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ABSTRACT

We apply the principles of the intersection type discipltoethe
study of class-based object oriented programs and; our febrk
lows from a similar approach (in the context of Abadi and @#rd
¢-object calculus) taken by van Bakel and de’Liguoro. We defin
an extension of Featherweight Jay&,), and present aredicate
system which we show to be sound and expressive. We also sho
that our system provides a semantic underpinning for theocbloyi-
ented paradigm by generalising the concepabroximantfrom
the Lambda Calculus and demonstrating an approximatiaritres
all expressions to which we can assign a predicate have anxapp
imant that satisfies the same predicate. Crucial to thidtrisstine
notion of predicate languagewhich associates a family of predi-
cates with a class.

1. INTRODUCTION

It was only after the introduction of object oriented pragraing
that attempts were made to place it on the same theoretigat fo
dations as functional programming. The first were basedrarou
extending the Lambda Calculua-¢alculus) [7] and representing
objects as records [11, 31, 12, 20]. The seminal work of Abadi
and Cardelli [1] constitutes perhaps the most compreherfeiv
mal treatment of object orientation, and introducesgfualculus,
which formalises thebject-basegrogramming paradigm. Similar
formal models describinglass-basedanguages have been devel-
oped as well; notable efforts are Featherweight Java [2d]it&sn
successor Middleweight Java [10].

An integral aspect of the theory of programming languages is
type theorywhich allows for static analysis via abstract reasoning
about programs, so that certain guarantees can be givehthleou
behaviour. Type theory easily found acceptance within tbedv
of programming, not only through Milner’s claintyped programs
cannot go wrontyt, but also because static, compile time type anal-
ysis allows for efficient code generation, and the genenatfeeffi-
cient code. The quest for expressive type systems is stijbbiog;
for example, types with quantifiers [21, 34] as investigdtethe

IHere wrong is a semantic value that represents an error state,
created when, for example, trying to apply a number to a numbe

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

c.ic.ac.uk

early nineties [30, 32, 33, 13], and tirgersection type discipline
(1TD), as first developed in the early 1980s [15, 16, 8, 3] are two
good examples of systems which, while undecidable in placi
have found practical application.

ITD generalises Curry’s system by allowing more than one type
for free and bound variables, groupedirersectionsvia the type

wconstructom. By introducing this extension a system is obtained

that is closed undeg-equality: if B = M : o andM =g N, then

B F N : o, making type assignment undecidable. Intersection sys-
tems satisfy a number of strong properties that are predeven
when considering decidable restrictions. For examplendoess
(subject reduction) will always hold, as does the fact thatmn that
satisfies certain criteria will terminate (has a normal fpron, with
different criteria, produce output (has a head-normal jorithe
strength ofiTb motivated de’Liguoro [17] to apply the principles
of intersection types to object oriented programming, irtipalar

to the Varsigma Calculus. Over three papers [38, 39, 5],rabve
systems were explored, for various variants of that catculuthis
work, we aim to follow up on these efforts and apply the piples

of intersection types, and the system of [5] specificallyg formal
model ofclass-basedabject oriented programming; the model we
use is based on [24]. Having defined the calculus, we will then
prove a subject reduction result.

The goal of our research is to come to a semantics-baseder typ
based abstract interpretation for object orientation,wbich the
present paper contains the first steps. To be exact, we show th
approximation result: any non-trivial predicate assigntrfer an
expression is also achievable for an approximant of thatesxp
sion, i.e. a finite rooted segment of its head-normal fornusTive
link semantics and predicates; the head-normal form isredgo
exist by the fact that a non-trivial predicate can be assigfiis
then can be used as a basis for abstract interpretation;aysan
that is immediately within reach is that tdrmination as we will
show in this paper. This is certainly not the only one howeuae
could think of dead code analysis, type and effect systetrist-s
ness analysis, etc.

While the abstract interpretation of object-oriented lzamges
has certainly been an active topic of research, the majofigp-
proaches taken thus far appear to have concentrated oktoiy
and data-flow analysis techniques rather than type-bassdaab
tions [29]; an exception to this is found in [23]. Another ebs
vation is that work in this area has been centred around gssue
of optimisation: [26] presents eass analysi®f object-oriented
programs which may be used to eliminate virtual functioriscal
pointer analysig35] generalises class analysis and also allows for
the detection of null pointer dereferencing, and otheryases [27,

28] have looked at inferring invariants for classes whiamloa use-
ful in many optimisations such as the removal of checks foayar



bounds. Termination analysis, missing from this list, isered

We call & an execution context, rather than a class table, in order

by our treatment. Such an analysis has been done on Java byteto highlight its purely syntactic nature (as opposed to stora of

code [2], however our system aims at performing such an aisaly
directly at the level of the object-oriented language nathan its
intermediate form.

