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Jay and Given-Wilson have recently introduced the Factorisation (or SF-) calculus as a minimal

fundamental model of intensional computation. It is a combinatory calculus containing a special

combinator, F, which is able to examine the internal structure of its first argument. The calculus is

significant in that as well as being combinatorially complete it also exhibits the property of structural

completeness, i.e. it is able to represent any function on terms definable using pattern matching on

arbitrary normal forms. In particular, it admits a term that can decide the structural equality of any

two arbitrary normal forms.

Since SF-calculus is combinatorially complete, it is clearly at least as powerful as the more

familiar and paradigmatic Turing-powerful computational models of λ -calculus and Combinatory

Logic. Its relationship to these models in the converse direction is less obvious, however. Jay and

Given-Wilson have suggested that SF-calculus is strictly more powerful than the aforementioned

models, but a detailed study of the connections between these models is yet to be undertaken.

This paper begins to bridge that gap by presenting a faithful encoding of the Factorisation Cal-

culus into the λ -calculus preserving both reduction and strong normalisation. The existence of such

an encoding is a new result. It also suggests that there is, in some sense, an equivalence between

the former model and the latter. We discuss to what extent our result constitutes an equivalence by

considering it in the context of some previously defined frameworks for comparing computational

power and expressiveness.

1 Introduction

Mathematical models of computation are useful in studying the formal properties of programming prac-

tice. Indeed, the field of computing today arose partly out of the study of such abstract models: namely

Turing Machines [33], the λ -calculus [8], and Combinatory Logic [10], which are consequently consid-

ered to be archetypal computational models. It is standard practice to qualify the abilities, or expressive-

ness, of a formal model of computation by demonstrating that it may simulate (and be simulated by) the

operation of other formal models. This is the very essence of the notion of Turing-completeness, which

encapsulates the intuition that a model may carry out any operation that is ‘effectively computable’. To

construct such a simulation one must first give an injective mapping, showing how the terms of the source

model may be represented by terms of the target. For example, this is the basis behind the process of

Gödelization and the Church encoding of natural numbers [22]. Two basic properties are then required:

that each atomic operational step of the source model is reflected by one or more steps of the target, and

that a program of the target model terminates whenever the corresponding source program does. The

former is a key ingredient of Landin’s influential work on comparing languages [25], while the latter is

used as a criterion for comparing expressiveness by, e.g., Felleisen [12]. Formal definitions of encodings

incorporating these properties, referred to as “faithful”, are already in use by the 90s, e.g. in [2], and are

now common (see e.g. [15]).
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Recently, Jay’s work on formal models of generic pattern matching [17] have led, in collaboration

with Given-Wilson, to the formulation of the Factorisation Calculus. This is a combinatory calculus

comprising two combinators: the S combinator, familiar from Combinatory Logic; and a new F combi-

nator. The purpose of the latter is to enable arbitrary (head) normal terms to be factorised, that is split

into their constituent parts, thereby allowing the examination of the internal structure of terms. This en-

dows Factorisation Calculus with an interesting and powerful property: that of structure completeness.

This means that any function on terms themselves definable by pattern matching over arbitrary normal

forms is representable. Thus, Factorisation Calculus can be viewed as a minimal, fundamental model

characterising not only the abstract notion of pattern matching but also intensional computation.

Jay and Given-Wilson show that Factorisation Calculus is Turing-complete, demonstrating a straight-

forward simulation of Combinatory Logic in their calculus. Moreover, due to its structural completeness,

there is a term of Factorisation Calculus which can decide the structural equality of any two arbitrary nor-

mal forms. Conversely, factorisation and structural equality of normal forms cannot be so represented in

λ -calculus and Combinatory Logic, thus these models are not structure complete. This hints at some sort

of disparity in the expressivity of the two models. In their original and subsequent research [18, 14, 19],

Jay and Given-Wilson speculate that the added expressive power may manifest itself in a non-existence

result for simulations of Factorisation Calculus in λ -calculus, but this is not pursued in detail.

We show that there does exist a simulation of Factorisation Calculus within λ -calculus. The existence

of such a simulation has not been demonstrated before, and this is the primary contribution of our paper.

The simulation is made possible by a construction due to Berarducci and Böhm, which shows how to

encode a certain class of term rewriting systems within λ -calculus. We show that Factorisation Calculus

can be simulated by such a term rewriting system, whence the result follows. In the classical framework,

our result signifies that Factorisation Calculus is no more powerful than λ -calculus. Thus there appears to

be a mismatch between our result and the structure completeness property that the standard simulation-

based notion of equivalence does not account for. To begin to try and resolve this, we consider some

research in the literature which refines the concept of computational equivalence and discuss how our

result relates to this.

Outline The rest of this paper is organised as follows. Section 2 recalls Jay and Given-Wilson’s Fac-

torisation Calculus and its basic properties. Section 3 describes Berarducci and Böhm’s construction

for encoding so-called canonical rewrite systems within the λ -calculus. In Section 4 we present our

technical contribution: a simulation of the Factorisation Calculus in the λ -calculus via this construction.

Section 5 then discusses, in light of our results, how the relative expressiveness of Factorisation Calculus

and λ -calculus may be characterised. Section 6 concludes and remarks on areas for future work.

2 Factorisation Calculus

We begin by presenting Jay and Given-Wilson’s Factoriation Calculus itself, and review its principal

properties. Factorisation Calculus, or more accurately SF-calculus1, is a combinatory calculus whose

terms are those of the free algebra over the two-element signature containing the combinators S and

F, which each reduce upon being applied to three arguments. The former is the familiar combinator

from Combinatory Logic [10] which applies its first and second arguments to duplicates of its third.

