
Automatic Cyclic Termination Proofs for Recursive
Procedures in Separation Logic

Reuben N. S. Rowe
Department of Computer Science

University College London
r.rowe@ucl.ac.uk

James Brotherston
Department of Computer Science

University College London
j.brotherston@ucl.ac.uk

In recent years, it has been shown that the principle of
cyclic proof (see, e.g., [12, 13, 3]) can be used to verify the
(safe) termination of heap-manipulating, pointer-based pro-
grams: Brotherston et al. [4] present a cyclic Hoare-style
proof system for deriving pre-conditions sufficient for ter-
mination of programs in a simple imperative language with
while loops, expressed in the well-known symbolic heap frag-
ment of separation logic [11], where user-defined inductive
predicates are used to describe data structures in memory
(see e.g. [2]). In this system, termination measures are al-
ways obtained from (combinations of) semantic approxima-
tions of the inductive predicates used in the proof. The
potential benefits of using cyclic proof for verification in-
clude the automatic discovery of termination measures and
inductive loop invariants.

Our aim is to demonstrate that such cyclic proof-based
verification techniques can be scaled to compete with other
existing approaches to verifying termination of pointer-based
code, such as those implemented by tools such as AProVE
[8] and HipTNT+ [9]. To that end, we provide a tool imple-
mentation for automatically proving the termination of pro-
cedural, heap-manipulating programs, such as the following
benchmark from the Termination Problems Database.

void shuffle(Node x) {
if x != NULL {
y := x.nxt; reverse(y); shuffle(y);
x.nxt := y;

}
}

This procedure rearranges the elements of a null-terminated
linked list in memory referenced by the program variable x.
Intuitively, we can infer termination of shuffle for two rea-
sons: the call to reverse acts on the local variable y which
references a smaller linked list; and, assuming (as might be
expected) that reverse does not change the number of el-
ements in the list, the recursive call to shuffle also acts
on a smaller list. Thus, this example presents non-trivial
challenges for automatic termination provers, since the ter-

TAPAS 2016, September 7th 2016, Edinburgh, UK

ACM ISBN .

DOI:

mination of shuffle depends on the reverse procedure not
increasing the termination measure.

The core of our approach is a cyclic Hoare-style proof
system for total correctness, which extends the aforemen-
tioned cyclic proof system for simple while programs [4].
We continue to obtain termination measures from seman-
tic approximations of the inductive predicates, however to
handle procedures we extend the proof system in order to
be able to track how these approximations are affected by
procedure calls. For this, our formalism uses explicit ordinal
variables, e.g., specifying reverse as follows:

{Listα(x)} reverse(x) {Listα(x)}

Here List(x) is an inductively defined predicate of separa-
tion logic describing null-terminated linked lists with head
pointer x, and α is an ordinal variable referring to an (un-
der-)approximation of this predicate – unchanged by the
procedure – that in this context can intuitively be read sim-
ply as the length of the list. In other cases, we might write,
e.g., {Pα(x)} myproc(x) {∃β < α. Qβ(x)} if it happens that
myproc actually decreases the measure referred to by α.

Proofs in our system are cyclic proofs, which are standard
finite derivation trees, but with some leaves possibly closed
by back-links to identical interior nodes; to ensure soundness
of such proofs, a global soundness condition (decidable by
automata-theoretic methods) is imposed on the proof struc-
ture, which amounts to ensuring that all infinite paths in
the proof correspond to valid arguments by infinite descent,
cf. [6]. In our case, the global soundness condition ensures
that some ordinal termination measure decreases infinitely
often on every infinite path in the proof structure. In this
sense, our technique is closely related to size-change termi-
nation [10], which attempts to extract similarly well-founded
measures directly from data manipulated by the program.

Our tool [1], given as input a set of inductive predicate
definitions and a Hoare triple, searches for a cyclic termina-
tion proof, implementing a fully-automatic procedure. The
tool is built on top of Cyclist [7], a general framework for
implementing cyclic theorem provers which provides a gen-
eral search procedure for cyclic proofs (details may be found
in [5]). Logic-specific theorem provers can be obtained by in-
stantiating this general procedure with the appropriate syn-
tax, proof rules and tactics implementing a particular proof
system. Cyclist produces a cyclic proof object as output.

