
Semantic Predicate Types and
Approximation for Class-based
Object-Oriented Programming

Steffen van Bakel, Reuben N. S. Rowe

Imperial College London

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 1

Research Aims

A system for static analysis of (class-based) object-oriented
programs (e.g. Java, C++, C#):

more expressive than current type systems for these
languages;

capture runtime properties of programs;

based on intersection types.

Abstract interpretation through type-based semantics.

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 2

Intersection Types

A powerful type system for the λ-calculus (and its extensions), as
well as other formalisms (e.g. term rewriting systems):

allow terms (i.e. function parameters) to have more than one
type at a time;

characterisation of terms with (head) normal forms by
assignable types;

semantics through interpretation of terms via assignable
types;

approximation result: each type assignable to a term
corresponds to an approximant (a snapshot of computation).

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 3

pFJ: Predicate Featherweight Java

We have made some slight modifications to Featherweight Java:

classes cd ::= class C extends C′ { fd md } (C , Object)

methods md ::= D m(C x) { e }

field declarations fd ::= C f

expressions e ::= x | null | e. f | e. f = e′ | e.m(e) | new C(e)

execution contexts EC ::= cd

programs P ::= (EC, e)

Removed cast expressions to recover soundness.

Introduced precursory imperative features:

a null keyword/value;

field assignment (update).

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 4

pFJ: Predicate Featherweight Java

Reduction is the contextual closure (e.g. e→ e′ ⇒ e. f → e′. f) of the
following rules:

(new C(en)). f i → ei

(new C(en)). f i = e′i → new C(e1, . . . , e′i , . . . , en)

(new C(e)).m(e′) → eb [e
′/x ,new C(e)/this]

Reduction is:

more free than call-by-value (e.g. may happen inside objects);

weak (as in Term Rewriting Systems) - all arguments to a method
must be supplied.

Type system for pFJ is (almost) identical to that of FJ: Γ ⊢ e:C

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 5

The Predicate System

We introduce an extra layer of types – predicates:

predicates : φ ::= ⊤ | ν

normal predicates : ν ::= N | σ

object predicates : σ ::= 〈ℓ:τ〉

member predicates : τ ::= ν | ψ :: φ → ν

Predicate assignment expressed by the judgement: Π ⊢ e:C : φ

Predicates provide an analysis of the functional behaviour of expressions:

play the same role that (intersection) types do in the λ-calculus.

They are more than just record types – they are implicit intersections.

Class types do not allow for multiple analyses (of methods).

Class types are recursive, making type-based termination analysis impossible.

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 6

The Predicate System

So, intuitively, what do predicates express?

Π ⊢ e:C : 〈f : ν, m : ψ :: φ → ν′〉 implies e results in an object with:

a field f behaving as ν,

a method m which returns a value behaving as ν′ (when invoked
with appropriately behaved arguments).

Π ⊢ e:C :N implies that e results in the null value.

Π ⊢ e:C :⊤ implies that e either:

results in an error, or

disappears during reduction (i.e. does not contribute to the final
result).

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 7

Properties of the System

Our predicate system has the standard properties of intersection type
systems:

Soundness (subject reduction):

Π ⊢ e:C : φ & e → e′ ⇒ Π ⊢ e′:C : φ

Completeness (subject expansion):

Π ⊢ e:C & e → e′ & Π ⊢ e′:C : φ ⇒ Π ⊢ e:C : φ

Full intersection type assignment systems are undecidable!

Need to define a decidable restriction for practical use.

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 8

An Approximation Result for pFJ

linking types with semantics

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 9

What are Approximants?

Approximants are snapshots of a computation

Basic idea: cover places in an expression where computation may
take place with Ω:

e ≡ new C((new D).m(new Object()) , new E(x.f , new D()))

A ≡ new C(Ω , new E(Ω , new D()))

A (a normal form) directly approximates e: A ⊑ e.