The F combinator, on the other hand, introduces new capabilities in the form of factorisation: it is

1We may say that any combinatory calculus that is structure complete is a factorisation calculus.
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able to examine the internal structure of its first argument and process its second and third in different

ways depending on whether that argument is atomic (i.e. itself a combinator) or compound (i.e. a partial

application). To illustrate this, consider how the F combinator reduces in the following two instances:

FSM N → M F(SX)M N → N SX

Observe that when the first argument is atomic, it eliminates its third argument and returns its second. On

the other hand, when the first argument is compound it eliminates its second argument and factorises the

first into its left- and right-hand constituent components, passing these separately to its third argument.

Formally, SF-calculus is defined as follows.

Definition 2.1 (SF-calculus [18, § 4]). The SF-calculus is a combinatory rewrite system over terms

(ranged over by uppercase roman letters M, N, etc.) given by the following grammar:

M, N ::= S | F | M N

Terms of the form S, F, SM, FM, SM N, or FM N (i.e. partially applied combinators) are called fac-

torable forms. Reduction of terms is the smallest contextually closed binary relation →SF on terms (with

the reflexive transitive closure denoted by →∗
SF

) satisfying:

SM N X →SF M X (N X)

FOM N →SF M if O is S or F

F(PQ)M N →SF N PQ if PQ is a factorable form

Reduction of SF-calculus is confluent, and the K combinator of Combinatory Logic can be repre-

sented in SF-calculus by FF (also, indeed, by FS). Thus, there is a trivial encoding of Combinatory

Logic in SF-calculus which preserves reduction and strong normalisation [14].

The behaviour of the F combinator gives SF-calculus an intensional quality: one may define higher

order functions in SF-calculus which discriminate between functions whose implementations are dif-

ferent even when those functions are extensionally equal (i.e. produce identical outputs for identical

inputs). For example, for any normal form X , the term IX ≡ S(FF)X implements the identity function

(i.e. IX M →∗
SF

M for all M) and thus all such terms are extensionally equal. However, an SF-term T can

be constructed which distinguishes them (by behaving as T IX →∗
SF

X ). Moreover, one can construct an

SF-term that can decide the equality of any two arbitrary normal forms.

The intensional behaviour of SF-calculus is formally characterised by a property called structure

completeness, which captures the notion that every symbolic computation (i.e. Turing-computable sym-

bolic function) on normal forms is represented by some term.

Definition 2.2 (Structure Completeness [18, § 7-8]). Let C be a confluent combinatory calculus whose

terms include variables, with reduction relation →∗
C

. Define patterns to be the linear normal forms

(i.e. containing no more than one occurrence of each variable), and matchable forms to be partially

applied combinators.

1. A match {U/P} of a pattern P against a term U may be defined to succeed with a substitution of

terms for variables, or fail as follows (where Id denotes the identity function and ⊎ the disjoint

union of substitutions with match failure as an absorbing element):

{U/x} = [U/x] {A/A}= Id

{U V/PQ}= {U/P}⊎{V/Q}

{U/P}= fail

(if A atomic)

(if U V a compound)

(otherwise, if U matchable)
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2. A case is an equation of the form P = M where P is a pattern and M an arbitrary term, which

defines a symbolic function G on terms by G (U) = σ (M) if {U/P} succeeds with substitution σ ,

and G (U) =U if it fails.

3. A confluent combinatory calculus is structure complete if for every pattern P and term M, there is

some term G such that GU →∗
C

G (U) for every term U on which G is defined; i.e. the symbolic

function defined by every case is represented by some term.

Structure completeness subsumes combinatorial completeness since λx.M is given by the case x = M.

Theorem 2.3 ([18, Cor. 8.4]). SF-calculus is structure complete.

The F combinator itself represents a symbolic computation F , namely that of factorisation:

F (A, M, N) = M if A is atomic

F (PQ, M, N) = N PQ if PQ is compound

A significant (and arguably remarkable) fact is that F cannot be represented in Combinatory Logic (for

definitions of atomic and compound appropriate thereto).

Theorem 2.4 ([18, Thm. 3.2]). Factorisation of SK-combinators is a symbolic computation that is not

representable in Combinatory Logic.

The equality predicate on normal forms also has no representation in Combinatory Logic. Thus,

there exist (symbolic) functions, which are clearly ‘computable’ from an empirical point of view, that

are not (directly) representable in Combinatory Logic (there is also a similar result for λ -calculus [4]).

This result clearly points towards some form of added expressivity possessed by SF-calculus over the

archetypal computational models. It is to this issue that we will return in Section 5.

3 Strongly Normalising Solutions of Equational Systems in λ -calculus

We now reiterate the interpretation result of Berarducci and Böhm [5], upon which our technical contri-

bution rests. Essentially, this result says that systems of equations for a particular class of term algebras

can be given solutions in the λ -calculus such that the representation of each atomic term of the algebra

is strongly normalising thus having a normal form. Moreover, when the set of equations is interpreted as

a rewrite system the encoding of terms preserves reduction and strong normalisation.

We assume the usual definitions of the λ -calculus without further explanation (readers may refer to

[4] for details), with Λ denoting the set of lambda terms, →∗
β denoting the (multi-step) β -reduction rela-

tion, and =β denoting β -equality (i.e. the equivalence relation on lambda terms induced by β -reduction).

Furthermore, we also assume the familiar algebraic notion of the set Ter(Σ) of (Σ-)terms over the signa-

ture (set of function symbols, each with an associated arity) Σ. We can then also consider the set Λ(Σ)
of extended lambda terms (i.e. lambda terms which may contain Σ-terms); notice that both Ter(Σ) and Λ

are (strict) subsets of Λ(Σ).