The normal, class-based type system for our variant of Java i
sound, but not expressive enough to come to in-depth asabysi
programs; we therefore introduce the additional concepred-
icates, which express the functional behaviour of prograans
allow their execution to be traced. We show that the stan{dand-
tional) properties hold and, moreover, put in evidence wehave
a strong semantic system: we prove an approximation resdlt a
characterise head-normalisation and termination. Thiesyde-
ing semi-decidable at best, would need to be limited in esgive-
ness before it can be used for static analysis. This nottaitidéng,
the main properties shown in this paper would hold also fohsu
restriction.

2. PREDICATE FEATHERWEIGHT JAVA

lookup).

Notice thatprJ doesnot explicitly include constructors, asJ
does. We have chosen to elide this feature singezihis merely
‘syntactic sugar’: constructor methods are newar, in the same
sense that other methods are invoked, and were includedstoeen
that all valid FJ programs are also valid Java programs. phj,
we make object constructommplicit by requiring (in the type rule
for the new keyword) that the types of the expressions that are to
be assigned as field values match the types for the fields as de-
fined by the class of the object being created. We also omit the
r et ur n keyword in method bodies for the same reason. We feel
that this simplifies the calculus without diminishing itéereance in
any way.

An important difference betwegiriandrJis that we omit cast
expressions iprJ, which were included irFJin order to support
the compilation of Featherweighbt programs ta=3[24, §3]. Since
that is not an objective of our work, and (more importantlyg t
presence of downcasts makes the system unsound in the bahse t

In this section we define our extension of Featherweight Java well-typed expressions can reduce to expressions congainean-

(FJ), which we call Predicate Featherweight Javapfy). Fi[24] is

a minimal (functional) calculus based on Java [22] whiclrezpes
the core features of a class-based object oriented progragrian-
guage (e.g. inheritance, method invocation and field acobgsct
creation). Its compact nature allows proofs of its progsrto be
correspondingly succinct. As such, it has proved extremefyu-
lar as a starting point for formally studying extensionsdwal[25,
41, 19, 18, 9]. The treatment e and its variants in the literature
is very comprehensive, and so here we only define the eleroénts
prJinformally, and discuss its departures frem

Definition 1.(pFJ SYNTAX) The syntax oprJis defined by the
following grammar:

cd == class Cextends C'{fdmd} (C=# Qbject)
md == Dm(Cx){e}

fd = Cf

e x=x|null |ef|ef=¢]|em(@)|newC(8)

& == cd

P = (&)

The meta-variables C and D range over class names (which, as

in FJ, we also use as types); ranges over method nameSpver

field identifiers, and: over variable names. The set of class names

includes the distinguished nan@®j ect , and the set of variables
includes the distinguished narhéi s.

In a similar notation to that afJwe usee to represent a possibly
empty sequence of elements (in this particular case, esipres.

ingless (or ‘stupid’) casts, they are omitted. Upcasts aptaced
by subsumption rules in the type system. pfu we also include
syntax to represent theul | value and a field assignment oper-
ation. One of the objectives of our research is to lay a fotinoda
for the treatment of atatefulmodel of object oriented programs, of
which these two elements are quintessential componentshéhée
fore feel that it behooves us to incorporate them into theehatl
the earliest opportunity. Indeed, even at the functionatllewe
find that their inclusion has some interesting (and norat)icon-
sequences: our predicate system can be made expressivghenou
to catch ‘null pointer dereferences’, and field assignmerst im-
portant implications for the definition of predicate langas in a
complete system.

Definition 3. We use the (syntactic) execution context to define
a family of standard lookup functions:

1. F(&,C) = f returns a sequence of the fields defined (and
inherited by) class C;

2. Mb(&,C,m) = (X,e) returns the body of the methodn
in class C, along with a sequence containing the names of its
formal parameters;

3. FT(&,C, f) = D returns the type of field in class C;

4. MT(&,C,m) = C — D returns the signature of methed
in class C.

We explicitly define the lookup functions such that the classect

When necessary, such a sequence may be subscripted witla met js empty (i.e. contains no fields or methods). This is safeesin

variable indicating the number of elements it conta#is, Notice
that elements of a sequence are permitted t@drmaposite as in
C x. Sequence concatenation is representesl-key, ande denotes
the empty sequence. We ugdor the set{1,...,n}, where nis a
natural number.

