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Motivation

• We are interested in the relationship between the
Factorisation Calculus and more familiar models of
computation (viz. the λ-calculus)

• Factorisation Calculus is:

• A combinatory rewrite system

• A basis for a general theory of pattern matching

• A model of intensional computations
• cf. λ-calculus is an extensional theory of functions
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The Factorisation Calculus

• Introduced by Jay and Given-Wilson (2011)
• A combinatory calculus comprising two operators: S and F
• We identify two ‘special’ sets of terms:

• Atomic terms: unapplied operators, i.e. {S, F}
• Compound terms: partially applied operators, e.g. S (F F) S

• S is the familiar combinator from Combinatory Logic:

S X Y Z→ X Z (Y Z)

• The F operator distinguishes atomic terms from compounds,
also factorising the latter:

F XMN→ M if X atomic
F (PQ)MN→ NPQ if PQ compound
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The Factorisation Calculus: Important Properties

• It is combinatorially complete, since F F represents K:

F F X Y→ X

• The internal structure of terms can be analysed, so:
• Intensionally distinct terms can be distinguished
• The equality predicate on normal forms is representable

• Compare with Combinatory Logic (and so λ-calculus):
• Equality of arbitrary normal forms not representable
• Factorisation of combinators is not representable

• e.g. there is no CL term T such that T (S K X) →∗ X for any X
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Characterising Expressiveness: Structure Completeness

• Consider using arbitrary linear normal terms as patterns for
matching, e.g.

{SM (FN S)/S x (F y S)} = [x 7→ M, y 7→ N]
{SMN/F x y} = fail

• A case G(P) = M (for pattern P and term M) defines a symbolic
function G on combinators:

G(U) =
{
σ(M) if {U/P} = σ

some default term if {U/P} = fail
• A combinatory calculus is structure complete if every case G is
represented by some term G, i.e. GU =β G(U) for all U

Theorem: Factorisation Calculus is structure complete
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How to Interpret the Characterisation?

• Jay and Given-Wilson use structural completeness as a way to
characterise the expressive power of Factorisation Calculus

• Factorisation Calculus is structurally complete; CL isn’t
• Conclusion: Factorisation Calculus is more expressive

• There are symbolic functions representable in Factorisation
Calculus but not in CL

• e.g. Factorisation, equality of normal forms

• So, does the Factorisation Calculus compute more things?
• The standard way to answer this is by showing the (non-)
existence of an encoding
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Overview of our Encoding

.. Factorisation
Calculus

.. SF@

. λ-calculus

• We use a construction due to Berrarducci and Böhm which
encodes certain types of term rewriting system in λ-calculus

• We show how to implement Factorisation Calculus as a
suitable rewrite system

• The encoding is faithful
• i.e. preserves both reduction and termination
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The Berrarducci-Böhm Representation Result

• A rewrite system R over a signature Σ is canonical if:
• Σ = ΣC ⊎ ΣF with every rewrite rule of the form:

f (c (x1, . . . , xn), y1, . . . , ym) → t (c ∈ ΣC and f ∈ ΣF)

• That is, Σ comprises constructors ΣC and programs ΣF

• Berrarducci and Böhm (1992) showed that every such R has a
representation ϕR in λ-calculus, i.e.

t→R t′ ⇒ ϕR(t) →λ ϕR(t′)

• Moreover, for closed terms, ϕR preserves strong normalisation
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A Canonical Rewrite System for Factorisation

• Application is a constructor-driven program:

app (S0, x) → S1 (x) app (F0, x) → F1 (x)
app (S1 (x), y) → S2 (x, y) app (F1 (x), y) → F2 (x, y)

app (S2 (x, y), z) → app (app (x, z), app (y, z))
app (F2 (x, y), z) → factorise (x, y, z)

• Factorisation is a program too:

factorise (S0, y, z) → y
factorise (S1 (q), y, z) → app (app (z, S0), q)

factorise (S2 (p, q), y, z) → app (app (z, app (S0, p)), q)
+ symmetric rules for F0, F1, F2
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Faithfully Encoding Factorisation Calculus

• The translation into our rewrite system SF@ is straightforward:

[[S]]@ = S0 [[F]]@ = F0 [[MN]]@ = app ([[M]]@, [[N]]@)

• We have shown that [[·]]@ also preserves reduction and strong
normalisation

• Thus [[·]]λ = ϕSF@ ◦ [[·]]@ is a faithful encoding of Factorisation
Calculus in λ-calculus
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Some Observations

• Our encoding is compositional:

[[MN]]λ = ϕSF@(app ([[M]]@, [[N]]@)) = ϕSF@(app) [[M]]λ [[N]]λ

• It is not a homomorphism ... however:
• It looks like an instance of an applicative morphism (Longley)
• We think it should induce homomorphisms at the level of
(denotational) models

• The ‘classical’ interpretation is that our encoding constitutes
an equivalence

• We need to look further to understand the notion of
expressiveness captured by structural completeness
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Felleisen’s Framework for Comparing Expressiveness

• Felleisen (1991) defined a formal expressiveness criterion
based on the concept of eliminability in logic

• A logic L is more expressive than logic L′ if:
1. L is a conservative extension of L′

2. L contains a non-eliminable symbol

• By analogy, language L is more expressive than language L′ if:
1. it is a superset of L′

2. it contains some construct which cannot be translated to L′

using a macro

• Consider SKF-calculus as a more expressive superset of CL,
since F is not representable using S and K (i.e. as a macro)
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Boker & Dershowitz’s Abstract Framework (2009)

• Take computational models to be pairs: a (semantic) domain
and a set of functions (the extensionality)

• A larger extensionality = more expressive

• Maps between domains induce simulations (i.e. encodings)
• But some maps allow for simulations of strictly larger
extensionalities!

• Different restrictions on the mappings between domains yield
notions of (in)equivalence of varying strength

• Our encoding shows a weak form of equivalence

• Existing results would seem to imply inequivalence at a
stronger level
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Conclusions & Future Work

• Factorisation Calculus is a recent fundamental model of
computation with expressive intensional properties

• We have demonstrated the existence of a faithful encoding of
the Factorisation Calculus in the λ-calculus

• Our results point towards a nuanced relationship between the
two paradigms which requires further investigation

• We believe that research into the denotational semantics of
Factorisation Calculus is a logical next step
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