Definition 3.1 (Canonical Systems of Equations). Fix a signature Σ and let E be a set of equations

between terms t ∈ Ter(Σ). We say that E is canonical if Σ can be partitioned into two disjoint subsets Σ0

and Σ1 (i.e. Σ = Σ0 ∪Σ1) such that: each equation in E is of the form f (c(x1, . . . ,xm),y1, . . . ,yn) = t with

c ∈ Σ0 and f ∈ Σ1 and where the variables x1, . . . ,xm,y1, . . . ,yn are all distinct and form a superset of the

variables in the term t; and for each distinct pair (c, f ) ∈ Σ0 ×Σ1 there is at most one equation in E of

this form. We say that E is complete if for each distinct pair (c, f ) ∈ Σ0 ×Σ1 there is exactly one such

equation in E .



Reuben N. S. Rowe 5

Canonical systems of equations, then, partition the signature into a set Σ0 of (algebraic datatype)

constructors, and Σ1 of programs defined by pattern matching over the constructors on the first argument.

Notice that any incomplete canonical system of equations can trivially be made complete by adding

equations for the missing cases which simply project one of the function’s arguments2 .

As an example of a canonical system of equations, we may observe that the usual recursive definition

of addition over the datatype of (Peano) natural numbers is such a system:

add(zero,x) = x add(succ (x),y) = succ(add(x,y))

We have a signature containing one function symbol add, one nullary constructor zero, and one unary

constructor succ; moreover in this simple case, the equation system is already complete. In fact, every

partial recursive function (on natural numbers) can be defined by a canonical system of equations [5, 6].

Given an equational system E over a signature Σ, we can also take it to define a term rewriting system

on Ter(Σ) by reading each equation as a rewrite rule, i.e. fi(c j(x1, . . . ,xm),y1, . . . ,yn)→ t. We will write

→E for the (one-step) reduction relation of the rewrite system defined by E in this way (i.e. the smallest

binary relation on terms satisfying the rewrite rules and closed under substitution and contexts), and →∗
E

for its reflexive, transitive closure (i.e. multi-step reduction). Ultimately, the aim is to interpret equational

systems (and their associated rewrite systems) within λ -calculus.

Definition 3.2 (Interpretations). A representation of the signature Σ is a function φ : Σ → Λ from the

function symbols of Σ to (closed) lambda terms, and induces a map (·)φ : Λ(Σ)→ Λ in the obvious way,

namely by xφ = x, (λx.M)φ = λx.Mφ , (MN)φ = Mφ Nφ , and for f ∈ Σ, f (t1, . . . , tn)
φ = φ( f ) t1

φ . . . tn
φ .

We say that a representation φ satisfies (or solves) E if for each equation t1 = t2 (and corresponding

rewrite rule t1 → t2) in E we have t1
φ =β t2

φ (and correspondingly also t1
φ →∗

β t2
φ ). When a represen-

tation φ satisfies E , we say that φ is an interpretation (or a solution) of E within λ -calculus.

The following construction gives a special kind of representation for canonical systems of equations.

Definition 3.3 (Canonical Representations). Let E be a canonical system of equations that partitions

the signature Σ into constructors Σ0 = {c1, . . . ,cr} and programs Σ1 = { f1, . . . , fk}. Without loss of

generality we may assume that E is complete, and so for each 1 ≤ i ≤ k and 1 ≤ j ≤ r let b(i, j) denote

the term t such that fi(c j(x1, . . . ,xm),y1, . . . ,yn) = t ∈ E .

We will make use of the following notational abbreviations:

- Let 〈t1, . . . , tn〉 denote the Church n-tuple, i.e. λx.xt1 . . . tn.

- Let Πn
k (where 1 ≤ k ≤ n) be the n-ary kth projection function, i.e. λx1 . . .xn.xk.

- For k ≥ i > 1, let ti, . . . , tk, . . . , ti−1 denote the cyclic permutation of t1, t2, . . . , tk beginning with ti;

(in an abuse of notation we may also take ti, . . . , tk, . . . , ti−1 = t1, t2, . . . , tk when i = 1).

We now define two disjoint representations ϑ and ζ for constructors and programs respectively.

(Representation of Constructors) For each 1 ≤ i ≤ r, we define the representation of the constructor

ci as follows (where n is the arity of ci):

ϑ(ci) = λx1 . . .xn f . f Πr
i x1 . . .xn f

(Representation of Programs) We choose k distinct fresh variables v1, . . . ,vk not occurring in E and

fix a ‘pre-representation’, ψ , of Σ1 defined by ψ( fi) = 〈vi, . . . ,vk, . . . ,vi−1〉 for each 1 ≤ i ≤ k.

2Alternatively, one might want to introduce a new nullary constructor (denoting an ‘error’ value) and add equations for the

missing cases that simply return this value.
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Using this representation, and the representation of constructors defined above, we then define

k× r lambda terms t(i, j) (1 ≤ i ≤ k, 1 ≤ j ≤ r), using the equations in E as follows:

t(i, j) = λx1 . . .xmvi . . .vk . . .vi−1y1 . . .yn.(b(i, j)
ψ)ϑ

where fi(c j(x1, . . . ,xm),y1, . . . ,yn) = b(i, j) ∈ E is the equation defining the behaviour of fi when

given a datum constructed using c j as its first argument. We now define k terms, each one a

Church r-tuple collating the bodies of all the cases for one of the programs in Σ1, as follows:

ti = 〈t(i,1), . . . , t(i,r)〉

(where 1 ≤ i ≤ k). Each program is then represented by a Church k-tuple containing the collated

representations of each program defintion, beginning with its own. That is, ζ is defined by:

ζ ( fi) = 〈ti, . . . , tk, . . . , ti−1〉 (1 ≤ i ≤ k)

The representation φ = ϑ ∪ζ is called a canonical representation of Σ with respect to E .

