I €':¢; moreover, then e+ € and if D reduces tdD’ at
positionp thene % €.

PrRoOF By induction on the definition of derivation reduction.
We can also show that strong asedsafe derivations are preserved by derivation reduction.
Lemma 50. If D is strong (v-safe) andD —5 D’, thenD' is strong (v-safe).

PROOFE By induction on the definition of derivation reduction; et that derivation reduction does not introduce
instances of ruléw) and that, by (Lemma 40), derivation substitution presestemg andv-safe derivations. O

The key step in showing the approximation result below is/im@ that this notion of derivation reduction is
strongly normalisingi.e. terminating. In other words, all derivations haveaamal formwith respect to—5. Our
proof uses the well-known techniquea@mputability{40]. As is standard, our notion is defined inductively over t
structure of types (predicates), and is defined in such a wag guarantee that computable derivations are strongly
normalising.

Definition 51 (Computability). 1. The set otomputablalerivations is defined as the smallest set satisfying the
following conditions (wher&omp (D) denotes thaD is a member of the set of computable derivations):

Comp((w) :: 11+ e:w)
Comp(D ::11Fe:p) < SND:Ilke:g)
Comp(D::11Fe:C) < SND:IIFe:C)
Comp(D :: 11+ e:(f:0)) <« Comp((D,FLD) :: 11+ e.f:0)
Comp(D =11k e:(m:(¢n) = 0)) & (VD,[Vien [Comp(D;:1L1-e:¢;)] =
Comp((D[NT1-TT,, <QT], D;[NII - TL, <TI;],INvK) = OIT- T, - em(&;) :0)])
Comp((Dy,...,Dy,30IN) :: I1F e:oqn...noy) < Vien [Comp(D;)]

2. A derivation substitutios = {x; — Dy,...,%,— D, } is computable in an environmeht, if and only if, for
all x:¢ € I there exists somee 7 such thak = x; andComp(D;).

22

The weakening operation preserves computability:
Lemma52. Comp(D :: 11+ e:p) < Comp(D[II QIT]::IT'Fe:¢).
PrROOFE By straightforward induction on the structure of predésatfor the base case, we use Lemma 48(6). (1

The key property of computable derivations is that they snangly normalising as shown in the first part of the
following theorem.

Theorem53. 1. Comp(D:11Fe:¢) = SND:Ilte:p).
2. For neutral context®, SND 11+ €[x]:¢p) = Comp(D 11+ €[X]:¢).

PrROOFE By simultaneous induction on the structure of predicates.
w: By Definition 47 in the case of (1), and by Definition 51 in theeaf (2).

¢, C: Immediate, by Definition 51.
(f:o): 1. Comp(D:Ilte:(f:0)) = (Def. 51)
Comp((D,FLD) ::I1Fe.f:o) = (IH(1))
SN(D,FLD) :: T+ e.f:0) = (Lem. 48)
SND =11t e:(f:0))
2. AssumeSND :: TTF €[x]: (f:c)) with € a neutral context. TheBN(D,FLD) :: IT+ €[x].f:0) by
Lemma 48. Now, le’ = ¢.f; notice that, by Definitions 27 and 28! is neutral, andf[x].f = &’[x].
Thus SN((D,FLD) :: IT - ¢/[x]:0), and, by inductionComp({D,FLD) :: I1 - ¢/[X]:¢’). Then, from
the definition ofe’, it follows that Comp((D,FLD) :: I1 - €[x.f:¢), and by Definition 51, we have
Comp(D = I1F €[X]: (f:0)).
(m:(¢n) —) 1. AssumeComp(D :: T1+ e: (m:(¢,) — o)). For eachi € 77, we take a fresh variable and
construct a derivatio®; as follows:
* If ¢; = w thenD; = (w) I X w, with TT; = @;
* If ¢; is a strict predicate thenD; = (VAR) :: IT; F x;: 0, with IT; = x;:0;
o If ¢; =01n...n0o, for somen’ > 2 thenD; = (D}, ..., D), 30IN) : I1; - X:0q N....N 0oy, With ITT; =
xi:¢; andD; = (VAR) :: T1; - x;: 0 for eachj € n'.
Notice that eaclD; is in normal form, s&SND;) for eachi € 7. Notice also thaD; :: IT; F €[x;] : ¢; for
eachi € @ where€ is the neutral conteXt]. So, by the second inductidvmp(D;) for eachi € 7.
Then, by Definition 51, .
Comp({D',D,,,INVK) :: TT' - em(Xy) :0)
whereD’ = D[IT’ < I1] and D} = D;[IT" < IT;] for eachi € 7 with IT' = NT1-TT,. So, by the first
induction,SN((D’,D’,,INVK)). Lastly, by Lemma 48(2) we ha®\D’), and by Lemma 48(6 5N D).
2. AssumeSND : IT F €[X]: (m:(¢,) — o)) with ¢ a neutral context. Also, assume that there exist
derivationsDy, ..., D, such that:Comp(D; :: I1; - €:¢;) for eachi € n. Then, by the first induction,

SN(D; :: IT; - &:¢;) for eachi € 1. LetIT = NII-II,; notice that, by Definition 16]T < IT and
IT < IT; for eachi € 7i. Then, by Lemma 48(6 5N D[IT' < IT]) andSND;[IT’ < I1;]) for eachi € 7.

By Lemma 48(3) we then have
SN(D',D},...,D;,INVK) :: TT' - €[x].m(&) :0)

whereD’ = D[IT < I1] and D} = D;[IT" < IT;] for eachi € 71. Take the context’ = €.m(&;,) ; notice
that, since¢ is neutral, by Definitions 27 and 28&/ is also a neutral context an®{x].m(&,) = &'[x].
Thus, by the second induction,
Comp((D',D},..., D), INVK) :: TT' - €[x].m(&) :0).
23

Since the derivation®, ..., D, were arbitrary, the following implication holds
VD, [Vien [Comp(D; =T -e:¢;)] = Comp((D',D,..., D)y, INVK) :: TT' - €[X]. m(®&;) :0) |

whereD’ = D[IT' <11 andD’ = D;[IT <I1;] for eachi € 77 with T’ = 11 - TT,,. So, by Definition 51,
we haveComp (D :: T1+ e: (m:(¢,) — o). O

o1N...noy,n > 2: Byinduction.

Another consequence of Theorem 53 is that identity (dedm@substitutions are computable in their own envi-
ronments.

Lemma 54. LetII be a predicate environment; thefy; is computable ifd 1.

PROOF LetIl=Xj:1,...,X::¢pn. S0, by Definition 425y = {x; +— Dy = ITF X1 :¢1,..., % — Dy : ITF X1 :¢1 }.
Notice that for eachi € 71 the derivationD; contains no derivation redexes, i.e. is in normal form ang 8N D;).
Notice also that, since = €[x;] where¢ is the empty context| (see Definition 28)SND; :: IT - €[x]: ¢;) for each
i € n. Then, by Theorem 53(2) it follows th&@vmp(D;). Thus, for eachx:¢ € I there is some € 77 such thak = x;
andComp(D;) and so, by Definition 515y is computable il 1. O

Also using Theorem 53, we can show that computability is edofor derivation expansion - that is, ®’ is
computable an® — 5 D’, then alsdD is computable. This property will be important when showtimgreplacement
lemma (Lemma 57) below. We first show two auxiliary lemmaat tire needed for the proof of that lemma.

Lemma 55. Let C be a class such th& (C) = f,,, then for allj € 7: if Comp(D (o) [Dj] :: I1+ &y[g]:0) and
Vi#jen [3¢ [Comp(D;:: 11 e:¢)]], thenComp(Q(p/a/)[((ﬁ,NEWH,FLDﬂ nITH &ynew C(&) fj]:0).

PrROOFE By induction on the structure of strict predicates.