Definition 2. An execution contexis a sequence of class dec-
larations, and a program is a pair of an execution contextaand
expression to be evaluated. Classes contain a list of fieldsaa
list of methods, the (class) types of which must be declarssl.
in FJ, the superclass must always be explicitly declared even if i
is Obj ect. Methods may take multiple arguments and method
bodies consist of a single expression.

the grammar oprJ precludes the existence of a user-defined class
calledObj ect . An execution context induces a standard subtype
relation <: defined as the transitive closure of the of class exten-
sion.

A number of notions and concepts are defined that strongly de-
pend on the current execution context (like reduction, ypsEgn-
ment, and predicate assignment), and which, thereforeildlzd
be subscripted with its name; but since this context is nahgkd
by execution, we will not do so. As usual, we impose some well-
formedness conditions on execution contexts (e.g. alkemmust
be uniquely named, and the class hierarhy must be acydl)all (
classes are uniquely namei) the class hierarchy ecyclic (iii ) no
class declares a field which it also inherits) (f a class declares



(newC(&n)).f; — ej F(&,C) = f,&icm
(neWC(én)).fiie§ — newCf(ey,...,e},...,en), F(&,C) = f,&icH
(newC(e)).m(e'y) — e[e//xy,newC(8)/this], Mb(&,C,m) = (Tn,e).
Figure 1. Reduction rules
r-eb Tre'C L
[T-AsY : ”‘34‘7:@'30 (FT(E,D,f) =C) [T-NULL] : Trnull o (CvalidinEC) [T-VAR] : P— (x:CeT)
r'+eD T-ecC The:C (Vien) N
[T-FLD] : (FT(&,D,f)=C) [T-INVK] : — (MT(&C,C,m) =C, —D)
Tt+e.fcC I't+em(e,)D
[T-sug| : rrec o [T-NEW] : w(r(fc C)=F,&FT(EC,C,f,) =C; (Vien))
" Trec € <O " Trnewc@®@,)c V=1 Cfi) =G (vien

Figure 2: Type assignment rules

a method which it also inherits, then the declared signatuiet
match that of the inherited methody) (the variablet hi s is not
used as a formal parameter to any methaet); the types declared
for fields and in method signatures must correspond to vidibes,
as must all classes that are inherited from. Notice thavei-
formed execution contextge explicitly forbid the redeclaration of
an inherited field, but we allow methods declared higher ugén
inheritance hierarchy to be overridden (redefined) in a laske
subject to the condition that the type signature is idehti€uch
behaviour is a common (perhaps even integral) aspect ofjjleeto
oriented paradigm and is also presentin

2.1 Reduction

We retain the permissive reduction ef (rather than restrict it
to a call-by-value semantics as in other extensions, e.§.aftl
extend it to handle field assignment. Asrn, we usee[e’/x;]
to denote the expression obtained by replacing any ocaeseof
the variables, ..., x, ine by the expressions, ... ,e, respec-
tively. Formally, a reduction relatior>¢ is induced for each exe-
cution context; however, as mentioned previously, from oowve
will assume a fixed execution context.

Definition 4.(pFJREDUCTION) The one-step reduction relation
is defined as the contextual closure of the rules given inr€igu

2.2 Type System

The types ofpFJ are the same as those Bf, that is, they are
induced by the set of classes defined in the execution coratiegt
mented withObj ect . We modify the type system @fito handle
our extra syntax in an obvious way: we introduce extra rubest

low nul | to be assigned any valid type, and ensure that the r-value |
in a field assignment expression has the expected type. We als

introduce a separate subsumption rule.

Definition 5. 1. Ifaclass Cis defined in an execution context
&, then we say it isvalid in &; Obj ect is valid in any
execution context.

2. A type environment is a set of statements of the far@,
which iswell formedwhen each statement refers to a uniquely
named variable and a valid type C.

3. The typing judgement gfFJis written asl’ - e:C — where
I and& are well formed — which reads: has type C in the
type environmenk'. The rules of the type assignment system
are given in Figure 2.