To gain some insight into the construction defined above, one can observe that it is related to an en-

coding of data attributed to Scott3 (and thus commonly referred to in the literature as the Scott encoding),

which has subsequently been developed by others (e.g. [30, 27, 16, 31]). In the more familiar ‘standard’

encoding of functions, a fixed-point combinator is used to solve any recursion in the definition. This has

the effect of making recursion explicit, and thus the representations of recursive functions have infinite

expansions consisting of a ‘list’ of distinct instances of the function body, one for each recursive call

that may be made. Applying the function to a datum then corresponds to a fold of the datum over this

list, which discards the remaining infinity of recursive calls once the base case is reached. Therefore, as

described by Böhm et al. [6, §3], in this scheme functions are ‘diverging objects which, when applied to

data, may “incidentally” converge’. In encodings of the Scott variety, the recursive nature of functions is

kept implicit and, while still triggered by application to a datum, only reproduced ‘on demand’. Hence

we obtain finite objects which now ‘may “incidentally” diverge’ when applied to data4.

To explicate the particular encoding specified by Definition 3.3, we point out that the representation

of a constructor is a (lambda) function that takes in the appropriate number of arguments (the sub-data

of the datum that is subsequently constructed) and then waits to be given a function, which will be the

program to be executed. Now, looking at how the constructor representation uses this function argument,

we see that programs should expect to be given a projection function, followed by a number of sub-

data, and then they are also passed a copy of themselves. It is this final element which is the key to

Scott-type encodings, and allows recursion to be kept implicit. Looking now at the representation of

programs we see that they are Church k-tuples containing an element for each program defined by E

(each of which is a Church r-tuple, where each element is a representation of one of the cases of that

program’s definition). Thus the representation of each program contains the definition of every program

defined by E ; in particular it will contain the definition of each program which it may itself invoke. To

illustrate in more detail how the encoding works, we can consider the general reduction sequence of a

term representing the application of some program progi to some arguments, the first of which is a datum

constructed as c j (d1, . . . ,dm):

(progi (c j (d1, . . . ,dm))arg1 . . . argm)
φ = 〈ti, . . . , ti−1〉(c j (d1, . . . ,dm))

φ
arg

φ
1 . . . argφ

m

3The citation can be found in Curry, Hindley and Seldin [11, p. 504].
4This reversed form of the slogan is also due to Böhm et al., and illustrates the dual nature of the Scott and Church encodings.
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→∗
β (λx.xti . . . ti−1)(λ f . f Πr

jd1 . . .dm f )arg
φ
1 . . . argφ

m (1)

→β (λ f . f Πr
jd1 . . .dm f ) ti . . . ti−1 arg

φ
1 . . . argφ

m (2)

→β ti Πr
jd1 . . .dm ti ti+1 . . . ti−1 arg

φ
1 . . . argφ

m (3)

= 〈ti,1, . . . , ti,r〉Πr
jd1 . . .dm ti ti+1 . . . ti−1 arg

φ
1 . . . argφ

m (4)

= (λx.xti,1 . . . ti,r)Πr
jd1 . . .dm ti ti+1 . . . ti−1 arg

φ
1 . . . argφ

m (5)

→β Πr
j ti,1 . . . ti,r d1 . . .dm ti ti+1 . . . ti−1 arg

φ
1 . . . argφ

m (6)

→β ti, j d1 . . .dm ti ti+1 . . . ti−1 arg
φ
1 . . . argφ

m (7)

= (λx1 . . .xmvi . . .vk . . .vi−1y1 . . .yn.(b(i, j)
ψ)ϑ )d1 . . .dm ti ti+1 . . . ti−1 arg

φ
1 . . . argφ

m

→∗
β (b(i, j) [d1/x1, . . . ,dm/xm,arg1/y1, . . . ,argn/yn])

φ
(8)

When the program is applied to a datum (Eq. (1)), its representation arranges to apply the datum first to

the representations of each program beginning with its own, and then to the remainder of the arguments

(Eq. (2)). Then, the particular structure of the datum will reduce the expression to pick out the appropriate

case of the program definition to be executed, and apply it to the sub-data and the representations of

each program, having duplicated the program being executed (Eqs. (3) to (7)). This then reduces to the

representation of the appropriate substitution instance of the function body (Eq. (8)).

The result of Berarducci and Böhm says that a canonical representation gives an interpretation that

also preserves strong normalisation.

Theorem 3.4 (Interpretation Theorem [5, Thm 3.4]). Let Σ be a signature and E a canonical set of

equations for Σ; then any canonical representation φ for Σ with respect to E is an interpretation of E

within λ -calculus. In addition (·)φ preserves strong normalisation of closed terms.

4 Encoding the Factorisation Calculus

In this section, we present our novel technical contribution: an encoding of SF-calculus in λ -calculus.

We believe that this is the first such encoding presented in the literature. Our encoding is a faithful

simulation; it preserves both the reduction behaviour of terms (thus also β -equality) and their termination

behaviour (i.e. strong normalisation). In this section we shall make use of standard notation and results

for term rewriting systems, details of which may be found in [24].

The key step to the encoding is to define a rewrite system behaviourally equivalent to SF-calculus that

is also canonical, in the sense of Definition 3.1. It is then simply a matter of applying the construction

of Berarducci and Böhm to obtain the encoding. Thus it is our translation of SF-calculus into this

intermediate rewrite system that is the primary novelty of our contribution.