¢: AssumeComp (D, [Dj] : T1F €plej]:) and3 ¢ [Comp(D; : 11+ e;:¢)] for eachi € 7 such that # j.
By Theorem 53 it follows thatSN(® ,, . [Dj] :: I1F &, [g]:) and3 ¢ [SN(D; :: T+ €;:¢) | for eachi € n
such that # j. Then by Lemma 48(8) we have that

SND ;o) [{((Du, NEWF),FLD)] :: T+ € [new C(&;) fl:9)

And, by Definition 51, it follows thaComp (D [({(Dy,NEWF),FLD)] :: TT - €, [new C(&) fil:9).

po’)

C: Similar to the case for predicate variables.
(f:o): AssumeComp(D, ,n[Dj] :: I1+ Eple]:(f:0)) and3 ¢ [Comp(D; :: 11+ €:¢)] for eachi € 7 such that
i # j. By Definition 51, it follows thaComp((D, Dj],FLD) = ITF €y[g].f:0). Take the contexté’ and

po) (D)
D' such thatey , = €. f and@’(ohp o) = (D(po7),FLD) = TTF &,.f 0. Notice that

(D(p,on[Dj],FLD) = TIF &yg].f:0 =

; D] 11+ €, [0,

!
(0-p,o’)

so we hav@omp(@’(o.plg,) (D] =TT+ %,p[q} :0). Then by induction we have

Comp(D{g, o [((Dn,NEWF), FLD)] :: T+ €, [new C(&5) f]:0),

so by the definition of derivation contexts,

Comp({(D ;o) [{{Dn,NEWF),FLD)],FLD) :: IT+ &, [new C(&) f].f:07).

Then, by Definition 51, we hav€omp(D ,, ;1) [((Dy,NEWF),FLD)] :: TT - €, [new C(&;) fi]:(f:0)).
24

(m:(¢n) — 0): AssumeComp(D o [Dj] =: I1F €plg]: (m:($y) — 0)) and thad ¢ [Comp(D; :: [T+ €;:¢)]

for eachi # j € 1. Now, take arbitrary derivatior®, ..., D!, such that, for eack € n’, Comp (D), :: TI; I
€} : ¢x). By Definition 51,

Comp((D/, D7, INVK)) :: TT' - ¢,lel.m(e)) o,

wherell = NI1-TT,/, D' = D, , [Dj][IT" <11}, andD}’ = D [IT < IT] for eachk € 7.

By Lemma 330" = D, o) [D}][TT" < TT] = D, o) [IT' < H] [D[IT QIT]]; take the contextg’ and®’ such
that: €., = €,.m(€) and®; = (D, 1T <TT], Dy, INVK) : T = €.m(€)y) 0. Notice that

n/’

0-p,0’)
(D', D7, INVK) = 9/(0-17,0’) (DI <T1)] = IT' = &5 [&] 0,

n's

then we hav@omp(@’(o_p,g,) [D[IT < T1]]). Now, by Lemma 523 ¢ [Comp(D;[IT" < IT] :: TI' - g;:¢) | for
eachi # j € n. Then by induction,

Comp(D{g., o [((D1[IT QIT],..., Dy [IT <TI),NEWF), FLD)] :: IT' = €5, [new C(&3) .fj]:0)
So by the definition o',

Comp((D o [IT" STI[((D1[IT < TT],..., Dy [IT < TT], NEWF), FLD)], n/,INVK>
=TT = €y [new C(&) fil. m(ey) :0)

And then, by Definition 31,
Comp((D, o [IT" <T1] [({Dy,NEWF), FLD)[IT < H}},ﬁ,lNVK) =11 €y new C(&,) fi].m(e)y) :0)
And by Lemma 33

Comp((D, o) [{{Dn, NEWF), FLD)][IT' & I1], D, INvK) = TT - € [new C(&;) fl.m(ey) :0)

n"
Since the derivation®], .. .,D;, were arbitrary, the following implication holds:

VD', [Vien [Comp(D}:: 11+ e:¢;)] = Comp({D, D}y, INVK) :: T1' - €, [new C(&5) fjl.m(€}y) :0)]

n's
whereD = Q(pﬂ)[<<ﬁ,NEwF>,FLD>] [T < I1]. Thus, by Definition 51, it follows that

Comp(Dp,o1) [{(Dn, NEWF), FLD)] :: TT = €y [new C(&5)] (m: (1) =)

Lemma 56. Let Mb(C,m) = (X;,&,) andDy, :: IT' - ey: ¢’ with IT' =t hi s:9p,Xg:¢b1, ..., Xu: ¢, then for derivation
contextSD(p/ o) and expression contexts if

Comp(ﬁ(plg/)[DbS] 2 I1F €, [8°]:0), Comp(Dy : ITHnew C(€) :¢p) andVi € 71 [Comp(D; :: 11+ e:¢;)],
thenComp(D ,, o) [(D, D, INVK)] :: TT F €, [new C(€') .m(&;)]:0), where

D = (Dy,Dy,NEWM) :: TIFnew C(€) : (m:(dy) — o),
S = {this—Dyx »—>D1, ., Xa— Dy}, and
S = {thisrsnew C(€), x1n—>e1,...,xnn—>en}

PrROOFE By induction on the structure of strict predicates.

25

¢: AssumeComp(D o [De°] :: T1+ €p[@°]:), Comp(Dy :: IT 1+ new C(€) :9), andComp(D; :: T+ &;: ;)
for eachi € 77, whereS = {thi s — Dy,x; — Dy,..., X, — Dy }, andS is the term substitution induced K
Then by Theorem 53 it follows th&8N®D , . (D] =TT €p[8°]:9), SNDp =: ITH new C(€) :9p), and
SND; :: T1+ e;:¢;) for eachi € 7.
Then, by Lemma 48(9), we have tf&iN®D ,) [(D, Dy, INVK)] :: ITF €, [new C(€).m(&;)]: ¢), where

D = (Dp, Dy, NEWM) :: TT - new C(€') : (m:(¢y) —)
. And, by Definition 51, we know thaﬁfomp(@(p,a)[<D,ﬁn,INVK>} = ITH €plnew C(€) .m(&)]: ¢).
C: Similar to the previous case.

(fro): AssumeComp(D,q) (D] = TTF €, e8] : (f:0)), Comp(Dy :: T+ new C(€) :¢p), andComp(D; :: T1 -
e :¢;) forall i € m, whereS = {this — Dy,x; — Dy,..., %, — Dy }, andS is the term substitution induced
by S. By Definition 51, it follows thatComp((D,) [D,5],FLD) = ITF €,[6,°].f:0). Take the contexte’

and®’ such that, = €.f andD{, , . = (D(, 1), FLD) :: ITF &,.f 10 Notice that

(D (p,07) (D], FLD) :: T €y [eS].fro = ’)3’(0"7,0/) DS T+ <. ple0°]:0

So we havéfomp(i)/(o_p o (D] :: T €., [&°]:0), and then by induction
Comp(@’(oip/a/)[(D,ﬁ,mw)} s I1E ¢ [new C(€). m(&)]:0)
whereD = (Dy, Dy, NEWM) :: TT - new C(€) : (m: () — ¢’). So by the definition op’,
Comp((D (o) [(D, D, INVK)], FLD) :: ITH €p[new C(€) . m(&5) |.f:0)
Then, by Definition 51, it follows that

Comp(D (o) [(D, Dy, INVK)] :: TTH &y [new C(€). m(&;)]: (f:0))

<m/:(¢T) — 0): Assume -
Comp(D (o) (D] = TTF €ples]: (m': (¢,) — o)),
Comp(Dy :: T1Fnew C(€) :¢),

and, for alli € 7,
Comp(D; : 11+ €:¢;)

whereS = {this — Dy,x; — Dy,..., X, — D, }, andS is the term substitution induced . Now, take
arbitrary derivation®], ..., D), such thatComp (D}, :: ITj + €} ¢;) for eachk € n’. By Definition 51, it
follows that

Comp({D', DI, INVK) =TT + € ple’]m’(€)):0)

n"
whereIl” = NI1- Hn, D' =D, [DP][11” <11}, and D} = Dy [I1” < TIy] for eachk € n’. Then, by
Lemma 33,D' = D, ,)[D°][I1" <] = D, - [I1” < T1|[D° 11" < TT]]. Take the contexte’ and D’
such that, = €.m m'(€)) andi)(o,plg,) = (D1 <11], D’,,|NVK) s 11 €y (€)) o

Notice that

(D', D7, INVK) = (DS < 10)) = 117 ¢ [@): o

!
(0-p,o’)
So we have
Comp([DbS [T QIT]) = 117 = €. [€°] :)
26

(0-p,c”)