4. An execution context iype consistenf and only if the ex-
ecution context is well formed and the body of each method
can be assigned its declared return type under the type as-
sumptions given for its parameters in the method signature.

As for FJ, we can show a soundness resultgeo:

THEOREM 1. For type consistent execution contextE i e:C
ande — e’ thenT I ¢”:C

3. THE PREDICATE SYSTEM

We now come to describe the first contribution of our work: the
predicate system. Our system aims to provide an analysigwigi
more expressive than the simple type systemupfather than sim-
ply guaranteeing global properties of programs, we wishpoeidi-
cate types to be semantic in nature, and capture runtimegreg.
We consider the behaviour of an expression (or rather, tfecob
to which the expression evaluates) in terms of the operatibat
we may perform on it, i.e. accessing a field or invoking a meétho
We follow in the tradition of intersection types, originaliiefined
as sequences [14], however, by treating our predicatesciis su
predicate is a sequence of (potentially incomparable) \beties,
from which any specific one can be selected for an expression a
demanded by to the context in which it appears. We also imeorp
rate the late typing of self, another important feature tbumother
intersection type systems for object calculi [6, 4]. Thiewak for
a greater flexibility in the system, permitting us to updatehject
prior to invoking a method on it.

We begin by defining our predicate types.

Definition 6.(PREDICATES) Predicates are defined by the fol-
owing grammar:

predicates ¢ u=T|v
normal predicates v == % | o
object predicates ¢ = ({:T)
member predicates T i= v | —v

where the meta-variabléranges over the set of both field identi-
fiers and method names.

Object predicates thus comprise a sequence of statements de
scribing the behaviour of an object. Each statement agsscia
certain behaviour (described by the member predicatsith the
result of accessing the field or invoking the method labefleth
the case of methods, the predicate additionally indicdtese-
quired behaviour of the receiveny) and the argumentspj. By



- . ———— (Cvalidin&C - . ————— (x:C:vell
[P-NuLL] : n+nul | :c:m( ) [P-vAR] : I+ xC:v (xCvell)
I+ Newc(e):c IFeD:(f:v)
[P-NEWO] : —— [P-FLD] : —————— (FT(&C,D,f) =C)
II+-nNewc(e):C:() II-e.fC:v
-ecC v I1+e:C
[P-sUBT] : ———— (€' <:C&veL(C)) [P-TOF : ————
II1-ecC:v II+ecC: T
T1+-eC:o; (Vien) T1-ecC:o
[P-JOIN : —— (n>0) [P-SEQ: ———— (¢ Qo &oeL(C)
I1~e:C:Uo, I1+e:C:o
II1+eC:oc II-€e"D:v I1+e:C: FE,, I1+-¢€e":D N
[ ] O rriec [ ] () : 1, & FT(EC
P-AS§]: —————M ,C,f)=D P-ASS] : — ¢l & ,C,f)=D
. I[-ef=e:C:(f:v) il H ) 2 I-ef=e:C:(l:t,) v { f )
MFeD:(m:p:g,—v) IFeD:yp IFe:C:¢; (Vien N
[P-INVK] : m:p 4 i — v o )(MT(EC,D,m):c,ﬁc)
I1+em(e,):C:v
IFeCiiv IIFe:C (Vien[i#f]) N
[P-NEWF] : oy (F(&C) =f,&jen&Vien | FI(&C,Cf)=Ci] )
I NeWC(e,):C: (f;:v)
T+ NEeWC(€):C IT +eyD:v N .
[P-NEWM] : ((MT(&C,C,m) =Ty —D & Mb (EC,C,m) = (3,€0) & IT = {x:C:¢,,t hi S:C:9}))

I NEWC(8):C: (m:y :: gy —v)

Figure 3: Predicate Assignment Rules

combining the predicat® (denoting a null value) with the object
predicates we obtain the setrafrmalpredicates, so called because
they can be assigned to expressions which evaluate to safeaho
forms2. The predicate constafit (top) is a standard feature taken
from the intersection type discipline, and has the role afecmng
expressions which do not terminate or, more generally, ¢ésalt
of which bears no relevance to the running of the programahith
does not influence the final outcome. Notice that intersestare
implicitly present in the object predicates, since theneasestric-
tion in place on the labels used: a label can occur more thae.on
This corresponds to the approach of the strict intersecjstem
[37].