We are aiming to derive a set of rewrite rules that is canonical and so we must translate the schematic

definition of Jay and Given-Wilson, as presented in Section 2, into one consisting of algebraic rewrite

rules. There are two salient features of Definition 3.1 that we must take into account: that the rewrite

rules must make a distinction between programs and constructors; and that the left-hand side of each

rewrite rule must contain exactly one program symbol and one constructor. To obtain rewrite rules of

the required form, we recast SF-calculus as a curryfied, applicative term rewriting system. That is, we

first introduce an explicit program symbol app to denote application and use the symbols S and F solely

as constructors. Secondly we stratify the combinators C ∈ {S,F} into sets {C0,C1,C2} of constructors,

each of which represent successive partial applications of their underlying combinator C. Although this
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‘currying’ process is well-known from the world of functional programming, the reader may refer to

[20, 3] for a formal definition of this process in the context of general term rewriting.

We may take the rewrite rules for the S combinator directly from the standard curryfied applicative

formulation of Combinatory Logic (see e.g. [3]):

app(S0, x)→ S1 (x) app(S1 (x), y)→ S2 (x, y) app(S2 (x, y), z)→ app(app(x, z), app(y, z))

The rules for producing the partial applications of the F combinator are similarly straightforward:

app(F0, x)→ F1 (x) app(F1 (x), y)→ F2 (x, y)

The rewrite rule for the full application of the F combinator is more tricky because we must find a way of

implementing its two possible reductions. As in the original formulation of SF-calculus, since the choice

of which reduction to make is determined by the structure of the first argument we should like to be able

to use the pattern-matching capabilities inherent in the term rewriting discipline, e.g. by giving rewrite

rules such as:

app(F2 (S0, y), z)→ y app(F2 (F1 (x), y), z)→ app(app(z, F0), x)

However these rules are not canonical since they contain two occurrences of a constructor: they are

pattern-matching ‘too deeply’. We can circumvent this by introducing an auxiliary program symbol

f-reduce and then having the rewrite rule for the F2 case of app delegate to this new program:

app(F2 (x, y), z)→ f-reduce (x, y, z)

Since f-reduce is an independent program symbol, and only needs to pattern match on its first argument

to determine which result to compute, we may give canonical rewrite rules for it, such as the following:

f-reduce (S0, y, z)→ y f-reduce (F1 (x), y, z)→ app(app(z, F0), x)

We now have all the components to be able to present a canonical rewrite system that faithfully

implements SF-calculus.

Definition 4.1 (Currified Applicative SF-Calculus). Let ΣSF = Σ0 ∪Σ1 be the signature comprising the

set Σ0 = {S0,S1,S2,F0,F1,F2} of constructors and the set Σ1 = {app, f-reduce} of programs. Curryfied

Applicative SF-calculus is the term rewriting system SF
C
@ defined by the rewrite rules given in Figure 1

over the signature ΣSF. We denote its one-step and many-step reduction relations by →
SF

C
@

and →∗
SF

C
@

.

Notice that the rewrite rules of SFC
@ are canonical, in the sense of Definition 3.1, and that they are also

complete. We also remark that SFC
@ is an orthogonal term rewriting system [24, Def. 2.1.1].

It is interesting to observe that our implementation of SF-calculus as a canonical applicative term

rewriting system has involved an application of the Visitor design pattern5 [13]. When it comes to

reducing a complete application of the F combinator, the computation must proceed based on the par-

ticular identity of some object (i.e. the first argument), but without having any knowledge of that iden-

tity. The solution is to apply the visitor pattern, which involves invoking a new ‘visit’ operation (that

we call f-reduce) on the object, which in response executes the appropriate behaviour based on its self -

knowledge of its own identity. We do not think it is entirely coincidental that the visitor pattern has arisen

in our work: its connection with structural matching has already been noted [28], and investigating this

connection further is an avenue for future research.

There is a straightforward translation from SF-calculus to SFC
@.

5In fact, the encoding that we are presenting in this paper arose as a direct result of considering how the Factorisation

Calculus could be implemented in (Featherweight) Java.
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app(S0, x)→ S1 (x) app(F0, x)→ F1 (x)

app(S1 (x), y)→ S2 (x, y) app(F1 (x), y)→ F2 (x, y)

app(S2 (x, y), z)→ app(app(x, z), app(y, z)) app(F2 (x, y), z)→ f-reduce (x, y, z)

f-reduce (S0, y, z)→ y f-reduce (S1 (x), y, z)→ app(app(z, S0), x)

f-reduce (F0, y, z)→ y f-reduce (F1 (x), y, z)→ app(app(z, F0), x)

f-reduce (S2 (p, q), y, z)→ app(app(z, app(S0, p)), q)

f-reduce (F2 (p, q), y, z)→ app(app(z, app(F0, p)), q)

Figure 1: A Complete Set of Canonical Rewrite Rules for Currified Applicative SF-calculus

Definition 4.2 (Translation of SF-calculus to SFC
@). The translation [[·]]@ from SF-terms to SF

C
@-terms

is defined by [[S]]@ = S0, [[F]]@ = F0, and [[MN]]@ = app([[M]]@, [[N]]@).

We now show that SFC
@ faithfully implements SF-calculus.

Lemma 4.3 ([[·]]@ Preserves Reduction). Let M and N be SF-terms; if M →∗
SF

N then [[M]]@ →∗
SF

C
@

[[N]]@.