And then by Lemma 41
Comp(@'(o.plg,) (DS 2 117 - Qi(’)_p[eos} :0)

Now, by Lemma 52Comp (Do [I1” < T1] :: T1” I- new C(€') :¢) andComp(D;[T1” QT1) :: T I- &;: ;) for all
i € n. Thus, by induction,

Comp@’(o,w

WD, DT <, Du[I1” S TI)INVK)] 2 TT7 F € [new C(€). m(&5)]:0)
whereD" = (Dy,, Dy[I1” < T1],NEWM) :: IT” - new C(€) : (m:(§,) — ¢’). So by the definition ob’

Comp((D (o) [T ST [(D", Dy [TT” QTTJ,..., Du[T1" S TTJ,INVK)],
DI, INVK) : 1" - €, [new C(€). m(&;) |.m'(€}) :0)

n's
Then, by Definition 31,

D7, INvK) = T F € [new C(€). m(&) |.m'(€]) :0)

n/f

Comp((D [T <TT] (D, D, INvK) [TT" QTT]],
whereD = (Dy, Dy, NEWM) :: TT+ new C(€) : (m:(¢,) — ¢’). And by Lemma 33

Comi{ (D, 1 [(D, Dy, INvK)][IT < TI], D7, INVK) 2: T - Cplnew C(€'). m(&y) |.m'(€)) :0)

(po’)
Since the choice of the derivatiof, .. n/ was arbitrary, the following implication holds:

D, [Vien [Comp(D,: 11 - ej:¢!)] = Comp((D"',DY,...,Dy,,INVK) :: 11" - em(&;) :0)]

n's

whereD"" =D, ;1) [(D, Dy, INVK)|[IT" < T1] and Dy = Dy [T1” < Tl for eachk € n'.
So, by Definition 51, we have

_—

Comp(D (o) [(D, D, INVK)] :: TT - &y [new C(€) m(&5) |: (m':(¢),) = o)) O

The final piece of the strong normalisation proof is the ddidn replacement lemma, which shows that when we
perform derivation substitution using computable deidra we obtain a derivation that is overall computable. [n [8
where an approximation result is shown for combinator sgstehis lemma must be proved usingeanrtompassment
relation on terms. Since our notion of reduction is weak ¢abé case for combinator systems, ams in general)
one might think that a similar approach would be necessargfo This is not the case however, since our type
system incorporates a novel feature: method bodies arel tigyeeachindividual invocation, and are part of the
overall derivation. Thus, there will be sub-derivations floe constituents of each redex that will appear during
reduction. The consequence of this is that we are able toepghm/replacement lemma by straightforward induction
on derivations.

Lemma 57 (Replacement).If D :: 1+ e:¢ and S is a derivation substitution computable Ih and applicable to
D, thenComp(DS).

PROOF By induction on the structure of derivations. TtreewF) and (NEWM) cases are particularly tricky, and
use Lemmas 55 and 56 respectively. Let

o [T =x:¢},...,%:":¢/, and
e S={xy=»Di=Il'tej:¢],. ..., Xy Dy I €, b with {Xg,..., %y } C{X1,...,. X} }.

Also, letS be the term substitution induced & Note that ifS is applicable toD then it is also applicable to
subderivations oD.

w: Immediately by Definition 51, sinc®S = (w) :: TI' - €5 w.
27

(VAR): ThenD :: T1+ x:¢. We examine the different possibilities f6X°:

* x:o € 1, sox = x; for somei € n” andD} :: TI' I- e}:0. ThenDS = D!. SinceS is computable ifT it
follows thatComp (D), and saComp (D).

* x:¢ € I for somegp < 7, sop = oyn...Noy With o = o; for somei € 7. Also, x = Xj for somej € n’
andD; :: IT' - €] : ¢, soD; = (Dj;, J0IN) with Dy :: TT' I- €] : 0y, for eachk € 7.
Now, by Definition 37,05 = D} :: 11’ - €]:0;. SinceS is computable i1 it follows thatComp(D;) and
then, by Definition 51, thaEomp(D}) for eachk € 7. Thus, in particulaComp(D!') and soComp(DS).
(FLD): ThenD = (D',FLD) :: [T+ e.f:oandD’ :: ITF e: (f:¢). By induction,Comp(D'S :: IT' F €8 (f:0)).
Then, by Definition 51Comp((D'S,FLD) :: TT' - €°.f :¢). Notice that{D'®,FLp) = DS and saComp (D).

(INVK): ThenD = (Dy, Dy, INVK) :: TT F ep.m(&;) :0 with Dy :: TT - ep: (m: (¢) — o) andD; :: TT F g: ¢; for
eachi € ni. By induction, we have

Comp(Dy® =11 - e®: (m:(¢n) = 0)) & Vi €7 [Comp(DP 11 +e°:¢;)]
Then, by Definition 51, it follows that
Comp((DP 11" QIT], DS [IT” < 1T),..., DS I QTT],iNvK) = 117 - pS.m(efS,...,e,5) :0)

whereIT” = NI - TT, andIl; = I’ for eachi € 7. Notice thatlT” = IT and that for allD :: IT - e: ¢,
DI <] = D, so it follows thatComp((DyS, D15,..., Dy, INVK) :: TT - S.m(&5, ...,,%) :c). Notice
that (D%, D15, ..., Dy®,INVK) = DS and soComp (D).

(J0IN), (0BJ): By induction.

(NEWF): ThenD = (D,,,NEWF) :: TT - new C(&;) :(f;:0) with 7(C) = f, andj € 7, and there is somg, such
thatD; :: TT+ e: ¢; for eachi € 7 with ¢; = 0. By induction,Comp(D;° :: T - :¢;) for eachi € 7. Now,

take® () = ([]) and¢ = []. Notice that
:D(O,(T) [D]‘S] sIIF @[%‘S] o= D]‘S =TIk %,S 1P;
and soComp (D (g) [D;5] : 11+ €[g®]:0). Then by Lemma 55 it follows that

Comp(D () [((DF, ..., Ds® NEWF),FLD)] : TTF €[new C(e;%,...,&,°) f]:0),
and from the definitions 6D) and¢ that

Comp(((D?,...,D;° ,NEWF),FLD) :: IT+ new C(e;5,...,€,%) fi:0)

Then, by Definition 51, we have th@bmp((D;, ..., D,S,NEWF) :: TTF new C(e;5,...,6,°) : (f;:0)). Notice
that(D;°,..., D, ,NEWF) = DS and soComp (D).

(NEWM): ThenD = (Dy, Dy, NEWM) :: TT - new C(®) : (m:(¢,) — o) with Mb(C,m) = (X}, &) such that both
Dy 11" ey:oandDy :: ITH new C(&) :¢p wherell” =thi s:p,X7:¢1,...,Xn:¢,. By induction, we have
Comp(Dy® :: IT' - new C(®) S:¢). Now, assume there exist derivatioPs :: IT; - €} :¢1, ..., Dy :: T,
ey :¢n such thatComp(D;) for eachi € 7. LetIT"” = NIV -TI,,; notice thatl """ < I, for eachi € 7 so from
Lemma 32 it follows thaComp(D;[IT" < I1;] :: IT" + €}: ¢;) for eachi € . Also IT"”" < I1" and so then too
by Lemma 32 we have

Comp (DS [IT" QT =: TI" + new C(&) S:9p).

Now consider the derivation substitution

S'={this— DS[IT" QIT], X — Dy [IT" Q114], ..., X — Du[I1" <11,,] }
28

Notice thatS’ is computable if1” and applicable t®,. So by inductionComp (DS’ :: 1" - &, : o) where
S’ is the term substitution induced /. Taking the derivation contef o) = ([]) and the expression context
¢ =[], notice that

D(0,0) [Dbsl] I Q:[eos,] o o= DS IS o

and soComp(D (g, [De'] :: IT" - €[&,>] :¢). From Lemma 56 we then have
Comp(D (0, [(D', Dy 11" T, ..., Du[IT” < TTy],INvK)] =TT 1= €[new C(&) S.m(€})]:0)
whereD’ = (D, DS [IT" <11, NEWM). So, from the definitions aD o) ande,
Comp((D', Dy [T QT14],..., Dy [IT" QT1,],INVK) :: TI |- new C(&) S.m(€}) :0).