We now define a subpredicate relation and an operation which
combines (object) predicates together. At the heart ofsetdion
type assignment lies the ability to introduce an interseotif types
and select a single type from an intersection. In our syshenjatin
operation facilitates the former (intersection introdme}, and the
subpredicate relation allows us to perform intersectiamiahtion.

Definition 7.(SUBPREDICATERELATION) The relationd is de-
fined as the least pre-order on predicates such that:

NGT Vien[(Tity) < (bem)]
() <«T Vien[oQ ;1)) = o< {l:ty) (n>0)
Again, this corresponds to the type inclusion relation focstypes.

Definition 8.(PREDICATE JOIN) The join operation is defined
on object predicates as follows:

Ty L (0T) = (@ - 07

We generalise the join operation to sequences of objeciqates
as follows:

Ue = () Uo-o = ocU(UD)

Since the motivating idea behind predicates is to make a-stat
ment on the execution of an expression, we define the notien of
predicate language which allows our system to be truly ptizei.

2The normal forms are safe in the sense that they do not contain

null pointer dereferences.

For example, by defining this notion, we can show that if wéveer
the predicatéf : v) for a typed expressionC, then the field will
be visible in the class C. Moreover, it will be safe to acchsdield
in e, and the result will satisfy the predicate

Definition 9.(PREDICATE LANGUAGE) L(C), thelanguageof
class C is the smallest set of predicates satisfying theiirtlg
conditions:

1. T€L£(C), %e L£(C) and() € £(C).
2. FT(&,C,f) =D & (vE L(D) & (f) € £(C)).

3. MT(&,C,m)=C, - D &
(peL(C)&Vicn[p; € L(C)] &veL(D)
(m i pp—v) e L(C)).
4.Viemn|o; € LIC)] & Lo, € L(C).

This notion of language plays a crucial role in the approxiom
result that is presented in the next section.

Definition 10. The rules for our predicate assignment system are
given in Figure 3. A predicate environmeht, which is a set
of statements::C:¢, is well formed if each statement refers to a
unique variabler, a valid type C, and a predicagec £(C). The
judgementI I- e:C: ¢ — where agaidl and& are well formed —
asserts that the expressionf type C can be assigned the predicate
¢ usingIl.

Some rules are premised by type assignment judgementsh whic
we write using predicate environments instead of type envir
ments [1 I e:C). Notice that this is more than a simple notational
convenience: formally this is a sound extension since eggé t
environment corresponds to a predicate environment in twifie
predicate information has been discarded.

We can see the predicate system as a Hoare-style system of pre
and post-conditions. For example, the r(ierLD) expresses that
if the expressiore satisfies the predicatgf : v), then accessing the
field f will satisfy v, giving an annotation like

i1 pre: esatisfies (f:v)
e.f

post: v



p=T,%()= Comp(IL e:C,p) & Appre(I1,e:C, p)
M-eC&F7(&,C f)=D= (Comp(I1,e:C,(f:v)) < Comp(Ile.f:D,v))
IIFeC&MT(&,Cm)=C,—D= (Comp(Ile:C,(m:¢p::pp—v)) <

[

(Comp(IL,e:C,¢p) &Vien
Vien[Comp(Il,e:C,0;)

Comp(I1,e;:C;, ¢;) | = Comp(I1,e.m(8,):D,v)))
| & Comp(Il,e:C, UTy) (n > 0)

Figure4: Computability predicate

As a final comment, we return to the issue of late self typing,
mentioned earlier in this section. Notice that a method ipege
(m:1 :: § — v) is derived only for new object expressidnssing
the (P-NEWM) rule, and that no information about this object (save
for its type, which allows us to look up the correct methodyjod
is used to derive the self predicafe It is only atthe point of
invocationthat we check the receiver to ensure it satisfies his
approach differs from the type systems of [1] for thealculus,
where the self reference in the body of a method may only engiv
a type reflecting theurrent state of the receiver, even though it
may be updated later.

We now present the main results of the predicate system.

1. 3¢ [IIFeC:¢p| < IIFeC.
2. I+ eC:¢p = ¢ L(C).

THEOREM 2.

3. For type consistent execution context§lif e:C:¢ and
e — e thenIl+ €:C: ¢.

4. APPROXIMANTSFOR pri

In this section, we derive an approximation result which lban
used as a basis for semantics-based abstract interpret@tionore
directly, a termination analysis @fJ. It also opens the way for-
ward for giving a denotational semantics to our calculus.

