
Transitive Closure Logic
Infinitary and Cyclic Proof Systems

Reuben N. S. Rowe 1 Liron Cohen 2

PARIS Workshop @ FLoC, Sunday 8th July 2018, Oxford, UK
1School of Computing, University of Kent, Canterbury, UK

2Dept of Computer Science, Cornell University, Ithaca, NY, USA

Transitive Closure (TC) Logic extends FOL with formulas:

• (RTCx,y φ)(s, t)

• φ is a formula
• x and y are distinct variables (which become bound in φ)
• s and t are terms

whose intended meaning is an infinite disjunction

s = t ∨ φ[s/x, t/y]
∨ (∃w1 . φ[s/x,w1/y] ∧ φ[w1/x, t/y])
∨ (∃w1,w2 . φ[s/x,w1/y] ∧ φ[w1/x,w2/y] ∧ φ[w2/x, t/y])
∨ . . .

1

Transitive Closure (TC) Logic extends FOL with formulas:

• (RTCx,y φ)(s, t)

• φ is a formula
• x and y are distinct variables (which become bound in φ)
• s and t are terms

whose intended meaning is an infinite disjunction

s = t ∨ φ[s/x, t/y]
∨ (∃w1 . φ[s/x,w1/y] ∧ φ[w1/x, t/y])
∨ (∃w1,w2 . φ[s/x,w1/y] ∧ φ[w1/x,w2/y] ∧ φ[w2/x, t/y])
∨ . . .

1

The formal semantics:

• M is a (standard) first-order model with domain D
• v is a valuation of terms in M:

M, v |= (RTCx,y φ)(s, t)

⇔
∃a0, . . . ,an ∈ D . v(s) = a0 ∧ v(t) = an

∧M, v[x := ai, y := ai+1] |= φ for all i < n

a0 a1 a2 an−1 anv(s) v(t). . .
φ φ φ φ

2

The formal semantics:

• M is a (standard) first-order model with domain D
• v is a valuation of terms in M:

M, v |= (RTCx,y φ)(s, t) ⇔
∃a0, . . . ,an ∈ D

. v(s) = a0 ∧ v(t) = an
∧M, v[x := ai, y := ai+1] |= φ for all i < n

a0 a1 a2 an−1 an

v(s) v(t)

. . .

φ φ φ φ

2

The formal semantics:

• M is a (standard) first-order model with domain D
• v is a valuation of terms in M:

M, v |= (RTCx,y φ)(s, t) ⇔
∃a0, . . . ,an ∈ D . v(s) = a0 ∧ v(t) = an

∧M, v[x := ai, y := ai+1] |= φ for all i < n

a0 a1 a2 an−1 anv(s) v(t). . .

φ φ φ φ

2

The formal semantics:

• M is a (standard) first-order model with domain D
• v is a valuation of terms in M:

M, v |= (RTCx,y φ)(s, t) ⇔
∃a0, . . . ,an ∈ D . v(s) = a0 ∧ v(t) = an

∧M, v[x := ai, y := ai+1] |= φ for all i < n

a0 a1 a2 an−1 anv(s) v(t)

. . .

φ φ φ φ

2

Why ‘Transitive Closure’ logic?

• Consider the binary relation induced by φ (wrt. x and y):

Jφ(x, y)KM,v = { (a,b) | M, v[x := a, y := b] |= φ }

• (RTCx,y φ) ‘denotes’ the reflexive, transitive closure of φ:

M, v |= (RTCx,y φ)(s, t) ⇔ (v(s), v(t)) ∈ (Jφ(x, y)KM,v)∗

3

Why ‘Transitive Closure’ logic?

• Consider the binary relation induced by φ (wrt. x and y):

Jφ(x, y)KM,v = { (a,b) | M, v[x := a, y := b] |= φ }

• (RTCx,y φ) ‘denotes’ the reflexive, transitive closure of φ:

M, v |= (RTCx,y φ)(s, t) ⇔ (v(s), v(t)) ∈ (Jφ(x, y)KM,v)∗

3

Why ‘Transitive Closure’ logic?

• Consider the binary relation induced by φ (wrt. x and y):

Jφ(x, y)KM,v = { (a,b) | M, v[x := a, y := b] |= φ }

• (RTCx,y φ) ‘denotes’ the reflexive, transitive closure of φ:

M, v |= (RTCx,y φ)(s, t) ⇔ (v(s), v(t)) ∈ (Jφ(x, y)KM,v)∗

3

Why Transitive Closure logic?

• It is a minimal extension of FOL
• It has an intuitive, easy-to-understand semantics
• It turns out to be surprisingly expressive

Theorem (Avron ’03)
All finitely inductively defined relations are definable in TC.

4

Why Transitive Closure logic?