A is an approximant of e when it directly approximates some e′ to
which e runs: A ∼ e ⇔ ∃ e′ [e →∗ e′ & A ⊑ e′].

The set of all approximants of e is denoted by A(e) = { A | A ∼ e }.

Approximants can be used to define a semantics: ⌈⌈e⌋⌋ = A(e).

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 10

The Approximation Result

The approximation theorem is:

If we can assign a predicate φ to an expression e, then e has an
approximant A with the same predicate φ

Π ⊢ e:C : φ ⇒ ∃ A∈A(e) [Π ⊢ A:C : φ]

We get characterisation from the following:

if Π ⊢ A:C : φ with φ , ⊤ then A is in head-normal form (i.e. not Ω).

The relation ⊑ preserves the structure of expressions

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 11

Proof: Key Aspects

1. We used the computability technique of Tait.

Used by others to show the result for the λ-calculus.

Computability Predicate defined inductively over structure of

predicates:

(Comp(Π,e:C, 〈m : ψ :: φn → ν〉) ⇔ (Comp(Π,e:C,ψ) & ∀ i [Comp(Π,ei :Ci , φi)]

⇒ Comp(Π,e.m(en):D, ν)))

2. To show the computability of certain expressions, we need
predicates to make a statement about what is visible in a class!
E.g. we need that Π ⊢ e:C : 〈 f :ν〉 implies f is visible in C.

Introduce notion of the language of a class, L(C), to restrict the
predicates that can be assigned.

Causes subject expansion to collapse ... problem?

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 12

Approximation: Example

class C extends Object {

C m1() { this.m2() }

C m2() { this }

}

(new C()).m1()→ (new C()).m2()→ new C()

Thus, we have that

new C()∈A((new C()).m1())

And we can assign the following predicates:

∅ ⊢ (new C()).m1():C : 〈 〉

∅ ⊢ new C():C : 〈 〉

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 13

Approximation: Example

class C extends Object {

C m1() { this.m2() }

C m2() { this }

}

(new C()).m1()→ (new C()).m2()→ new C()

Thus, we have that

new C()∈A((new C()).m1())

And we can assign the following predicates:

〈m1 : 〈m2 : 〈 〉 :: ǫ→ 〈 〉〉 :: ǫ→ 〈 〉, m2 : 〈 〉 :: ǫ→ 〈 〉〉

∅ ⊢ (new C()).m1():C : 〈 〉

∅ ⊢ new C():C : 〈 〉

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 13

Approximation: Example

class C extends Object {

C m() { this.m() }

}

(new C()).m()→ (new C()).m()→ . . .

What are the approximants of (new C()).m()?

A((new C()).m()) = { Ω }

So, what predicates can we assign?

∅ ⊢ Ω:C :⊤

∅ ⊢ (new C()).m():C :⊤

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 14

Future Work

Extend definition of predicate languages to regain completeness
with approximation,

Predicate inference algorithm: an interesting decidable restriction
(cf. Rank-2 system for the λ-calculus and TRS),

Incorporating state into the calculus (heaps & pointers),

Other analyses (e.g. dead code, strictness, type and effect
systems). Other class-based OO features?

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 15

State of the Art

For the most part, previous work not type based
(control-flow/data-flow analysis).

Centred around optimisation issues:

class analysis (to eliminate virtual function calls);

class invariants (remove array bounds checks).

Pointer analysis (catch null pointer dereferences).

Termination analysis of Java Bytecode (but not of Java programs
themselves).

Semantic Predicate Types and Approximation for Class-based Object-Oriented Programming – p. 16

	Research Aims
	Intersection Types
		heLanguage : Predicate Featherweight Java
		heLanguage : Predicate Featherweight Java
	The Predicate System
	The Predicate System
	Properties of the System
	What are Approximants?
	The Approximation Result
	Proof: Key Aspects
	Approximation: Example
	Approximation: Example

	Approximation: Example
	Future Work
	State of the Art