The notion of approximant was firstintroduced for thealculus
by C. Wadsworth [40]. Intuitively, an approximant can bersae a
‘snapshot’ of a computation, constructed by covering Hackere
computation (reduction) may still take place with the elan@*.

Definition 11. We defineapproximate pJ expressions by the
following grammar:

x| Q|null |af]af=2a|am(d)]|newC(a)

a =

By extending the notion of reduction so that any field accisisl
assignment or method invocation énitself reduces to the expres-
sion(), we can also define the notion of approximatemal forms

Definition 12. Approximate normal forms are defined by the fol-
lowing grammar:
x| Q|null | newC(A) |
Af|Af=A]AmA) (A+Q,newC(R))

A =

We extend the type and predicate assignment relations t@tepe
over approximate expressions. We add a type assignmerpetie
mitting () to have any valid type, however we do not modify the
predicate assignment rules. In particular, this meanshatust
be assigned the predicate

To formalise the notion ofnapshatwe define an ordering on
approximate expressions:

3This is not strictly true, since we might also derive a methret-
icate for a variable when it is mentioned in the environment.

4Q) is the symbol originally used in [40]; more common now is to,
as [7], use the symbal ; since this could be confused with our
predicateT, we have opted for the old notation.

Definition 13. The direct approximationrelation T over ap-
proximate expressions is defined as the smallest pre-oatisfys

ing:

O C e
eCe = efCe.f
eiCef&erCe) = e.f =erCel.f=¢)
eCe &e Ceforallicn = em(e,) e m(ey) _

e;Ceiforallicn = newC(¢,) C newC(e'y)

An approximantof an expression is an approximate normal form
A which directly approximates some expressério whiche re-
duces, except for occurrence@fin A (soA C e’). We write A(e)
to denote the set of all the approximants:of

The following result gives an approximation semanticpra in
which we interpret an expression by its set of approximéeth, =
Ale).

LEMMA 1. e —*e' = A(e) = A(e')
As a shorthand notation, we define @pproximationpredicate:

Definition 14. Appre:(I1,e:C, ¢) <
[TFeC&IacAle) [IIFAC:¢].

The approximation result is the following: any expression t
which a predicate can be assigned has an approximant with tha
same predicate. We follow Tait’s proof method [36] involyia
computabilitypredicate. Space restrictions do not allow us to present
the proofs in detail.

Definition 15.(COMPUTABILITY PREDICATE) The computabil-
ity predicate is defined inductively over predicates as guFé 4.

A key step in the proof is to show that computability impligs a
proximation:

LEMMA 2. 1. Comp(I1, e:C,¢) = Appree(I1, e:C, ¢).

2. ITF x:C: ¢ = Comp(IL, x:C, ).

The next step is to formulate raplacemeniemma, which states
that if we replace all the variables in a predicable expoessiith
expressions computable of appropriate predicates, thevbtaén a
computable expression.

LEMMA 3 (REPLACEMENTLEMMA). IfITF e:C: ¢, and
there exists[I’, ¢’, such that for allx;:C;:¢; € IT we have that
Comp(IT', e;:C;, ¢;), thenComp(IT, e[x/e,]:C, §).

Given that all variables are computable of predicates whieh
assignable to them (Lemma 2), we can simply replace all the va
ables in an expression by themselves, and so a corollareakth
placement lemma is that if an expression can be assignedla pre
cate then it is also computable of that predicate.

Corollary 1. IT+ e:C: ¢ = Comp(I1,e:C, ).



Combining this with Lemma 2 allows us to derive our approxima
tion result:

THEOREM 3. If IT F e:C: ¢ then there exista € A(e) such
thatI1 - A:C: ¢.

While the approximation result shown above is significaritdn
own right, perhaps of more interest is that it facilitatésranination
analysisof prJ. We can show that all expressions to which we can
assign anormal predicate (i.e. nofl’) have ahead-normal form
that is they will reduce to either the null value or an object

Definition 16.(HEAD NORMAL FORMS) Head normal forms for
prJare defined by the following grammar:
H = x| null |newC(g) |
Hf|H.f=e|Hm(&) (H#null, newC(g))
THEOREM4 (TERMINATION). If IT I e:C:v then there ex-
istsH such that —* H.