Notice thatD’ = DS[H”’ < IT'). Since the existence of the derivatidBs,.. ., D, was assumed, the following
implication holds:

VD, [Comp(D; =1L ¢€:¢;)] = Comp({D',Dj,..., Dy, INvK) :: T I new C(&) .m(€}) :0)

where D} = D;[IT"" < T1;] for eachi € 7, with TI"" = NTI' - TT,,. So, by Definition 51, it follows that
Comp(D° :: TI' - new C(&) S: (m: (¢n) — 7). O

Using this result, we can show that all valid derivations@mputable.
Lemmab58. D:I1te:¢p = Comp(D::11F e:¢).
PROOF Supposél = x;:¢1,...,%::¢,, then we take the identity substitution
Su={x1—=Dy =TTEX:¢1,..., %= Dy i TT Xy : ¢y }

Notice that this is computable I (Lemma 54). Notice also that, by Definition 39y is applicable taD. Then from
Lemma 57 we hav€omp(D°11), and since by Proposition 43511 = D it follows thatComp (D). O

Then the key step to the approximation theorem follows diyec

Theorem 59 (Strong Normalisation for Derivation Reduction). If D :: ITt e: ¢ then SND).

PrROOFE By Lemma 58 and Theorem 53(1). O

6. Linking Types with Semantics: The Approximation Result

We will now describe the relationship that the type systesmfSection 3 has with the semantics that we defined
in Section 2. This takes the form of approximation theoremwhich states that for every typeable approximant of
an expression, the same type can be assigned to the expritssif) and vice-versa:

IFe:¢p < JAcA(e)[IIFA:¢]

We will show that this result is a direct consequence of thenst normalisability of derivation reduction we achieved
in the previous section: the structure of the normal form given derivation exactly corresponds to the structure of
the approximant which can be typed. This is a very stronggmggsince, as we will explain, it means that typeability
provides a sufficient condition for the (head) normalisatibexpressiond.e. aterminationanalysis forr .

Finally, the following properties of approximants and poatie assignment lead to the approximation result itself.

Lemma 60. If D :: 1+ a:¢ (with D w-safe) and & a’ then there exists a derivatioR’ :: TT+ a’:¢ (whereD' is
w-safe).
29

PROOFE By induction on the structure of derivations. O

Lemma 61. Let A, ..., A, be approximate normal forms witlh > 2 and e be an expression such thatfAe for
eachi € n1. If there are (v-safe) derivationd;, ..., D, such thatD; :: I1 - A; : ¢; for eachi € 71, then U A, Ceand
there are (v-safe) derivation®}, ..., D), such thatD} :: T1 - UA,:¢; for eachi € 7. Moreover, U A, is also an
approximate normal form.

PrROOFE By induction on the number of approximants.

n=2: Then there aréy and A, such thatA; C e andA, C e. By Lemma 10,A; U A, C e, with A U A, an
approximate normal form, and al$g C A U A, andA; C Ay LU Ay. Therefore, given thaD; :: I+ Ay : ¢y
andD; :: TT+ Ay : ¢, (with w-safeD; and D), it follows from Lemma 60 that there exist derivatioR§ and
D} (bothw-safe) such thaD] :: TT+ A; UAy: ¢y andD5 :: TTH A LI Ay : . The result then follows from the
fact that, by Lemma 10,1 A; = A; U Ay.

n>2: By assumptionA; C eandD; :: TT - A;:¢; (with D; w-safe) for eachi € 72. Notice thaiA, = A; - A, where
n=n'+1andA; = A;, for eachi € n’. ThusA; C e for eachi € n’ andD;; :: TT - A;:¢;, 1 for each
i € n’. Therefore, by induction,) A, C ewith U A, an approximate normal form, am®} :: TT+ LA, ;11
(with D} w-safe) for eachi € n’. Then we have by Lemma 10 that Li (U A,/) E ewith Ay L (U A,) an
approximate normal formfy; C A LI (U A,/), andUA,, CA; L (UA),). Soby Lemma60 there is a derivation
D" (with D" w-safe) such thaD”” :: TT - Ay U (LA, :¢; and (-safe) derivation®?,..., D}, such that
Dﬁ; Im-AU (AAT,/) :¢; 1 for eachi € n’. The result then follows from the fact that, by Definition 9,
UA, =AU (UA,). O

Lemma 62. If D :: I1 F e:¢ (with D w-safe) andD is in normal form with respect te+5, then there exists A and
(w-safe)D’ such that AZ e andD’ :: T1 + A: ¢.

PrROOF By induction on the structure of derivations.

w: TakeA= L. Notice thatl C e, by Definition 7, and byw) we can takeD’ = (w) =TT+ L:w.

In thew-safe version of the result, this case is vacuously trueesine derivatiorD = (w) :: IT+ e:w is not
w-safe.

VAR: Thene= xandD = (VAR) :: ITF x:¢ (notice that this is a derivation in normal form). By Definiti 6, X is
already an approximate normal form axé_ x, by Definition 7. So we také = x andD’ = D. Moreover,
notice that, by Definition 34D is anw-safe derivation.

JOIN: ThenD = <7n,JOIN> zIlke:opn...no, withn > 2 andD; :: TT+ e:g; for eachi € 71. SinceD is in normal
form it follows that eachD; (i € 7) is in normal form too (and also, P is w-safe then, by Definition 34, each
D; is w-safe t00). By induction, there then exist, ..., A, and (-safe) derivationﬁ)’l,...,D; such that, for
eachi € 77, A; C eandD; :: TT+ A;: ;. Now, by Lemma 61 it follows that A, C ewith LA, normal and that
there are @-safe) derivation®, ..., D)/ such thatD} :: T+ LA, :0; for eachi € 71. Finally, by the(J0IN)
rule we can take-safe)D’ = (D), 30IN) :: TT - UA,:01N...N0y.

FLD: Thene=e.f andD = (D/,FLD) :: [1+ €'f:0 with D' : T1+ €: (f:). SinceD is in normal form, so too is
D'. Furthermore, ifD is w-safe then, by Definition 34, so too7¥'. By induction, there is soma and (v-safe)
derivationD” such thatA C e andD” :: T+ A: (f:¢). Then by rule(FLD), (D”,FLD) :: TT+ A.f:0 and, by
Definition 7,A.f C e'f. Moreover, by Definition 34, whe®” is w-safe so too is{D”, FLD).

INVK,0BJ,NEWF,NEWM: These cases follow straightforwardly by induction simia(FLD). O

Lemma 60 above simply states the soundness of type assignvitarrespect to the approximation relation.
Lemma 62 is the more interesting, since it is this that exggeshe relationship between the structure of a derivation
and the typed approximant. The derivatiBhis constructed fronD by replacing sub-derivations of the forfw) ::
ITFe:w by (w) :: TTF L:w (thus covering any redexes appearin@inSinceD is in normal form, there are also

30

no typedredexes, ensuring that the expression typed in the condwsiD’ is an approximate normal form. The
‘only if’ part of the approximation result itself then foliss easily from the fact that>o corresponds to reduction
of expressions, sé is also anapproximantof e. The ‘if’ part follows from the first property above and suljec
expansion.

Theorem 63 (Approximation). IT+ e: ¢ if and only if there exists & .A(e) such thafl I - A:¢.

PROOF if: There is an approximart of e such thatlI - A:¢, soe —* e with AC e’. Then, by Lemma 60,
IT+ e':¢, and then by subject expansion (Theorem 20), Bldoe: ¢.

onlyif: Let D :: I1 F e:¢, then, by Theorem 59D is strongly normalising. Take the normal forfY; by the
soundness of derivation reduction (Theorem 49);: I1+ e':¢ ande —* €. By Lemma 62, there is some
approximate normal form such thaf 1+ A:¢ andA C €. Thus, by Definition 11A € A(e). O

Termination Analysis

As in other intersection type systems [3, 8], the approxiomatheorem underpins characterisation results for
various forms of termination. Our predicate systeradsindwith respect to the approximation semantics (as shown
by the Approximation Theorem), and so typeability gives argntee of termination since our normal approximate
forms of Definition 6 correspond in structure to standardeggions in (head) normal form.

