Semantic Predicate Types and
Approximation for Class-based
ODbject-Oriented Programming

Steffen van Bakel, Reuben N. S. Rowe

Imperial College London

B

| Research AIms

» A system for static analysis of (class-based) object-oriented
programs (e.g. Java, C++, C#):

#» more expressive than current type systems for these
languages;

& capture runtime properties of programs;

based on intersection types.

® Abstract interpretation through type-based semantics.

B

| | ntersection Types

» A powerful type system for the A-calculus (and its extensions), as
well as other formalisms (e.g. term rewriting systems):

allow terms (i.e. function parameters) to have more than one
type at a time;

characterisation of terms with (head) normal forms by
assignable types;

& semantics through interpretation of terms via assignable
types;

& approximation result: each type assignable to a term
corresponds to an approximant (a snapshot of computation).

B

| PFJ: Predicate Featherweight Java

We have made some slight modifications to Featherweight Java:

classes cd == classcCextendsC {fdmd} (C=Qbject)
methods md == Dm(Cx){e}

field declarations fd == Cf

expressions e == x|null |eflef=¢]|em(€e)|NnewC(e)
execution contexts & = cd

programs P == (&e)

» Removed cast expressions to recover soundness.

®» Introduced precursory imperative features:

#» anull keyword/value;

» field assignment (update). I

| PFJ: Predicate Featherweight Java

Reduction is the contextual closure (e.g. e — €’ = e.f —€'.f) of the
following rules:

(newC(e,)).f; — e

(newC(e,)).f; — newcC(eq,..., el,..., en)

(newC(8)).m(e) — eyle//x,newC(8)/thi s]
Reduction is:
» more free than call-by-value (e.g. may happen inside objects);

» weak (as in Term Rewriting Systems) - all arguments to a method
must be supplied.

Type system for prJ is (almost) identical to that of FJ: I' - e:C I

The Predicate System

We introduce an extra layer of types — predicates:

predicates : o == T | v

normal predicates: v N | o

object predicates : o ou= Fﬂ

member predicates: T = v | @pu¢p —v

Predicate assignment expressed by the judgement: IT e:C: ¢

B Predicates provide an analysis of the functional behaviour of expressions:

» play the same role that (intersection) types do in the A-calculus.
® They are more than just record types — they are implicit intersections.
P Class types do not allow for multiple analyses (of methods).

B Class types are recursive, making type-based termination analysis impossible.

| The Predicate System

So, intuitively, what do predicates express?
® [IFeC:{f :v,m:¢:p — v)implies e results in an object with:
» afield f behaving as v,

a method mwhich returns a value behaving as v’ (when invoked
with appropriately behaved arguments).

® [IF eC:N implies that e results in the nul | value.

® [IFe:C: T impliesthat e either:

#» results in an error, or

disappears during reduction (i.e. does not contribute to the final

result). I

| Properties of the System

Our predicate system has the standard properties of intersection type
systems:

Soundness (subject reduction):
[IFeC:p&e—e =TIIFe:C:¢
Completeness (subject expansion):

[TFeC&e —e &IIFe:C:p=T1FeC:¢

Full intersection type assignment systems are undecidable!
» Need to define a decidable restriction for practical use.

B

An Approximation Result for prFJ

linking types with semantics

B

I W hat are Approximants?

Approximants are snapshots of a computation

Basic idea: cover places in an expression where computation may
take place with Q):

3>

o o

°

°

= newC((newD).mnewbject()) ,newE(x.f ,newD()))
= new((O ,newE(Q ,newD()))

A (a normal form) directly approximates e: A C e.

A is an approximant of e when it directly approximates some €’ to
whicheruns:tAC e« Je' [e =*e &AL €]

The set of all approximants of e is denoted by A(e) = {A|ALC e }.

Approximants can be used to define a semantics: [Je]] = A(e). I

I The Approximation Result

The approximation theorem is:

If we can assign a predicate ¢ to an expression e, then e has an
approximant A with the same predicate ¢

[IFeC:¢p=JAcA(e) [IIFAC:¢ |
We get characterisation from the following:

® fIIF- AC:¢with¢ # T then Als in head-normal form (i.e. not Q2).
®» Therelation C preserves the structure of expressions

B

| Proof. Key Aspects

1. We used the computability technigue of Tait.
» Used by others to show the result for the A-calculus.

» Computability Predicate defined inductively over structure of
predicates:

(Comp(I1,e:C, (m: ¢ :: a’\n —v)) < (Comp(Il,e:C,¢) & Vi|[Comp(I1,e;:C;, ¢;) |
= Comp(I1,e.m(€,):D,v)))

2. To show the computabillity of certain expressions, we need
predicates to make a statement about what is visible in a class!
E.g. we need that IT I e:C: (f:v) implies f is visible in C.

® Introduce notion of the language of a class, £(C), to restrict the
predicates that can be assigned.

P Causes subject expansion to collapse ... problem? I

I Approximation: Example

cl ass C extends (bject {
Cnl() { this.n2() }
Cn2() { this }

}
(new ()).mi() —(new C()).n2() —new ()

Thus, we have that
new C() € A((new C()).miL())

And we can assign the following predicates:

@ + (new C()).nm():C:()
@ + new C():C:() I

I Approximation: Example

cl ass C extends (bject {
Cnl() { this.n2() }
Cn2() { this }

}
(new ()).mi() —(new C()).n2() —new ()

Thus, we have that
new C() € A((new C()).miL())

And we can assign the following predicates:

(ML:(M2:()e— () me— (), M2:():

@ + (new C()).m():C:()
@ + new C():C:() I

| Approximation: Example

cl ass C extends (Object {

Cnm() { this.n() }
}

(new C()).m) —(new C()).mM) —...
What are the approximants of (new C()).m() ?

A((new ¢()).m)) ={Q}
So, what predicates can we assign?

O F O:C: T

© F (new C()).m):C: T I

| Future Wor k

®» Extend definition of predicate languages to regain completeness
with approximation,

®» Predicate inference algorithm: an interesting decidable restriction
(cf. Rank-2 system for the A-calculus and TRS),

» Incorporating state into the calculus (heaps & pointers),

» Other analyses (e.g. dead code, strictness, type and effect

systems). Other class-based OO features?

| State of.the Art

®» For the most part, previous work not type based
(control-flow/data-flow analysis).

®» Centred around optimisation issues:

class analysis (to eliminate virtual function calls);

class invariants (remove array bounds checks).
Pointer analysis (catch null pointer dereferences).

» Termination analysis of Java Bytecode (but not of Java programs

themselves).

	Research Aims
	Intersection Types
		heLanguage : Predicate Featherweight Java
		heLanguage : Predicate Featherweight Java
	The Predicate System
	The Predicate System
	Properties of the System
	What are Approximants?
	The Approximation Result
	Proof: Key Aspects
	Approximation: Example
	Approximation: Example

	Approximation: Example
	Future Work
	State of the Art