Proof. It is sufficient to consider the basic reduction rules of SF-calculus. In the interests of clarity, we

underline the redex that is contracted at each step. The case for S is straightforward:

[[SM N X ]]@ = app(app(app(S0, [[M]]@), [[N]]@), [[X ]]@)→
SF

C
@
app(app(S1 ([[M]]@), [[N]]@), [[X ]]@)

→
SF

C
@
app(S2 ([[M]]@, [[N]]@), [[X ]]@)→

SF
C
@
app(app([[M]]@, [[X ]]@), app([[N]]@, [[X ]]@))

= [[M X (N X)]]@

The case for F with S the first argument (i.e. atomic) is as follows (the other atomic case is symmetric):

[[FSM N]]@ = app(app(app(F0, S0), [[M]]@), [[N]]@)→
SF

C
@
app(app(F1 (S0), [[M]]@), [[N]]@)

→
SF

C
@
app(F2 (S0, [[M]]@), [[N]]@)→

SF
C
@
f-reduce (S0, [[M]]@, [[N]]@)→

SF
C
@
[[M]]@

When the first argument to F is a factorable form, we must further consider its structure. The case for

when the first argument is SX (for some term X ) is as follows:

[[F(SX)M N]]@ = app(app(app(F0, app(S0, [[X ]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(app(F0, S1 ([[X ]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(F1 (S1 ([[X ]]@)), [[M]]@), [[N]]@)→

SF
C
@
app(F2 (S1 ([[X ]]@), [[M]]@), [[N]]@)

→
SF

C
@
f-reduce (S1 ([[X ]]@), [[M]]@, [[N]]@)→

SF
C
@
app(app([[N]]@, S0), [[X ]]@) = [[N SX ]]@

Again, the case for when the first argument is FX (for some term X ) is symmetric and can be obtained

from the above sequence by replacing each occurrence of S0 by F0 and each occurrence of S1 by F1.

The case for when the first argument is SX Y (for some terms X and Y ) is as follows:

[[F(SX Y )M N]]@ = app(app(app(F0, app(app(S0, [[X ]]@), [[Y ]]@)), [[M]]@), [[N]]@)
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→
SF

C
@
app(app(app(F0, app(S1 ([[X ]]@), [[Y ]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(app(F0, S2 ([[X ]]@, [[Y ]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(app(F1 (S2 ([[X ]]@, [[Y ]]@)), [[M]]@), [[N]]@)

→
SF

C
@
app(F2 (S2 ([[X ]]@, [[Y ]]@), [[M]]@), [[N]]@)

→
SF

C
@
f-reduce (S2 ([[X ]]@, [[Y ]]@), [[M]]@, [[N]]@)

→
SF

C
@
app(app([[N]]@, app(S0, [[X ]]@)), [[Y ]]@) = [[N (SX)Y ]]@

Once more, the case for when the first argument is FX Y (for some terms X and Y ) is symmetric and can

be obtained from the above sequence by replacing each occurrence of S0 by F0, each occurrence of S1
by F1, and each occurrence of S2 by F2.

To show that [[·]]@ preserves strong normalisation, we will rely on the notion of a perpetual reduction

sequence. We recall the relevant definitions of perpetual reductions and their properties [21]. A term

t is called an ∞-term (also denoted ∞(t)) if it has an infinite reduction sequence. A reduction step

t → s is called perpetual if ∞(t) implies ∞(s), that is it preserves divergence, and a reduction sequence

t1 → . . . → tn is perpetual if every step ti → ti+1 is perpetual. Clearly, a perpetual reduction sequence

t →∗ t ′ also preserves divergence. A redex u is called perpetual if its contraction in every context yields a

perpetual reduction step. Let u → t be a substitution instance of a rewrite rule r (so u is a redex and t its

r-contraction), then call the subterms of u that are those substituted for the variables in r the arguments

of u. Such an argument is said to be erased if it corresponds to a variable that does not occur in the right-

hand side of r. It is the case that for orthogonal rewrite systems every redex whose erased arguments are

strongly normalising and closed (i.e. containing no variables) is perpetual [21, Cor. 5.1].

We first prove a couple of auxiliary lemmas.

Lemma 4.4. Let N be an SF-normal form, then [[N]]@ is strongly normalising.

Proof. We characterise the normal forms as terms taking one of the following forms: S, F, SX , FX ,

SX Y or FX Y , in which each subterm is also a normal form. We then proceed by induction on the size of

terms. The base cases, i.e. when N is either S of F are trivial since then [[N]]@ is itself a normal form. For

the inductive cases, notice that the terms S1 ([[X ]]@), F1 ([[X ]]@), S2 ([[X ]]@, [[Y ]]@) and F2 ([[X ]]@, [[Y ]]@)
are strongly normalising since they are head normal and by induction [[X ]]@ and [[Y ]]@ are strongly

normalising as X and Y are by definition normal forms (smaller than N). It is then straightforward to

show in each case that the (unique) reduction from [[N]]@ to its corresponding head normal form given

above is perpetual since it does not erase any arguments, and SFC
@ is an orthogonal rewrite system. The

result then follows.

Lemma 4.5. Let X, M and N be SF-normal forms, and O an operator (i.e. either S or F) such that

OX M N →SF R; then C [[[OX M N]]@] →∗
SF

C
@

C [[[R]]@] is a perpetual reduction sequence for any SF
C
@-

term context C .

Proof. We show that there is a reduction sequence [[OX M N]]@ →∗
SF

C
@

[[R]]@ which contracts a perpetual

redex at each step, from which the result immediately follows. In fact, the reduction sequences that

witness this are exactly those that are used to show preservation of reduction. In each case notice that,

in the reduction sequence demonstrated in the proof of Lemma 4.3, the only erased argument (when it

exists) is in the final reduction step and in each case this argument is either [[M]]@ or [[N]]@ which by

Lemma 4.4 is strongly normalising since M and N are normal forms (and also closed since we do not
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consider SF-terms with variables). Thus, since SFC
@ is an orthogonal rewrite system, it follows that the

redex contracted at each step is perpetual.

We can now prove the following result.

Lemma 4.6 ([[·]]@ Preserves Strong Normalisation). Let M be a strongly normalising SF-term; then

[[M]]@ is strongly normalising.

Proof. We use the same technique as used in the proof of [5, Thm. 3.4(2)], and proceed by (strong)

induction on the length n of the longest reduction sequence from M to its normal form. When n = 0, then

we have that M is a (SF-)normal form and thus [[M]]@ is strongly normalising w.r.t →∗
SF

C
@

by Lemma 4.4.