Definition 64 (Normal Forms). 1. The set of (well-formed)ead-normal formg§ranged over byd) is defined by:

H == x|new C(g,) (F(C)=T,)
|H.f|Hm(8) (H#new C(8))

2. The set of (well-formed)ormalforms (ranged over by) is defined by:

N == x|new C(N,) (F(C)=T,)
|N.f | Nm(N) (N#new C(N))

Notice that the difference between these two notions sifsérsecond and fourth alternatives, where head-normal
forms allow arbitrary expressions to be used. Also notewastipulate that a (head) normal expression of the form
new C(€) musthave the correct number of field values as defined in the ddimarof classC. Expressions of this
form with either less or more field values megchnicallyconstitute (head) normal forms, but we discount them as
malformed since they do not ‘morally’ constitute valid offfgaccording to the class table.

Lemma65. 1. IfA# 1 and AC e, then e is a head-normal form.
2. If AC e and A does not contain, then e is a normal form.

PROOF By straightforward induction on the structureffising Definition 7. O

Thus any predicate, or more accurately any predicate denivather than those of the forfw) :: TT+ e:w
(which correspond to the approximanj, specifies the structure of a (head) normal form via the mbform of its
derivation. From the approximation result, the followirgacacterisation of head-normalisation follows easily.

Lemma 66 (Typeability of (head) normal forms). 1. If e is a head-normal form then there exists a strict predi-
catec and predicate environmefi such thatl 1 - e:o; moreover, if e is not of the formew C(&,;) then for
any arbitrary strict predicater there is an environment such thdt- e: o
2. If e is a normal form then there exist strong strict predicatgredicate environmeriil and derivationD such
that D :: T1 I e:co; moreover, if e is not of the formew C(&,) then for any arbitrary strong strict predicate
there exist stron@ andIl such thatD :: 1+ e:¢.

PrROOF 1. By induction on the structure of head-normal forms.

x: By the(VAR) rule,x:c + x: ¢ for any arbitrary strict predicate.
31

new C(&;): Notice thatF(C) = T,,, by definition of the head-normal form. Let us take the empgdjcate

H.f:

environment®. Notice that by rul§w) we can derivé - g;: w for eachi € 7. Then, by rulg{oBJ) we
can deriveé? - new C(&;,) :C.

Notice that, by definitionH is a head-normal expressiont of the formnew C(&;), thus by induction
for any arbitrary strict predicatethere is an environmei such thaf I+ H:¢. Let us pick some (other)
arbitrary strict predicate’, then there is an environmehitsuch thaf 1+ H: (f:¢’). Thus, by rule(FLD)
we can derivd1 - H.f: ¢’ for any arbitrary strict predicaig’.

H.m(®,;): This case is very similar to the previous one. Notice thatdfinition,H is a head-normal expression

not of the formnew C(&), thus by induction for any arbitrary strict predicat¢here is an environment
IT such thaf 1 - H:o. Let us pick some (other) arbitrary strict predicatethen there is an environment
IT such thafl1 - H: (m: (w,) — ¢’). Notice that by rulg(w) we can derivd 1 e:w for eachi € 7.
Thus, by rule(INvK) we can derivd 1 - H.m(&,) :¢’ for any arbitrary strict predicat.

. By induction on the structure of normal forms.

x: By the (VAR) rule,x:c - x: ¢ for any arbitrary strict predicate, and in particular thégds for any arbitrary

strongstrict predicate. Also, notice that derivations of the faivar) are strong by Definition 34.

new C(Nj,): Notice thatF(C) = T, by the definition of normal forms. Since eakhis a normal form for

N.f:

N.m(

i € 7, it follows by induction that there are strong strict predise,, environments$T,, and derivations
D, such tha; :: TI; - N; : o; for eachi € 71. Let the environmerifl’ = NIT,,;; notice that, by Definition 16,
IT < TT; for eachi € 7, and also that since eath is strong so i§1'. Thus,[IT" < I1;] is a weakening for
eachi € 7 andD;[IT < IT;] :: IT' - N;: 0; for eachi € 7. Notice that, by Definition 31, weakening does
not change the structure of derivations, therefore for éach, D;[IT' < I1,] is a strong derivation. Now,
by rule (oBJ) we can derive

(Dy[IT QT14],..., Dy [IT" < T11,],0B3) :: T - new C(Ny) :C

Notice thatC is a strong strict predicate, and that since each derivdBi¢hl’ < I1;] is strong then, by
Definition 34, so is(Dy [IT' < T14],..., D, [IT' < 11,],08BJ).

Notice that, by definition) is a normal expressiamot of the formnew C(Nj,) , thus by induction for any
arbitrary strong strict predicatethere is a strong environmelitand derivatiorD such tha®D :: TTF N:o.
Let us pick some (other) arbitrary strong strict predicatethen there are strongl and D such that
D ::11F N:(f:0"). Thus, by rule(FLD) we can derive/D,FLD) :: IT+ N.f:¢’ for any arbitrary strong
strict predicater’. Furthermore, notice that sin@ is strong it follows from Definition 34 thatD, FLD)
is also strong.

N,) : Since each\; for i € 77 is a normal form it follows by induction that there are stratiget predicates
o, environmentd T, and derivationdD,, such thatD; :: IT; - N;:0; for eachi € 7. Also notice that,
by definition,N is a normal expressionot of the formnew C(N,), thus by induction for any arbitrary
strict predicater there is a strong environmeht and derivationD such thatD :: IT+ N:¢. Let us
pick some (other) arbitrary strong strict predicate then (m:(o;;) — ¢’) is also strong and there are
IT and D such thatD :: IT+ N: (m:(0,) — ¢’). Let the environmentl’ = OII- IT, notice that, by
Definition 16,IT < IT andIT’ < IT; for eachi € 77, and also that sincH is strong and eachl; is strong
then so isIT’. Thus, [IT" < I1] is a weakening andl’ < I1;] is a weakening for eache 7. Then
DT < I = TI' - N: (m: (o) — ') andD;[T1" < I1;] :: IT' F N;: 0; for eachi € 71. Notice that, by
Definition 31, weakening does not change the structure dfaténs, thereforé [T’ < I1] is strong and
for eachi € 77, D;[I1' <I1;] is also strong. Now, by ruléinvk)

(D[IT QI1], Dy [IT < TL],..., Dy [IT < T1,],INVK) :: TT' = Nam(Ny,) 0’
for any arbitrary strong strict predicaté. Furthermore, by Definition 34, we have that
(DT QI1], Dy [IT Q11 ..., Dy[I1 < T1,,],INVK)

is a strong derivation. O
32

Theorem 67 (Head-normalisation).ITt e: ¢ if and only if e has a head-normal form.

PrROOEF if: Lete’be ahead-normal & By Lemma 66(1) there exists a strict predicai@nd a predicate environment
ITsuch thaf I+ e':¢. Then by subject expansion (Theorem 20) it follows tHat e: o

only if: By the approximation theorem, there is an approxirdeot e such thal 1+ A:c. Thuse —* e’ with AC €.
Sinceo is strict, it follows thatA # 1, so by Lemma 6%’ is a head-normal form. O

Recall the Lambda Calculus characterisation of normailisam 17D:
B+ M : o with B ando stronge M has a normal form

An analogous result does not hold faff (see the third example in Example 35 for a counterexamptsyelier we
can obtain such a resuttodulocertain kinds of derivations — namely thesafe derivations (and also, as we will
explain, modulo certain kinds of programs — nametycL ones).

One half of the implication holds in general:

Theorem 68 (Normalisation). D :: IT + e: ¢ with D andIl w-safe only if e has a normal form.

PROOF. By the approximation theorem, there is an approxindanite and derivatiorD’ such thaD’ :: TT+ A: ¢ and
D —X% D'. Thuse —* € with AC €. Also, since derivation reduction preservessafe derivations (Lemma 50), it
follows thatD’ is w-safe and thus by Lemma 36 thatloes not contain_. Then by Lemma 65 we have theitis a
normal form. O

On the other hand, the reverse implication does not hold meg# since our notion ab-safe typeability is too
fragile: it not preserved by (derivation) expansion — cdasthat while amv-safe derivation may exist fad - e;: o, no
w-safe derivation may exist fdd - new C(&;). f;: o (due to non-termination in the other expressigfigven though
this expression has the same normal forng;ag completeness resutbeshold when we restrict our attention to the
image ofcL terms inoocL, as shown later in Theorem 73.