The proof-search strategy that we implement in our tool
is largely guided by the syntax of the input program: we at-
tempt to apply as many symbolic execution rules as possible;
when no symbolic execution rules can be applied, we perform



predicate unfoldings until sufficient structure is revealed in
the current symbolic state to allow further symbolic execu-
tion. When all commands have been symbolically executed,
we must decide whether the post-condition is entailed by the
current symbolic state. To decide such entailment questions
our tool uses a separate instantiation of Cyclist with an
entailment proof system for our logic. Thus it is capable of
proving entailments that require inductive reasoning.

Loops and recursion are handled naturally in cyclic proof
by back-linking. When a procedure call or loop is first en-
countered during symbolic execution, it is unrolled. On sub-
sequent symbolic iterations of the loop or recursions/calls of
the procedure, our tactics will typically attempt to form a
back-link to a node created by a previous encounter with the
loop/procedure. Global soundness of the generated proof is
checked incrementally as new back-links are formed.

Our implementation currently relies on procedures being
annotated with pre-/post-conditions, which is necessary for
the compositional treatment of procedure calls: it allows
proofs verifying procedures to be reused at multiple call-
sites. Unfolding a procedure call, then, requires us to de-
termine whether the current state contains a portion which
is ‘left over’ from that described by the procedure speci-
fication, i.e. frame inference. We perform frame inference
by unfolding predicates in the call site or back-linked leaf
precondition, up to some pre-specified limit, until syntactic
matching of atomic formulas is possible. A candidate frame
can then be computed by subtracting the matching atomic
formulas from the current symbolic state. To verify that this
is indeed a frame, we then conjoin it to the post-condition of
the procedure specification or back-link companion, and per-
form a similar unfold-and-match procedure. Frame inference
may fail, not only in the case that no frame exists but also if
we do not unfold sufficiently many times or because induc-
tive reasoning is required. Since our tool encounters many
potential back-link candidates during proof search, this sim-
ple unfold-and-match approach provides a relatively cheap if
somewhat weak solution to frame inference. Empirically we
have observed this is an effective trade-off when combined
with a more powerful procedure for deciding entailments at
axioms as well as other locations specified by the user.

We tested our tool against two state-of-the-art termina-
tion provers for heap-manipulating code. HipTNT+ [9] ex-
tends a Hoare-style separation logic system with temporal
operators expressing termination and both possible and def-
inite non-termination. Like our work, it requires pre/post-
condition annotations for heap-manipulating procedures and
arithmetic parameters (comparable to our ordinal-valued la-
bels) must be incorporated into inductive predicates. The
AProVE tool [8] handles termination of C code and Java
bytecode by transforming it into a term rewriting system
and applying existing techniques for proving termination of
these. As such, it does not require procedures to be anno-
tated, but it does consider termination due to the raising of
a checked exception as safe termination.

The results of our experiments are shown in Figures 1
and 2; the AProVE benchmarks are from the Recursive Java
Bytecode suite in the latest version (10.3) of the Termination
Problems Database [14], and include non-trivial recursion
schemes. For example, the Alternate benchmark contains
a procedure that creates a binary tree using the left and right
subtrees of its two inputs in an alternating fashion; the recur-
sive calls also swap the arguments and so proving termina-

Benchmark Time (seconds)
Suite Test AProVE Cyclist
Costa Julia 09-Recursive Ackermann 3.82 0.14

BinarySearchTree 1.41 0.95
BTree 1.77 0.03
List 1.43 1.74

Julia 10-Recursive AckR 3.22 0.14
BTreeR 2.68 0.03
Test8 2.95 0.97

AProVE 11 Recursive CyclicAnalysisRec 2.61 5.21
RotateTree 5.86 0.32
SharingAnalysisRec 2.47 4.72
UnionFind TIMEOUT 1.21

BOG RTA 11 Alternate 5.47 1.47
AppE 2.19 0.09
BinTreeChanger 3.38 3.33
CAppE 2.04 1.78
ConvertRec 3.72 0.06
DupTreeRec 4.18 0.03
GrowTreeR 3.53 0.05
MirrorBinTreeRec 4.96 0.02
MirrorMultiTreeRec 5.16 0.63
SearchTreeR 2.74 0.34
Shuffle 11.72 0.21
TwoWay 1.94 0.02

Figure 1: Comparison with AProVE Benchmarks

Benchmark
Time (seconds)