When n > 0 then M must contain at least one redex OX Y Z. Consider an innermost redex, whose

contractum is the term R. Thus M = C [OX Y Z]→SF C [R] = N (for some (SF-)term context C ) and X ,

Y and Z are normal forms (since the redex is innermost). Now, since M is strongly normalising so too is

N, and the length of its longest reduction sequence must be strictly less than n (otherwise n would not be

maximum). Thus by the inductive hypothesis [[N]]@ is strongly normalising. Consider now the structure

of [[M]]@: we have [[M]]@ = C ′[[[OX Y Z]]@] for some (SFC
@-)term context C ′. Since X , Y and Z are

normal forms, by Lemma 4.5 there is a perpetual reduction sequence from [[M]]@ = C ′[[[OX Y Z]]@] to

[[N]]@ = C ′[[[R]]@], i.e. one which preserves divergence. Therefore, since [[N]]@ is strongly normalising

so too is [[M]]@ (if it were not, neither would [[N]]@ be).

Using Berarducci and Böhm’s construction, outlined in Section 3, we obtain an encoding of SF-

calculus in the λ -calculus.

Definition 4.7 (Translation of SF-calculus to λ -calculus). Fix a canonical representation φSF of ΣSF

w.r.t. the rewrite rules of SFC
@. The mapping [[·]]λ = (·)φSF ◦ [[·]]@ translates SF-calculus to λ -calculus.

We leave it as an exercise to the reader to compute such a canonical representation φSF.

We now present our main result: that [[·]]λ is a faithful encoding of SF-calculus in λ -calculus.

Theorem 4.8 (Faithful Encoding of SF-calculus in λ -calculus). The translation [[·]]λ of SF-calculus into

λ -calculus preserves reduction and strong normalisation.

Proof. The result follows directly from the fact that the two translations that are composed to obtain

[[·]]λ , namely [[·]]@ and (·)φSF , each satisfy both these properties. In the case of the former, we refer to

Lemmas 4.3 and 4.6; for the latter to the results of Berarducci and Böhm, cf. Theorem 3.4 (note that all

terms are closed, since we do not consider SF-calculus with variables).

5 Expressiveness of Factorisation: Discussion & Related Work

We now turn out attention to the question of the expressiveness of SF-calculus relative to λ -calculus and

Combinatory Logic. On one hand our results, i.e. Theorem 4.8, along with those of Jay and Given-Wilson

[18], show that SF-calculus and λ -calculus simulate the same executions. On the other, SF-calculus is

structure complete whereas λ -calculus is not. Is this a contradiction and, if so, how may it be resolved?

Notwithstanding the long tradition of using simulations to characterise computational equivalence, it

has since been realised that a refinement of this notion is necessary to draw richer, more meaningful

comparisons. While a complete and in-depth analysis is not within the scope of the current paper, by

discussing our results with reference to some of this work we aim to draw some concrete conclusions

about the how the expressiveness of structure completeness and SF-calculus may be characterised.
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The ‘Standard’ Notion of Equivalence. From the earliest research into computability, two aspects

of abstract notions of computation were identified as relevant to the idea of expressiveness. Firstly, one

wants to compare the respective set of functions that each model computes. For example, in recursion

theory it was shown that the set of primitive recursive functions (on natural numbers) is a strict subset

of the recursive functions (see e.g. [32]). At the same time, there is a requirement to compare models

that operate, at a fundamental level, in diverse domains. Turing Machines, λ -calculus and Combinatory

Logic are, operationally, quite different ways to compute. It was shown however that via particular

(and now canonical) representations of numbers, each model can ‘compute’ the same set of functions

on natural numbers, namely the partial recursive functions. Conversely, Gödelization allows each of the

computations in these models to be simulated by a partial recursive function [22].

This idea of simulation extends to the operation of the models themselves: each model may simulate

the operational behaviour of the others. Such simulations also appear to abstract away the problem of

representation: often we do want to compute functions of natural numbers, however more often we

desire to compute functions over different domains; it is incumbent upon us to represent elements of the

desired domain of discourse as terms of the computational model. The initial characterisation of the set

of ‘computable’ functions was over the domain of natural numbers6, but what is the set of ‘computable’

functions over some other given domain? With simulations between models it seems that one may at

least lay this question aside by observing that whatever can be represented in one model may then also

be represented in the other, and therefore whatever functions they do compute it is the same in both

cases. A stronger conclusion would be that the set of computable functions over arbitrary domains is

isomorphic to the computable functions on natural numbers.

This simulation method has long since become the standard: to show two models are of equivalent

computational power, demonstrate simulations of each in the other. One model of computation is only

more powerful than another, then, if it is not possible to simulate the former in the latter. The approach

has been cemented over the years, notably in Landin’s now seminal work [25]. As the search space of

formal computation has been explored the notion of simulation has been adapted accordingly, and there

are now a number of sophisticated simulations between all sorts of models, both sequential and concur-

rent (e.g. [1, 29]). In this tradition, Theorem 4.8 is a result showing that λ -calculus is computationally

as powerful as SF-calculus.