We can however show that the set of strongly normalising esgions are exactly those typeable using strong
derivations. This follows from the fact that in such deriwas, all redexes in the typed expression correspond to
redexes in the derivation, and then any reduction step #rabe made by the expression (vig) is then matched by
a corresponding reduction of the derivation (viso).

Theorem 69 (Strong Normalisation for Expressions).e is strongly normalisable if and only B :: ITF e: o with
D strong.

PrROOE if: SinceD is strong, all redexes ia are typed and therefore each possible reductiamisfmatched by a
corresponding derivation reduction®f By Lemma 50 it follows that no reduction @? introduces subderiva-
tions of the form{w), and so sinc® is strongly normalising (Theorem 59) so toceis

only if: By induction on the maximum lengths of left-most outer-nrestuction sequences for strongly normalising
expressions, using the fact that all normal forms are tylgaalth strong derivations and that strong typeability
is preserved under left-most outer-most redex expansion. O

We will illustrate our results by applying them in the corttekoocL.
Definition 70 (oocL normal forms). Let the set ofbocL normal forms be the set of expressions
{ e | there exists &L termt such thaeis the normal form of[t| }
Notice that it can be defined by the following grammar:

e == x| eapp(e) (e#new C(e,)) |
new K() | new Ki(€) | new S() | new Si(€) | new Sy(e, &)

33

EachoocL normal form corresponds to@. normal form, the translation of which can also by typed with a
w-safe derivation for each predicate assignable to the ridoma.

Lemma 71. If e is anoocL normal form, then there existsa normal form t such thaflt] —* e and for allw-safe
D andII such thatD :: T1+ e: o, there exists am-safe derivatior’ such thatD’ :: T1+ [t :o.

PrROOFE By induction on the structure @focL normal forms. O
We can also show that-safe typeability is preserved under expansion for the saxjCL terms inoOCL.

Lemma 72. Lett; and t; becL terms such thatit— t,; if there is anw-safe derivatiorD and environmentl, and
a strict predicater such thatD :: T+ [[t,]| : o, then there exists another-safe derivatiorD’ such thatD’ :: TT

”—tlJJ 0.
PrRoOFE By induction on the definition of reduction far. O

This property of course also extends to multi-step reduactio
Together with the lemma preceding it (and the fact that alimad forms can by typed with a@-safe derivation),
this leads to both a sound andmpletecharacterisation of normalisability for the imagesoafterms inoocL.

Theorem 73. Lett be acL-term: then tis normalisable, if and only if, there aresafeD andI1, and strict predicate
o suchthatD :: TT1F [t] ;0.

PrRoOEF if: Directly by Theorem 68.

only if: Lett’ be the normal from of; then, by Theorem 24)t| — [t |. Itis straightforward to show that thelr’ ||
is normalisable as well; letbe the normal form off ' | . Then by Lemma 66(2) there are strong strict predicate
o, environmeniT and derivatiorD such tha 1+ e:¢. SinceD andII are strong, they are also-safe. Then,
by Lemma 71 and 72, there existssafeD’ such thatD’ :: TT+ [t]| :c. O

7. Some Worked Examples

We will now give a more concrete idea of how the concepts wediin the previous section work, by giving
a couple of examples. The first is based upon the familiar einef a fixed-point combinator from the world of
functional programming: we will show how a simple yet noi#d predicate can be derived for our construction, and
then demonstrate how this derivation reduces to a normal ¥adrnose structure directly corresponds to an approximant
of the original term. The second example is actually a naamvge demonstrating how a non-terminating program
(i.e. one having no approximants other thajis not typeable.

A Fixed-point Construction

The fixed-pointof a functionf is a valuex such thatx = f(x). A fixed-pointcombinatoris a (higher-order)
function that returns a fixed-point of its argument (anothiaction). Thus, a fixed-point combinatghas the property
thatg f = f(g f) for any functionf. Turing’s well-known fixed-point combinator in the-calculus is the following
term:

Tur = 00 = (Axy.y(xxy))(Axy.y(xxy))
ThatTur provides a fixed-point constructor is easy to check:
Turf = (Ayy(xy)®f —% f(@Of) = f(Turf)
The termTur itself has the reduction behaviour

Tur= (Axy.y(xxy))® —p5 Ay.y(©Oy)
—p Ay y((Az.z(©0Oz))y)
—p Ayy(y(©0y))

34

which implies it has the following set of approximants:

{L Ayyl, Ayy(yl), ...}

Thus, ifz is a term variable, the approximantsTafr z are L,z 1 ,z(z 1), etc. As well as satisfying the characteristic
property of fixed-point combinators mentioned above, thmt€ur satisfies the stronger property thair M —>7§

M(Tur M) for any termM.
It is straightforward to define ar® program which mirrors this behaviour:

class T extends Conbinator {
conbi nat or app(Combi nator x) {
return x.app(this.app(x));
}

}

Following from the example of Section 4 we have implementedfixed point combinatofur using a clas3 which
conforms to theConbi nat or ‘interface’, in which term application is modelled via app method. The body of the
app method in the clas§ encodes the reduction behaviour we sawTior above.

For anyr* expressiore:

new T().app(e) — e app(new T().app(e))
So, takingM = new T() . app(€) , we have
M — eapp(M)

Thus, by Theorem 12, the fixed poiM of e (as returned by the fixed point combinator cld$ds semantically
equivalent tee. app(M) , and sanew T() . app(-) does indeed represent a fixed-point constructor.
The (executable) expressien=new T() . app(z) has the reduction behaviour

new T(). app(z) x. app(this.app(x)) [new T/this,z/x]

_>
= z.app(new T.app(z))
— z.app(z.app(new T.app(z))

so has the following (infinite) set of approximants:

{L,z.app(Ll), z.app(z.app(L)), ...}

Notice that these exactly correspond to the set of the ajpents for theA-term Tur z that we considered above.
The derivatioriD; in Figure 8 shows a possible derivation assigning the patelicto e. In fact, the normal form of
this derivation corresponds to the approximargpp(L) , which we will now demonstrate.

The derivatiorD; comprises @yped redexi.e. a derivation of the forn(-, -, NEWM), >, INVK), thus it will reduce.
The derivatiorD, shows the result of preforming the reduction step. In th&egle, the predicate is assigned to the
receivemew T(), since thatis the predicate associated withs in the environmentI, used when typing the method
body. It would have been possible to use a more specific mtdfort hi s in IT, (consequently requiring a more
structured subderivation for the receiver), but even hadlarge so the information contained in this subderivation
would have been ‘thrown away’ by the derivation substitatiperation during the reduction step, since the occurrence
of the variablé hi s in the method body is still covered hy (i.e. any information abouthi s in the environmentI,
is not used).

The derivationD, is now in normal formsince although the expression that it types still containsdex, that
redex is covered by and so no further (derivation) reduction can take placeeth&he structure of this derivation
therefore dictates the structure of an approximare ahe approximant is formed by replacing all sub-expression
typed withw by the elementl.. When we do this, we obtain the derivati®y as given in the figure.

Although this example is relatively simple (we chose theivdion corresponding to the simplest non-trivial
approximant), it does demonstrate the central conceptdiest in the approximation theorem.