HipTNT+ Cyclist
traverse acyclic linked list 0.31 0.02
traverse cyclic linked list 0.52 0.02
append acyclic linked lists 0.36 0.03
TPDB Shuffle 1.79 0.21
TPDB Alternate 6.33 1.47
TPDB UnionFind 4.03 1.21

Figure 2: Comparison with HipTNT+ Benchmarks

tion requires a lexicographic measure, which is discovered by
our tool. Other examples require complex reasoning about
the shape of the heap resulting from procedure calls; these
include the SharingAnalysisRec, CyclicAnalysisRec, and
TwoWay benchmarks, with the latter two requiring to prove
that a cyclic heap structure and non-terminating loop, re-
spectively, is unreachable. Since our tool does not cur-
rently support numeric features we focussed on examples
containing solely or predominantly heap-manipulating fea-
tures, however we did model some arithmetic-based control
flow using linked-lists to stand for natural numbers; this in-
cludes an implementation of the Ackermann function. Com-
pared with HipTNT+ and AProVE, our tool displayed much
shorter execution times on almost all of the examples in the
benchmark suite. The annotation burden in our system is
similar to that required by HipTNT+.

Our results demonstrate that cyclic proof is indeed a vi-
able approach for verifying termination of heap-manipulating
programs. Key to its practicability is the ability to treat
procedures directly (as opposed to in-lining) and composi-
tionally; we show how this can be achieved within the cyclic
proof framework. Our tool puts cyclic proof-based termi-
nation reasoning roughly on a par with the current state-of-
the-art, and provides a platform for developing the technique
further. In future work, we intend to investigate the possi-
bility of inferring the ordinal labels and corresponding con-
straints; we believe that this information can be extracted
from the structure of a cyclic proof. We also intend to inves-
tigate the possibility of inferring entire pre-/post-condition
specifications, most probably using bi-abduction.



1. REFERENCES
[1] https://github.com/ngorogiannis/cyclist/tree/ordinal

labels.

[2] Josh Berdine, Cristiano Calcagno, and Peter W.
O’Hearn. Symbolic execution with separation logic. In
Proc. APLAS-3, volume 3780 of LNCS, pages 52–68.
Springer, 2005.

[3] James Brotherston. Cyclic proofs for first-order logic
with inductive definitions. In Proceedings of
TABLEAUX-14, volume 3702 of LNAI, pages 78–92.
Springer-Verlag, 2005.

[4] James Brotherston, Richard Bornat, and Cristiano
Calcagno. Cyclic proofs of program termination in
separation logic. In Proceedings of POPL-35, pages
101–112. ACM, 2008.

[5] James Brotherston, Nikos Gorogiannis, and Rasmus L.
Petersen. A generic cyclic theorem prover. In
Proceedings of APLAS-10, LNCS, pages 350–367.
Springer, 2012.

[6] James Brotherston and Alex Simpson. Sequent calculi
for induction and infinite descent. Journal of Logic
and Computation, 21(6):1177–1216, December 2011.

[7] Cyclist: software distribution.
https://github.com/ngorogiannis/cyclist/.

[8] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes,
Florian Frohn, Carsten Fuhs, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder,
Stephanie Swiderski, and René Thiemann. Proving
termination of programs automatically with AProVE.
In IJCAR-7, pages 184–191, 2014.

[9] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin.
Termination and non-termination specification
inference. In Proceedings of PLDI-15, pages 489–498,
2015.

[10] Chin Soon Lee, Neil D. Jones, and Amir M.
Ben-Amram. The size-change principle for program
termination. In Proceedings of POPL, pages 81–92.
ACM, 2001.

[11] John C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of LICS-17,
pages 55–74. IEEE Computer Society, 2002.

[12] Luigi Santocanale. A calculus of circular proofs and its
categorical semantics. In Foundations of Software
Science and Conputation Structures, volume 2303 of
LNCS, pages 357–371. Springer-Verlag, 2002.

[13] Christoph Sprenger and Mads Dam. On the structure
of inductive reasoning: circular and tree-shaped proofs
in the µ-calculus. In Proceedings of FOSSACS-6,
volume 2620 of LNCS, pages 425–440.
Springer-Verlag, 2003.

[14] Termination problems database.
http://termination-portal.org/wiki/TPDB.