Refining the Notion of Expressiveness. It was already noted over two decades ago that despite the

broad applicability and application of the simulation method, it is not actually a fine-grained enough

notion to provide a complete and universal characterisation of expressiveness. Felleisen observed that

since the languages we wish to compare are (usually) Turing-complete, other methods (than simulation)

must be found in order to verify claims of relative (in-)expressiveness [12]. He proposed a framework

based on the concept, from logic, of eliminability of symbols from conservative extensions [23]. One

logical system L is a conservative extension of another system L ′ if the expressions (formulae) and

theorems of the latter are subsets of those of the former. A symbol of L (which is not in L ′) is eliminable

if there is a homomorphism (i.e. a map preserving the syntactic structure) ϕ : Exp(L )→ Exp(L ′) from

the expressions of L to the expressions of L ′, which acts as identity for expressions of L ′, such that

an expression t is a theorem of L if and only if ϕ(t) is a theorem of L ′. Felleisen extends this to

programming languages by analogy - formulae are (syntactically valid) programs and the theorems are

the terminating programs. Then we may say that language L is more expressive than language L ′ when

6Turing’s work is different in this respect, since he deliberately embarked on a characterisation of computable functions

over a different domain, namely that of strings of arbitrary symbols.
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the former adds some non-eliminable syntactic construct, i.e. one which cannot be ‘translated away’.

Thus the standard simulation approach is refined by imposing an extra criterion when one language is a

superset of another: can the larger one be built from the smaller one using macros?

To place SF-calculus in this framework we can consider SKF-calculus, i.e. the extension of SF-

calculus by including an additional atomic term: the familiar K combinator. Since SKF-calculus is a

proper extension of Combinatory Logic, obtained by adding the F combinator, we can apply the expres-

siveness test of Felleisen. That is, we ask is F eliminable? The answer to this question is no; indeed

this is guaranteed by Theorem 2.4. In this sense, Jay and Given-Wilson’s results do justify the claim that

SF-calculus is more expressive than Combinatory Logic and λ -calculus.

More Abstract Notions of Computational Equivalence. The simulation method, and its refinement

described above, are still firmly grounded in an operational view of computation, but recent work has

sought to anchor formal comparisons of expressiveness in a more general, abstract basis. A notable

contribution to this effort is the work of Boker and Dershowitz [7]. They abstract the notion of compu-

tational model as simply its extension, i.e. the set of functions over its inherent domain that it computes,

and consider simulations (encodings) between them. They derive the remarkable result that combining

the standard simulation approach with the natural containment of one extensionality within another leads

to a paradox: some computational models can simulate models which are strictly more powerful in the

sense that they have larger extensionalities (i.e. compute more functions). Thus, some representations

add more computational power.

This result begs the question: do we consider simulations via such ‘active’ mappings to constitute an

equivalence? One may suspect that the problem lies in allowing injective mappings between domains,

and that imposing stricter conditions (e.g. bijections) would ensure ‘passiveness’. This is indeed the

case, but adopting such restrictions is useless for most comparisons since the passive encodings are

ones which are “almost identity”. We have no choice but to allow such encodings, although we do

have the option of considering a hierarchy of equivalences based on the properties of the encodings used.

Boker and Dershowitz define four increasingly stricter notions of (in-)equivalence based on, respectively:

injective encodings (power equivalence), corresponding to the standard approach; injective encodings

for which the images are computable in the simulating models (decent power equivalence); bijective

encodings (bijective power equivalence); and bijections that are inverses of each other (isomorphism).

Boker and Dershowitz also show that there are models (including Turing Machines and the recursive

numeric functions) which cannot simulate any stronger models; they are interpretation complete.

We may also gain insight into the relative expressiveness of SF-calculus and λ -calculus using this

framework. Our result shows that they are power equivalent. Theorem 2.4 shows that they cannot be

bijectively power equivalent (nor, therefore, isomorphic) since that would imply that λ -calculus could

distinguish arbitrary normal forms. Thus, in this sense they are not equivalent. We do not know if SF-

calculus is bijectively stronger than λ -calculus; this would require demonstrating a bijective encoding of

the latter in the former. Also, we do not know if λ -calculus is decently power equivalent to SF-calculus;

we consider it at least a possibility. We would also expect that, due to its intensional capabilities, SF-

calculus is interpretation complete.

Related to the work of Boker and Dershowitz, is that of Cockett and Hofstra [9], and Longley [26]

which are both concerned with category-theoretic descriptions of abstract computational models. In these

frameworks model equivalence is interpreted by categorical isomorphism, and so akin to the strongest

notion of equivalence considered by Boker and Dershowitz.
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6 Conclusions & Future Work

In this paper, we have considered the relationship of the recently introduced SF-calculus to the ‘canoni-

cal’ computational model of λ -calculus and, so by extension, Combinatory Logic. We have demonstrated

that SF-calculus can be faithfully encoded (i.e. simulated) in the λ -calculus by defining a behaviourally

equivalent applicative term rewriting system and then interpreting this system in λ -calculus using a con-

struction of Berarducci and Böhm. This result shows that SF-calculus and λ -calculus are of equivalent

computational power, according to the classical interpretation of computational equivalence. We have

also considered the relationship of SF-calculus to the λ -calculus using a more nuanced interpretation of

equivalence, informed by research in the literature. Moreover, we hope to have exposed both SF-calculus

and Berarducci and Böhm’s encoding to greater prominence. We feel that they are both subjects of great

interest which deserve to be better known.

With respect to future work, there is still great scope for investigating the expressiveness of SF-

calculus. There are the open questions we have highlighted regarding SF-calculus as it relates to the

framework of Boker and Dershowitz. The categorical and denotational natures of SF-calculus also de-

serve exploration. Beyond this, the wider question of how best to qualify computational expressiveness

still remains; we believe the study of SF-calculus can provide further insights on this. For example,

the structural completeness property is already a new metric; Jay and Vergara have also considered a

strengthening of the notion of decent power equivalence in which the simulation of each model in it-

self via the composition of the two encodings is computable in each model [19]. Quantitative questions

regarding expressiveness also present themselves: e.g. our encoding of SF-calculus in λ -calculus leads

to a large increase in the size of terms; are there lower bounds on the size of such increases which

meaningfully quantify expressive power?
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