
{FJ◦µ}

Safe, Flexible Recursive Types for
Featherweight Java

Reuben N. S. Rowe

Department of Computing

Imperial College London

ICCSW 2011, Sept. 30 1/12

History

Java

Featherweight Java (FJ)

Nominal Types

C

Object

Vector

a weak and coarse-grained static type system

ICCSW 2011, Sept. 30 2/12

History

Java

Featherweight Java (FJ)

Nominal Types Structural Types Intersection Types

C

Object

Vector

+
〈 f :σ〉

〈m:(σ)→ τ〉
+

ω

σ∩τ

a very powerful and expressive static type system [3]

ICCSW 2011, Sept. 30 2/12

Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?

ICCSW 2011, Sept. 30 3/12

Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?

− C

ICCSW 2011, Sept. 30 3/12

Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?

− C

− 〈m : ()→ C〉

ICCSW 2011, Sept. 30 3/12

Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?

− C

− 〈m : ()→ C〉

− 〈m : ()→ 〈m : ()→ C〉〉

ICCSW 2011, Sept. 30 3/12

Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?

− C

− 〈m : ()→ C〉

− 〈m : ()→ 〈m : ()→ C〉〉

− 〈m : ()→ 〈m : ()→ 〈m : ()→ C〉〉〉

ICCSW 2011, Sept. 30 3/12

Roadblock
• The type system is not very practical :

class C extends Object
{

C m() {return this;}
}

What types does the term new C() have?

− C

− 〈m : ()→ C〉

− 〈m : ()→ 〈m : ()→ C〉〉

− 〈m : ()→ 〈m : ()→ 〈m : ()→ C〉〉〉

− etc ...

• None of these types are principal – we cannot build an algorithm for typing

objects based on recursively defined classes.

ICCSW 2011, Sept. 30 3/12

Solution: Recursive Types?

Recursive types are finite representations of infinite types.

For example, the type µX.〈m : ()→ X〉 represents the infinite type

〈m : ()→ 〈m : ()→ 〈m : ()→ . . .〉〉〉

• This makes it perfect to describe the behaviour of our example object,

new C().

• The type µX.〈m : ()→ X〉 is ‘larger’ than all of the types we saw on the

previous slide: is it PRINCIPAL.

N.B. A recursive type and its unfolding are considered equivalent, so the two

representations can be swapped one for another during type assignment.

(We will see this on the next slide)

ICCSW 2011, Sept. 30 4/12

But Wait ...
• Recursive types (in unrestricted form) are logically inconsistent :

µX.X → A ≃ (µX.X → A)→ A

D

⊢ λx.xx:(µX.X → A)→ A

D

⊢ λx.xx:(µX.X → A)→ A
(≃)

⊢ λx.xx:µX.X → A

⊢ (λx.xx)(λx.xx):A

This is Curry’s Paradox

• So non-termination is typeable!

− Not necessarily a problem if you are only interested in partial correctness:

“Typeable programs won’t go wrong ... but they may not return a result”

− But we are looking for a basis for a fully abstract analysis!

• Mendler’s restriction [1] gives us back termination, but at the expense of natural

types for useful OO features like binary methods.
ICCSW 2011, Sept. 30 5/12

Nakano to the Rescue
• Nakano [2] introduces a ‘modal’ type constructor • which controls the folding of

recursive types

•(µX.•X → A)→ A ≃ µX.•X → A

(µX.•X → A)→ A 6≃ µX.•X → A

• No more Curry’s Paradox:

D

⊢ λx.xx:(µX.•X → A)→ A

D

⊢ λx.xx:(µX.•X → A)→ A
(6≃)

0 λx.xx:µX.•X → A

0 (λx.xx)(λx.xx):A

− Caveat: Nakano’s sytem is only head normalising - typeable programs may

not terminate, but will always [continue to] produce output.

• Can we use a similar trick for typing Featherweight Java?

ICCSW 2011, Sept. 30 6/12

Detour: Typing Recursive Definitions

Take a (familiar and functional) recursive definition, e.g.

add ≡ λxy.case x of Zero => y | Suc(n) => Suc(add n y)

The solution of this equation is a fixed point, so we denote the term satisfying this

definition by

Fix add.λxy.case x of Zero => y | Suc(n) => Suc(add n y)

And it can be obtained using a fixed point operator Y:

add = Y(λ f .λxy.case x of Zero => y | Suc(n) => Suc(f n y))

Using recursive types, Y has the type scheme (A→ A)→ A; so to type a

recursive definition

⊢ Y:(A→ A)→ A

f :A ⊢ M:A

⊢ λ f .M:A→ A

⊢ Y(λ f .M):A

f :A ⊢ M:A

⊢ Fix f .M:A

ICCSW 2011, Sept. 30 7/12

Objects are Built from Recursive Definitions
A term representing a recursively defined function reduces like this:

(Fix this.(λxn.eb)) en → (eb[Fix this.(λxn.eb)/this]) en

→ eb[Fix this.(λxn.eb)/this, en/xn]

Notice the similarity to method invocation, where the defintion of the method m in

class C is m(xn) { return eb }:

new C(e’).m(en)→ eb[new C(e’)/this, en/xn]

So, can we type objects (and method invocations) as follows?