• It is a minimal extension of FOL
• It has an intuitive, easy-to-understand semantics
• It turns out to be surprisingly expressive

Theorem (Avron ’03)
All finitely inductively defined relations* are definable in TC.†

A. Avron, Transitive Closure and the Mechanization of Mathematics, 2003.

*as defined in: S. Feferman, Finitary Inductively Presented Logics, 1989
†with signatures containing a pairing function

4

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·
⟨0, y⟩ ⟨s 0, s y⟩ ⟨s s 0, s s y⟩ ⟨sz 0, sz y⟩

5

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·

⟨0, y⟩ ⟨s 0, s y⟩ ⟨s s 0, s s y⟩ ⟨sz 0, sz y⟩

5

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·
⟨0, y⟩ ⟨s 0, s y⟩ ⟨s s 0, s s y⟩ ⟨sz 0, sz y⟩

5

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·

⟨0, y⟩

⟨s 0, s y⟩ ⟨s s 0, s s y⟩ ⟨sz 0, sz y⟩

5

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·

⟨0, y⟩ ⟨s 0, s y⟩

⟨s s 0, s s y⟩ ⟨sz 0, sz y⟩

5

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·

⟨0, y⟩ ⟨s 0, s y⟩ ⟨s s 0, s s y⟩

⟨sz 0, sz y⟩

5

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·

⟨0, y⟩ ⟨s 0, s y⟩ ⟨s s 0, s s y⟩ ⟨sz 0, sz y⟩

5

Example: Arithmetic

• Take a signature Σ = {0, s}+ equality and pairing

Nat(x) ≡ (RTCv,w s v = w)(0, x)

“x = y+ z” ≡

(RTCv,w ∃n1,n2 . v = ⟨n1,n2⟩ ∧ w = ⟨sn1, sn2⟩)(⟨0, y⟩, ⟨z, x⟩)

• The following axioms categorically characterise the
natural numbers in TC:

∀x . s x ̸= 0
∀x, y . s (x) = s (y) → x = y
∀x . Nat(x)

0 s 0 s s 0 sn-1 0 v(x)s · = · s · = · s · = · s · = ·
⟨0, y⟩ ⟨s 0, s y⟩ ⟨s s 0, s s y⟩ ⟨sz 0, sz y⟩

5

Applications
of Logic in CS

Knowledge
Reasoning

Model
CheckingType Theory

Complexity

Verification Databases

Loops/inductive
data in programs Expressive query languages,

e.g. SQL3, IBM DB2, Datalog
(WITH RECURSIVE)

Characterization of
complexity classes

Inductive definition
of type judgments

Reachability properties

Common knowledge,
defined inductively

J. Halpern Et Al, On the Unusual Effectiveness of Logic in Computer Science, 2001

6

Applications
of Logic in CS

Knowledge
Reasoning

Model
CheckingType Theory

Complexity

Verification Databases

Loops/inductive
data in programs Expressive query languages,

e.g. SQL3, IBM DB2, Datalog
(WITH RECURSIVE)

Characterization of
complexity classes

Inductive definition
of type judgments

Reachability properties

Common knowledge,
defined inductively

J. Halpern Et Al, On the Unusual Effectiveness of Logic in Computer Science, 2001

6

FOL SOLTC

Weak SOL
ω-logic

Cardinality logic
FOL + Henkin Quantifiers

FOMµFOL
+ ML Ind.
Defs

“Everything should be made as simple as possible but not simpler”
—Albert Einsten

7

FOL SOLTC

Weak SOL
ω-logic

Cardinality logic
FOL + Henkin Quantifiers

FOMµFOL
+ ML Ind.
Defs

“Everything should be made as simple as possible but not simpler”
—Albert Einsten

7

FOL SOLTC

Weak SOL
ω-logic

Cardinality logic
FOL + Henkin Quantifiers

FOMµFOL
+ ML Ind.
Defs

“Everything should be made as simple as possible but not simpler”
—Albert Einsten

7

FOL SOLTC

Weak SOL
ω-logic

Cardinality logic
FOL + Henkin Quantifiers

FOMµFOL
+ ML Ind.
Defs

“Everything should be made as simple as possible but not simpler”
—Albert Einsten

7

The transitive closure

R+ =
∪
i≥0

Ri, whereR0 = R
Ri+1 = Ri ◦ R (i ≥ 0)

is a particular kind of fixed point:

R+ = µX.ΨR(X)

where, for binary relations R and S, we define

ΨR(S) = R ∪ (R ◦ S)

8

FOL + Martin-Löf inductive definitions:

• For each predicate symbol P1, . . . ,Pn, we give a set of
productions of the form:

Q1(s⃗1) . . . Qn(s⃗n)

Pi(⃗t)

• The productions induce a monotone operator on the
domain of predicate interpretations X :

X : Pred→ ℘(
∪
k≥0

Dk)