To illustrate this result, consider the following program:
Example 1.Take the environment
class C extends hject {
Cf
Cnm() { this.f }
}

Notice that the expressiofinew C(null)). m() has the ap-
proximantnul | (which is also its normal form). We can easily
derive@  nul | :C: % using the p-NuULL) rule. The following
derivation shows that we can also assign this predicateetorilyi-
nal expression:

ornul | .Ca
ornew C(nul l):C:f =

thi s:C(f syt hi s:.Cf )
{t hi S:C:(f )}t hi sf.Ca
o+ new C( nul | ) C(m(f N) e—N)

or (new C(nul 1)). m() C»
5. WHAT ABOUT COMPLETENESS?

Example 2.Take the program

cl ass Sub extends Object {
A upcast (A x) { x }
}

cl ass A extends bject {

Am) { this}

class B extends A {
Af

Am) { this.f }
}

and the run

(new Sub()) . upcast (new B(new A())).m) (1
— (new B(new A())).m) 2
— (new B(new A())).f 3
new A() 4

—

NSNS

)
)
)
)

We begin by invoking the methorh on the receiving expres-
sion(new Sub()). upcast (new B(new A())). By look-
ing at the execution context, we see that tipeast method re-
turns a result of typé. However, at runtime, the result is actu-
ally an object of typeB, namelynew B(new A()). Thus, the
method body that will be executed whe®) is invoked will the
one found in clas8. So, are we able to derive a predicate for
(new Sub()). upcast (new B(new A())) that will allow
the call tom() be typed?

In order to do this, we must find a predicate (assignable to the
objectnew Sub()) for theupcast () method such that the re-
sult is the predicate mentionimgthat we desire. This will be of the
form (upcast :yp :: v — v) since theupcast method simply re-
turns its argument. However, in additionttanentioningm it must
be the case that bothe £(A) andITF new B(new A()):A:v.
Here we come to heart of the matter: in order to derive a pagelic
describing the methaaiwhich we can assign toew B(new A()),
we must look at the body ahin B. This method body refers to the
field f in the receivert(hi s), and thus any predicate which we
derive must also mentioh. However, sincé is not visible in the
type A any such predicate will not be in the languagedoiVe find
that there is no predicatewhich satisfies the necessary criteria and
so we will not be able to assign a (non-trivial) predicatexpres-
sion (1) even though we can do so for its normal form, expoessi

While the system we have presented in this paper is sound (ex-(4): e g. - new A():A: () by using rule p-NEWO).

hibits subject reduction), it is not completely expressivee pred-
icable approximants may exist for an expression to which ave ¢
not assign those same predicates. This is a consequencefatth
that our system does not have a subject expansion propsiyher
intersection type assignment systems do). While this msiydae
achieved by discarding our notion of predicate languagigdso
would destroy the semantic underpinning of our system {he.
approximation result). The challenge, therefore, is tostmtt a
system with both properties. While we do not offer a compnehe
sive solution here, we will discuss the underlying reasamgtie
failure of subject expansion in the presence of predicaiguages
as we have defined them, and discuss, at an abstract levstefie
that will be required.

This issue goes right to the heart of the object orienteddigmna
since the failure of subject expansion in our system lieh@dy-
namic dispatcHeature of OO.

5This holds for expressions typed in an empty environmensél
expressions). In general, a head normal form may also cempri
sequence of field accesses, assignment and method invecatio
variables.

Given that predicate languages are an essential elemetitefor
predictive abilities that we desire, the solution to the angion
problem will have to consist in modifying the definition ofeok
icate languages to make them more permissive. In the exaligple
cussed above, we required a predicate to mention membeck whi
were not visible in the class of the language to which it bgézh
Clearly, we must be able to allow predicates to contain saeh i
formation, while still maintaining the property that predie lan-
guages make a statement about what is visible in a class.

6. CONCLUSIONSAND FUTURE WORK

We have presented a predicate (type) systenpfor a variant
of FJ, and shown that our predicates describe semantic propertie
of expressions. Our system thus has more expressive poaer th
traditional type systems for Java. We see our results asriango
initial steps along the road to building not only semantiaeie for
object oriented programming, but also practical analyystems.
A key development towards this aim will be to extend our syste
to astatefulprogramming model, akin to Middleweight Java [10].



Another objective of immediate concern to us is that of askirey
the issues discussed in 85 and achieving subject expansion.
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