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a very powerful and expressive static type system [3]
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Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?
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Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?

− C

− 〈m : ()→ C〉

− 〈m : ()→ 〈m : ()→ C〉〉

− 〈m : ()→ 〈m : ()→ 〈m : ()→ C〉〉〉

− etc ...

• None of these types are principal – we cannot build an algorithm for typing

objects based on recursively defined classes.
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Solution: Recursive Types?

Recursive types are finite representations of infinite types.

For example, the type µX.〈m : ()→ X〉 represents the infinite type

〈m : ()→ 〈m : ()→ 〈m : ()→ . . .〉〉〉

• This makes it perfect to describe the behaviour of our example object,

new C().

• The type µX.〈m : ()→ X〉 is ‘larger’ than all of the types we saw on the

previous slide: is it PRINCIPAL.

N.B. A recursive type and its unfolding are considered equivalent, so the two

representations can be swapped one for another during type assignment.

(We will see this on the next slide)
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But Wait ...
• Recursive types (in unrestricted form) are logically inconsistent :

µX.X → A ≃ (µX.X → A)→ A

D

⊢ λx.xx:(µX.X → A)→ A

D

⊢ λx.xx:(µX.X → A)→ A
(≃)

⊢ λx.xx:µX.X → A

⊢ (λx.xx)(λx.xx):A

This is Curry’s Paradox

• So non-termination is typeable!

− Not necessarily a problem if you are only interested in partial correctness:

“Typeable programs won’t go wrong ... but they may not return a result”

− But we are looking for a basis for a fully abstract analysis!

• Mendler’s restriction [1] gives us back termination, but at the expense of natural

types for useful OO features like binary methods.
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Nakano to the Rescue
• Nakano [2] introduces a ‘modal’ type constructor • which controls the folding of

recursive types

•(µX.•X → A)→ A ≃ µX.•X → A

(µX.•X → A)→ A 6≃ µX.•X → A

• No more Curry’s Paradox:

D

⊢ λx.xx:(µX.•X → A)→ A

D

⊢ λx.xx:(µX.•X → A)→ A
( 6≃)

0 λx.xx:µX.•X → A

0 (λx.xx)(λx.xx):A

− Caveat: Nakano’s sytem is only head normalising - typeable programs may

not terminate, but will always [continue to] produce output.

• Can we use a similar trick for typing Featherweight Java?
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Detour: Typing Recursive Definitions

Take a (familiar and functional) recursive definition, e.g.

add ≡ λxy.case x of Zero => y | Suc(n) => Suc(add n y)

The solution of this equation is a fixed point, so we denote the term satisfying this

definition by

Fix add.λxy.case x of Zero => y | Suc(n) => Suc(add n y)

And it can be obtained using a fixed point operator Y:

add = Y(λ f .λxy.case x of Zero => y | Suc(n) => Suc( f n y))

Using recursive types, Y has the type scheme (A→ A)→ A; so to type a

recursive definition

⊢ Y:(A→ A)→ A

f :A ⊢ M:A

⊢ λ f .M:A→ A

⊢ Y(λ f .M):A

f :A ⊢ M:A

⊢ Fix f .M:A
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Objects are Built from Recursive Definitions
A term representing a recursively defined function reduces like this:

(Fix this.(λxn.eb)) en → (eb[Fix this.(λxn.eb)/this]) en

→ eb[Fix this.(λxn.eb)/this, en/xn]

Notice the similarity to method invocation, where the defintion of the method m in

class C is m(xn) { return eb }:

new C(e’).m(en)→ eb[new C(e’)/this, en/xn]

So, can we type objects (and method invocations) as follows?

C:〈m : (σn)→ τ〉,x:σn ⊢ eb:τ

C:〈m : (σn)→ τ〉 ⊢ m(xn) { return eb }:〈m : (σn)→ τ〉

⊢ new C(e’):〈m : (σn)→ τ〉 ⊢ e1:σ1 . . . ⊢ en:σn

⊢ new C(e’).m(en):τ
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Putting It All Together

In Nakano’s system, fixed point operators have the type scheme (•A→ A)→ A,

so our typing rule for objects becomes:

C:•〈m : (σn)→ τ〉,x:σn ⊢ eb:τ

⊢ new C(e’):〈m : (σn)→ τ〉

We can now give our new C() example its natural recursive type:

C:•µX.〈m : ()→ •X〉 ⊢ this:•µX.〈m : ()→ •X〉

⊢ new C():µX.〈m : ()→ •X〉

Notice that µX.〈m : ()→ •X〉 is really the infinite type 〈m : ()→ •〈m : ()→ • . . .〉〉,

and that the result type

•〈m : ()→ • . . .〉 = •µX.〈m : ()→ •X〉 = •X[µX.〈m : ()→ •X〉/X]

is exactly the type that we have assigned to the body of the m method.
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The Catch ...
As in Nakano’s system, some non-termination slips through the net; consider:

class Y extends App {

App app(App x) {return x.app(this.app(x));}
}

The term new Y().app(z) is non-terminating:

new Y().app(z)→ z.app(new Y().app(z))

→ z.app(z.app(new Y().app(z)))
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The Catch ...
As in Nakano’s system, some non-termination slips through the net; consider:

class Y extends App {

App app(App x) {return x.app(this.app(x));}
}

The term new Y().app(z) is non-terminating, but typeable:

Y:•σ,x:τ ⊢ x:τ

Y:•σ,x:τ ⊢ this:•σ

Y:•σ,x:τ ⊢ x:τ

Y:•σ,x:τ ⊢ x:•τ

Y:•σ,x:τ ⊢ this.app(x):• • σ

Y:•σ,x:τ ⊢ x.app(this.app(x)):•σ

z:τ ⊢ new Y():σ z:τ ⊢ z:τ

z:τ ⊢ new Y().app(z):•σ

σ = µX.〈app : (µY.〈app : (• • X)→ •X〉)→ •X〉

τ = µY.〈app : (• • σ)→ •σ〉
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Extending the Approach

To prevent these non-terminating recursive calls we introduce an additional (modal)

type constructor ◦, which prevents the unfolding of recursive types, thus preventing

method invocation.

• We now use this new operator to type self-references (i.e. this)

Y:◦σ,x:τ ⊢ x:τ

Y:◦σ,x:τ ⊢ this:◦σ

Y:◦σ,x:τ ⊢ x:τ

Y:◦σ,x:τ ⊢ x:•τ

Y:◦σ,x:τ 0 this.app(x):• • σ

Y:•σ,x:τ 0 x.app(this.app(x)):•σ

0 new Y():σ

σ = µX.〈app : (µY.〈app : (• • X)→ •X〉)→ •X〉

τ = µY.〈app : (• • σ)→ •σ〉
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Conclusions
• We have shown how to apply Nakano’s approach to FJ;

• We have extended the approach with the ◦ type constructor;

• We have shown we can assign recursive types to some ‘safe’ examples;

• We have shown the untypeability of some non-terminating, ‘unsafe’ examples.

Just a proof-of-concept at this stage – no formal results yet!
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