• The semantics of the logic uses the least fixed point

9

FOL + Martin-Löf inductive definitions:

• For each predicate symbol P1, . . . ,Pn, we give a set of
productions of the form:

Q1(s⃗1) . . . Qn(s⃗n)

Pi(⃗t)

• The productions induce a monotone operator on the
domain of predicate interpretations X :

X : Pred→ ℘(
∪
k≥0

Dk)

• The semantics of the logic uses the least fixed point

9

FOL + Martin-Löf inductive definitions:

• For each predicate symbol P1, . . . ,Pn, we give a set of
productions of the form:

Q1(s⃗1) . . . Qn(s⃗n)

Pi(⃗t)

• The productions induce a monotone operator on the
domain of predicate interpretations X :

X : Pred→ ℘(
∪
k≥0

Dk)

• The semantics of the logic uses the least fixed point

9

FOL + Martin-Löf inductive definitions:

• For each predicate symbol P1, . . . ,Pn, we give a set of
productions of the form:

Q1(s⃗1) . . . Qn(s⃗n)

Pi(⃗t)

• The productions induce a monotone operator on the
domain of predicate interpretations X :

X : Pred→ ℘(
∪
k≥0

Dk)

• The semantics of the logic uses the least fixed point

TC has all possible inductive
definitions ‘available’ using
only a finite signature

9

FOL + Martin-Löf inductive definitions:

• For each predicate symbol P1, . . . ,Pn, we give a set of
productions of the form:

Q1(s⃗1) . . . Qn(s⃗n)

Pi(⃗t)

• The productions induce a monotone operator on the
domain of predicate interpretations X :

X : Pred→ ℘(
∪
k≥0

Dk)

• The semantics of the logic uses the least fixed point

FOLID productions only
allow for Horn clauses

9

What about the proof theory?

Effective Complete
Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete

Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete

Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete

Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete

Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete

Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete

Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete
Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete
Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete
Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

What about the proof theory?

Effective Complete
Henkin-Complete

Finitary
RTCG

Infinitary
RTCωG

Cyclic
NCRTCωG

Cyclic
CRTCωG

Finitary
RTCG+A

Cyclic
CRTCωG+A

≡

10

RTCG: A Finitary Proof System with ‘Explicit’ Induction

We add the following rules to Gentzen’s sequent calculus for
CL with substitution and equality:

reflexivity
⊢ (RTCx,y φ)(t, t)

step
Γ ⊢ ∆, (RTCx,y φ)(s, r) Γ ⊢ ∆, φ[r/x, t/y]

Γ ⊢ ∆, (RTCx,y φ)(s, t)

induction
Γ, ψ(x), φ(x, y) ⊢ ∆, ψ[y/x]

Γ, ψ[s/x], (RTCx,y φ)(s, t) ⊢ ∆, ψ[t/x]

x ̸∈ fv(Γ,∆) and y ̸∈ fv(Γ,∆, ψ)

11

RTCG ‘captures’ TC:

Γ ⊢ ∆, (RTCx,y φ)(s, t)
Γ ⊢ ∆, (RTCx,y φ)(t, s)

Γ ⊢ ∆, (RTCx,y φ)(s, t)
Γ ⊢ ∆, (RTCv,w φ[v/x,w/y])(s, t)

Γ, φ[s/x] ⊢ ∆

Γ, (RTCx,y φ)(s, t) ⊢ ∆, s = t

Γ ⊢ ∆, φ[s/x, r/y] Γ ⊢ ∆, (RTCx,y φ)(r, t)
Γ ⊢ ∆, (RTCx,y φ)(s, t)

Γ, φ ⊢ ∆, ψ

Γ, (RTCx,y φ)(s, t) ⊢ ∆, (RTCx,y ψ)(s, t)

Γ, (RTCx,y φ)(s, t) ⊢ ∆

Γ, (RTCv,w (RTCx,y φ)(v,w))(s, t) ⊢ ∆

Γ ⊢ ∆, (RTCx,y φ)(s, t)
Γ ⊢ ∆, s = t,∃z . (RTCx,y φ)(s, z) ∧ φ[z/x, t/y]

12

RTCG is complete for the following Henkin-style semantics:

• A TC Henkin-frame H is a triple ⟨D, I,D⟩
• ⟨D, I⟩ is a first-order structure
• D ⊆ ℘(D) is its set of admissible subsets

• RTC formulas are interpreted wrt. frames as follows:
H, v |=H (RTCx,y φ)(s, t) ⇔
for all A ∈ D, if v(s) ∈ A and

∀a,b ∈ D . (a ∈ A ∧ H, v[x := a, y := b] |= φ) → b ∈ A
then v(t) ∈ A

• A TC Henkin structure is a TC Henkin-frame closed under
parametric definability, i.e.