35

(vAR)

I Fx:(app: (w) — ¢2) (vaR) I, Fthis.app(x) :w (w) L F z:(app:(a)_) =9
(INVK) —————————— (w)

D :: IT, = x. app(this.app(x)) : ¢ [Ty Fnew T() :w
(NEWM)
I - new T() : (app: ({app: (w) = ¢)) = @)
IT; Fnew T().app(z) : ¢
(vAR) (w)
D, = I Fz:{(app: (w) — ¢) IT; Fnew T().app(z) :w (INVK)
I1; -z app(new T().app(z)) : ¢

(INVK)

Dy TTiF2:(app:(w) = ¢) var) e @

Iy -z app(L) :¢

(INVK)

I = {z:(app: (w) — @)}, T, = {thi s:w,x:(app: (w) — ¢)}

Figure 8: Predicate Derivations for the Fixed-Point Carctton Example

this:igpthis:(m() — @) (INVK) .

thisgpthis.m():¢ @Fnew () :¢
D:@Fnew C():(m:() = @)
@Fnew C().m) :¢

(INVK)

DOES NOT EXIST

this:(m:() = ¢)Fthis:(m() — ¢) :
this:(m() > ¢)Fthis.n():¢ @Fnew () :(m:() = @)
(VAR) @ new () (m() = @)

(INVK)

(NEWM)

this:(m() = @) Fthis:(m() = ¢)
this:(m() = @) this.n():¢
@Fnew () :(m:() = @)
OFnew C().m) :¢

Figure 9: Predicate Derivations for a Non-Terminating Paogy

(NEWM)

(INVK)

An Unsolvable Program

Let us now examine how the predicate system deals with pnogjthat do not have a head-normal form. The
approximation theorem states that any predicate which wassign to an expression is also assignable to an approx-
imant of that expression. As we mentioned in Section 2, apprants are snapshots of evaluation: they represent the
information computed during evaluation. But by their veature, programs which do not have a head-normal form
do not compute any information as they have no observablavimir. Formally, then, the characteristic property
of unsolvable expressions (i.e. those without a head-nidioma) is that they danot have non-trivial approximants:
their only approximantisL.. From the approximation result it therefore follows that e@mnot build any derivation
for these expressions that assigns a predicate othetdlfgimce that is the only predicate assignable o

To illustrate this, consider the following program whichstitutes perhaps the simplest example of unsolvability
in oo:

class C extends Qbject {

Cm) { return this.m); }

This program has a methaodwvhich simply calls itself recursively.
36

Figure 9 shows two candidate derivations assigning a rieiatpredicate to the expressioew C(). (), the
first of which we can more accurately call a derivatEnhemasince it specifies the form that any such derivation
must take. When we are trying to assign a non-trivial praditathe invocation of the methagonnew C() , we can
proceed without loss of generality by building a derivati@signing a predicate varialpe since we may then simply
substitute any suitable (strict) predicate §oin the derivation.

The derivation we need to build assigns the predigetie a method invocation so we must first build a derivation
D that assigns the method predicate() — ¢) to the receivenew C() . Thisderivation is constructed by examining
the method body +hi s. n() —and finding a derivation assigning tagt This analysis reveals that the variable s
must be assigned a predicate for the metimachich will be of the form{m: () — ¢); new C() (the receiver) must
also satisfy the predicateused fort hi s. Finally, in order for thg VAR leaf of the derivation to be valid the predicate
y must satisfy the constraint theat<t (m: () — ¢).

The second derivation of Figure 9 is an attempt at instantjahe schema that we have just constructed. In order
to make the instantiation, we must pick a concrete predicatg satisfying the aforementioned constraint. Perhaps
the simplest thing to do would be to pigk= (m: () — ¢). Next, we must instantiate the derivatiBt assigning this
predicate to the receiveew C() . Here we run into trouble because, in order to achieve thesnust again type the
body of methodn i.e. solve the same problem that we started with — we seethdhstantiation of the derivation
D’ must be of exactly the same shape as our instantiation ofetieationD; of course, this is impossible sin@
is a proper subderivation dP and so no such derivation exists. Notice however, that tbeivernew () itself is
notunsolvable — indeed, it is a normal form — and soc&eassign to it a non-trivial predicate: using thesJ) rule,
@Fnew () :C.

Some Observations

In this paper we have shown how th® approach can be applied to class-basedpreserving the main expected
properties of intersection type systems. There are howswae notable differences between our type system and
previous work on.c andTRs upon which our research is based.

Firstly, we point out that when considering the encodingio{and via that.c) in F&*, our system providesore
than the traditional analysis of terms as functions: theeauatypeable c andcL terms which have typeable images
in oocL. Letd be the followingcL term: S (S K K) (S K K). Notice thatd § —* 4 4, i.e. it is unsolvable, and thus
can only be given the type (this is also true fofl 6 5]). Now, consider the term= S (K §) (K §). Notice that it is
a normal form (t]| has a normal form also), but that for any tetnS (K 6) (K 6) t' —* 6 6. In a strict system, no
functional analysis is possible fosince¢ — w is not a type and so the only way we can type this term is usihg

In our type system however we may assign several forms ofiqaisdto[[t]. Most simply we can derive -

[t] :Ss3, but even though a ‘functional’ analysis via thgp method is impossible, it is still safe to access the fields
of the value resulting fronft] — both@ - [[t]] : (x:K;) and@ - [[t]] : (y:K;) are also easily derivable statements.
In fact, we can derive even more informative types: the esgiom [K 6| can be assigned predicates of the form
oks = (app:(o1) — (app: (o2 N (app:(02) — 03)) — 03)), and so we can also assigr:ogs) and (y:oks) to
Mtll. Notice that the equivalert-term tot is Ay.(Ax.xx) (Ax.xx), which is aweakhead-normal form without a head-
normal form. The ‘functional’ view is that such terms are etvationally indistinguishable from unsolvable terms.
When encoded irJ® however, our type system shows that these terms becomemgéai{head-normalisable).

The second observation concepricipal types. In theLc, each normal form hasaniquemost-specific type:
i.e. a type from which all the other assignable types may Inegged. This property is important for practical type
inference It is not clear if our intersection type system far* does enjoy such a property. Consider the following
program:

class D extends Qbject {

Dm() { return new I(); }
}

“In other intersection type systems (e.g. [12])~ w is a permissible type, but is equivalentio(that isw < (¢ — w) < w) and so semantics
based on these type systems identify terms of type w with unsolvable terms.

37

(083) thisoraew)0 ornewn) p °%
—— (0OBJ . . :
@Fnew () :D OF new D) -(m() = D) (NEWM)

. (oBY) , (oBY)
this:DFnew D) :D this:DFnew D() :D
- (NEWM) - (oBY)
this:DFnew () : (m:() — D) this:DFnew D() :D
(NEWM)
@Enew D() :(m:() =» (m:() = D))
_ (oBY) , (oBY)
this:DFnew) :D this:DFnew () :D
- (NEWM)
this:DFnew D() : (m:() — D) (083)
: this:DFnew D() :D
- (NEWM) —— (oBy)
this:DEnew D() : (m:() = (m:() = D)) @Fnew) :D

@Fnew D() :(m:() = (m:() — (m:() = D))) (NEWM)

Figure 10: Predicate Derivations for a Program without acdhpal Type

The expressionew D() is a normal form, and so we can assign it a non-trivial predidaut observe that the set of

all predicates which may be assigned to this expressioistimite set{ D, (m: () — D), (m: () — (m:() — D)),...},

as illustrated in Figure 10. None of these types may be cersitithemostspecific one, since whichever predicate
we pick we can always derive a more informative (larger) @methe one hand, this is exactly what we want: we may
make a series of any finite number of calls to the methadd this is expressed by the predicates. On the other hand,
this seems to preclude the possibility of practical typeiahce for our system. Notice however that these predicates
are not unrelated to one another: they each approximaténiréte’ predicate(m: () — (m:() — ...)), which can be
finitely represented by the recursive typ&.(m: () — X). This type concisely captures the reduction behaviour of
new (), showing that when we invoke the methodn it we again obtain our original term. Lt such families of
types arise in connection with fixed-point operators. Thiadt a coincidence: the claBsvasrecursivelydefined,

and in the face of such self-reference it is not then surmithat this is reflected in our type analysis.

Conclusions & Future Work

We have considered an approximation-based denotatiomarges for class-basemb programs and related this
to a predicate-based semantics defined using an intensdgfie approach. Our work shows that the techniques and
strong results of this approach can be transferred stfaigtdrdly from other programming formalisms (ilec and
TRS) to the 0o paradigm. Through characterisation results we have shbaindur predicate system is powerful
enough (at least in principle) to form the basis for expresanalyses obo programs.