C:〈m : (σn)→ τ〉,x:σn ⊢ eb:τ

C:〈m : (σn)→ τ〉 ⊢ m(xn) { return eb }:〈m : (σn)→ τ〉

⊢ new C(e’):〈m : (σn)→ τ〉 ⊢ e1:σ1 . . . ⊢ en:σn

⊢ new C(e’).m(en):τ

ICCSW 2011, Sept. 30 8/12

Putting It All Together

In Nakano’s system, fixed point operators have the type scheme (•A→ A)→ A,

so our typing rule for objects becomes:

C:•〈m : (σn)→ τ〉,x:σn ⊢ eb:τ

⊢ new C(e’):〈m : (σn)→ τ〉

We can now give our new C() example its natural recursive type:

C:•µX.〈m : ()→ •X〉 ⊢ this:•µX.〈m : ()→ •X〉

⊢ new C():µX.〈m : ()→ •X〉

Notice that µX.〈m : ()→ •X〉 is really the infinite type 〈m : ()→ •〈m : ()→ • . . .〉〉,

and that the result type

•〈m : ()→ • . . .〉 = •µX.〈m : ()→ •X〉 = •X[µX.〈m : ()→ •X〉/X]

is exactly the type that we have assigned to the body of the m method.
ICCSW 2011, Sept. 30 9/12

The Catch ...
As in Nakano’s system, some non-termination slips through the net; consider:

class Y extends App {

App app(App x) {return x.app(this.app(x));}
}

The term new Y().app(z) is non-terminating:

new Y().app(z)→ z.app(new Y().app(z))

→ z.app(z.app(new Y().app(z)))

ICCSW 2011, Sept. 30 10/12

The Catch ...
As in Nakano’s system, some non-termination slips through the net; consider:

class Y extends App {

App app(App x) {return x.app(this.app(x));}
}

The term new Y().app(z) is non-terminating, but typeable:

Y:•σ,x:τ ⊢ x:τ

Y:•σ,x:τ ⊢ this:•σ

Y:•σ,x:τ ⊢ x:τ

Y:•σ,x:τ ⊢ x:•τ

Y:•σ,x:τ ⊢ this.app(x):• • σ

Y:•σ,x:τ ⊢ x.app(this.app(x)):•σ

z:τ ⊢ new Y():σ z:τ ⊢ z:τ

z:τ ⊢ new Y().app(z):•σ

σ = µX.〈app : (µY.〈app : (• • X)→ •X〉)→ •X〉

τ = µY.〈app : (• • σ)→ •σ〉
ICCSW 2011, Sept. 30 10/12

Extending the Approach

To prevent these non-terminating recursive calls we introduce an additional (modal)

type constructor ◦, which prevents the unfolding of recursive types, thus preventing

method invocation.

• We now use this new operator to type self-references (i.e. this)

Y:◦σ,x:τ ⊢ x:τ

Y:◦σ,x:τ ⊢ this:◦σ

Y:◦σ,x:τ ⊢ x:τ

Y:◦σ,x:τ ⊢ x:•τ

Y:◦σ,x:τ 0 this.app(x):• • σ

Y:•σ,x:τ 0 x.app(this.app(x)):•σ

0 new Y():σ

σ = µX.〈app : (µY.〈app : (• • X)→ •X〉)→ •X〉

τ = µY.〈app : (• • σ)→ •σ〉
ICCSW 2011, Sept. 30 11/12

Conclusions
• We have shown how to apply Nakano’s approach to FJ;

• We have extended the approach with the ◦ type constructor;

• We have shown we can assign recursive types to some ‘safe’ examples;

• We have shown the untypeability of some non-terminating, ‘unsafe’ examples.

Just a proof-of-concept at this stage – no formal results yet!

References
[1] N.P. Mendler. Recursive Types and Type Constraints in Second Order Lambda

Calculus. LICS’87.

[2] H. Nakano. A Modality for Recursion. LICS’00.

[3] R. Rowe and S. van Bakel. Approximation Semantics and Expressive Predicate

Assignment for Object-Oriented Programming. TLCA’11.

ICCSW 2011, Sept. 30 12/12

	History
	Roadblock
	Solution: Recursive Types?
	But Wait ...
	Nakano to the Rescue
	Detour: Typing Recursive Definitions
	Objects are Built from Recursive Definitions
	Putting It All Together
	The Catch ...
	Extending the Approach
	Conclusions