Our work has also highlighted where tb® programming style differs from its functional cousin. Inrfieular
we have noted that because of the facility for self-referenceit is no longer clear if all normal forms have a most
specific (or principal) type. The types assignable to suaimabforms do however seem to be representable using
recursive definitions. This observation further motivasied strengthens the case (by no means a new concept in the
analysis 0f00) for the use of recursive types in this area. Some recent {8@jkshows that a restricted but still highly
expressive form of recursive types can still charactetimngly normalising terms, and we hope to fuse this approach
with our own to come to an equally precise but more concisepaactical predicate-based treatmenoaf.

We would also like to reintroduce more features of full Jaegkbinto our calculus, to see if our system can
accommodate them whilst maintaining the strong theorgticgerties that we have shown for the core calculus. For
example, similar to\u [33], it seems natural to extend our simply typed system tyese the exception handling
features of Java.

References

[1] M. Abadi and L. Cardelli.A Theory of ObjectsSpringer Verlag, 1996.
38

(2]
(3]

(4

(5]
(6]

[7]
(8]

El

[20]

[11]
[12]

[13]
[14]
[15]
[16]

[17]
(18]

[29]
[20]
[21]
[22]
(23]
[24]

[25]
[26]

[27]
(28]
[29]
[30]
(31]
[32]

(33]

[34]
[35]
(36]

[37]
(38]

[39]

S. van Bakel. Intersection Type Assignment SysteTieoretical Computer Scienc&51(2):385-435, 1995.

S. van Bakel. Cut-Elimination in the Strict Intersectidype Assignment System is Strongly Normalisingotre Dame journal of Formal
Logic, 45(1):35-63, 2004.

S. van Bakel. Completeness and Partial Soundness Résullntersection & Union Typing foRuji. Annals of Pure and Applied Logic
161:1400-1430, 2010.

S. van Bakel. Completeness and Soundness resulf¥ feith Intersection and Union Type§undamenta Informatica€011. To appear.

S. van Bakel and U. de’Liguoro. Logical equivalence fabg/ping object and recursive typegheory of Computing Systepd?(3):306—348,
2008.

S. van Bakel and M. Fernandez. Normalisation ResultSypeable Rewrite Systemiformation and Computatiqr2(133):73-116, 1997.
S. van Bakel and M. Fernandez. Normalisation, Approxioma and Semantics for Combinator SystenTheoretical Computer Science
290:975-1019, 2003.

S. van Bakel and R. Rowe. Semantic Predicate Types fasdiased Object Oriented ProgrammingPtaceedings of the 11th International
Workshop on Formal Techniques for Java-like Programs (PTI9), European Conference on Object-Oriented Programmind).28flicle
No. 3.

A. Banerjee and T.P. Jensen. Modular Control-Flow Asialwith Rank 2 Intersection Typelslathematical Structures in Computer Science
13(1), 2003.

H. BarendregtThe Lambda Calculus: its Syntax and Semantiésrth-Holland, Amsterdam, revised edition, 1984.

H. Barendregt, M. Coppo, and M Dezani-Ciancaglini. Aefillambda model and the completeness of type assigndemial of Symbolic
Logic, 48(4):931-940, 1983.

L. Cardelli. A Semantics of Multiple Inheritance. 8emantics of data typegsages 51-67. 1984.

L. Cardelli and J.C. Mitchell. Operations on Recortifathematical Structures in Computer Scient€l), 1991.

M. Coppo and M Dezani-Ciancaglini. An Extension of thasi& Functionality Theory for th&-Calculus. Notre Dame journal of Formal
Logic, 21(4):685-693, 1980.

M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Fuantl characters of solvable term&eitschrift fur Mathematische Logik und
Grundlagen der Mathematilk7:45-58, 1981.

H.B. Curry. Grundlagen der Kombinatorischen Logikmerican Journal of Mathematic§2:509-536, 789—-834, 1930.

F. Damiani and F. Prost. Detecting and Removing Deade@sing Rank 2 Intersection. Rroceedings of International Workshop TYPES'96,
Selected Papersolume 1512 of ecture Notes in Computer Scienpages 66—87. Springer Verlag, 1998.

D.J. Dougherty, P. Lescanne, and L. Liquori. Addresssth rewriting systems: application to a typed object daku Mathematical
Structures in Computer Sciencks(4):667—709, 2006.

ECMA International. The C# Language Specification. E&BB4, 41 Edition, June 2006ht t p: / / www. ecima- i nt er nat i onal . or g/
publications/files/ ECVA- ST/ Ecma- 334. pdf .

ECMA International. ECMA Language Specification. ECA282, 3¢ Edition, December 20081 t p: / / ww. ecima- i nt er nat i onal . or g/
publications/files/ ECVA- ST/ Ecma- 262. pdf .

K. Fisher, F. Honsell, and J.C. Mitchell. A lambda Caliof Objects and Method Specializatiodord. J. Comput.1(1), 1994.

K. Fisher and J.C. Mitchell. A Delegation-based Objfeatculus with Subtying. Iffrundamentals of Computation Theory, 10th International
Symposium, FCT '95, Dresden, Germany, August 22-25, 19@8efdings volume 965 ofLecture Notes in Computer Scien&pringer
Verlag, 1995.

K. Fisher and J.C. Mitchell. On the relationship betweasses, objects, and data abstractidiheory and Practice of Object Systems
4(1):3-25, 1998.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Javaguage Specification [8Edition). ISBN 978-0321246783

P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. &aithJ. Fasel, K. Hammond, J. Hughes, T. Johnsson, D. KigbRr Nikhil,
W. Partain, and J Peterson. Report on the Programming Lgeddaskel. ACM SIGPLAN Notice27(5):1-64, 1992.

A. Igarashi, B.C. Pierce, and P. Wadler. Featherweiglva: a minimal core calculus for Java and @LM Trans. Program. Lang. Syst.
23(3), 2001.

T.P. Jensen. Types in Program AnalysisThe Essence of Computation, Complexity, Analysis, Tremsfiion. Essays Dedicated to Neil D.
Jones [on occasion of his 60th birthdaylolume 2566 ot.ecture Notes in Computer Scien&pringer, 2002.

F. Lang, P. Lescanne, and L. Liquori. A framework for défg object-calculi. In JM. Wing, J. Woodcock, and J. Dayieditors,FM'99 -
Formal Methods, World Congress on Formal Methods in the @ment of Computing Systems, Toulouse, France, Septe&iat, 1999,
Proceedings, Volume,lvolume 1709 of ecture Notes in Computer Scienpages 963—982. Springer, 1999.

R. Milner, M. Tofte, and R. HarpeiThe Definition of Standard MLMIT Press, 1990.

J.C. Mitchell. Type Systems for Programming Languades). van Leeuwen, editoHandbook of Theoretical Computer Scieneelume B,
chapter 8, pages 415-431. North-Holland, 1990.

H. Nakano. A Modality for Recursion. IbICS, 2000.

M. Parigot. An algorithmic interpretation of clasdigaatural deduction. IrProceedings of 3rd International Conference on Logic for
Programming, Atrtificial Intelligence, and Reasoning (LP38, volume 624 oLecture Notes in Computer Scienpages 190-201. Springer
Verlag, 1992.

G.D. Plotkin. The origins of structural operationahsantics.Journal of Logic and Algebraic Programming§0-61:3—15, 2004.

G. van Rossum and F.L. Drake, editors. Python LanguagerBnce. PythonLabs, 2003.

R.N.S. Rowe and S. van Bakel. Approximation Semantind Bxpressive Predicate Assignment for Object-Orientezj@mming. In
Proceedings of TLCA'llnternational Conference on Typed Lambda Calculi and Asgibns, 2011. To appear.

Ruby online documentatiomt t p: / / www. r uby- | ang. or g/ en/

D. Scott. Domains for Denotational Semantics.Pimceedings of ICALP'82. 10 International Colloquium on Automata, Languages and
Programming volume 140 of_ecture Notes in Computer Sciengages 577—613. Springer Verlag, 1981.

B. Stroustrop. The C++ Programming Language (Third €8BN 0201889544

39

[40] W.W. Tait. Intensional interpretation of functionaiéfinite type I. Journal of Symbolic Logic32(2):198-223, 1967.
[41] C.P. Wadsworth. The relation between computationdl @enotational properties for Scott'sJomodels of the lambda-calculusSIAM J.
Comput 5:488-521, 1976.

40