{a ∈ D | H, v[x := a] |= φ} ∈ D for all φ, v, and H

13

RTCG is complete for the following Henkin-style semantics:

• A TC Henkin-frame H is a triple ⟨D, I,D⟩
• ⟨D, I⟩ is a first-order structure
• D ⊆ ℘(D) is its set of admissible subsets

• RTC formulas are interpreted wrt. frames as follows:
H, v |=H (RTCx,y φ)(s, t) ⇔
for all A ∈ D, if v(s) ∈ A and

∀a,b ∈ D . (a ∈ A ∧ H, v[x := a, y := b] |= φ) → b ∈ A
then v(t) ∈ A

• A TC Henkin structure is a TC Henkin-frame closed under
parametric definability, i.e.

{a ∈ D | H, v[x := a] |= φ} ∈ D for all φ, v, and H

13

RTCG is complete for the following Henkin-style semantics:

• A TC Henkin-frame H is a triple ⟨D, I,D⟩
• ⟨D, I⟩ is a first-order structure
• D ⊆ ℘(D) is its set of admissible subsets

• RTC formulas are interpreted wrt. frames as follows:
H, v |=H (RTCx,y φ)(s, t) ⇔
for all A ∈ D, if v(s) ∈ A and

∀a,b ∈ D . (a ∈ A ∧ H, v[x := a, y := b] |= φ) → b ∈ A
then v(t) ∈ A

• A TC Henkin structure is a TC Henkin-frame closed under
parametric definability, i.e.

{a ∈ D | H, v[x := a] |= φ} ∈ D for all φ, v, and H

13

RTCG is complete for the following Henkin-style semantics:

• A TC Henkin-frame H is a triple ⟨D, I,D⟩
• ⟨D, I⟩ is a first-order structure
• D ⊆ ℘(D) is its set of admissible subsets

• RTC formulas are interpreted wrt. frames as follows:
H, v |=H (RTCx,y φ)(s, t) ⇔
for all A ∈ D, if v(s) ∈ A and

∀a,b ∈ D . (a ∈ A ∧ H, v[x := a, y := b] |= φ) → b ∈ A
then v(t) ∈ A

• A TC Henkin structure is a TC Henkin-frame closed under
parametric definability, i.e.

{a ∈ D | H, v[x := a] |= φ} ∈ D for all φ, v, and H

13

In non-well-founded proof theory we allow infinite height
derivations:

...
...

..

• • .
. . .

. . .
.∞

(Inference)
•···
•

(Axiom)
• ∞·····•

• We only accept proofs for which every path admits some
infinite descent

• This is witnessed by tracing terms/formulas
corresponding to elements of a well-founded set

• This global trace condition is an ω-regular property
(i.e. decidable using Büchi automata)

14

In non-well-founded proof theory we allow infinite height
derivations:

...
...

..

• • .
. . .

. . .
.∞

(Inference)
•···
•

(Axiom)
• ∞·····•

• We only accept proofs for which every path admits some
infinite descent

• This is witnessed by tracing terms/formulas
corresponding to elements of a well-founded set

• This global trace condition is an ω-regular property
(i.e. decidable using Büchi automata)

14

In non-well-founded proof theory we allow infinite height
derivations:

...
...

..

• • .
. . .

. . .
.∞

(Inference)
•···
•

(Axiom)
• ∞·····•

• We only accept proofs for which every path admits some
infinite descent

• This is witnessed by tracing terms/formulas
corresponding to elements of a well-founded set

• This global trace condition is an ω-regular property
(i.e. decidable using Büchi automata)

14

In non-well-founded proof theory we allow infinite height
derivations:

...
...

..

• • .
. . .

. . .
.∞

(Inference)
•···
•

(Axiom)
• ∞·····•

• We only accept proofs for which every path admits some
infinite descent

• This is witnessed by tracing terms/formulas
corresponding to elements of a well-founded set

• This global trace condition is an ω-regular property
(i.e. decidable using Büchi automata)

14

RTCωG : An Infinitary Proof System with ‘Implicit’ Induction

We simply replace the explicit induction rule of RTCG with:

case-split
Γ, s = t ⊢ ∆ Γ, (RTCx,y φ)(s, z), φ[z/x, t/y] ⊢ ∆

(z fresh)
Γ, (RTCx,y φ)(s, t) ⊢ ∆

We trace formulas (RTCx,y φ)(s, t) in the antecedent of sequents

The trace progresses when it traverses the principal formula of
a case-split rule.

15

RTCωG : An Infinitary Proof System with ‘Implicit’ Induction

We simply replace the explicit induction rule of RTCG with:

case-split
Γ, s = t ⊢ ∆ Γ, (RTCx,y φ)(s, z), φ[z/x, t/y] ⊢ ∆

(z fresh)
Γ, (RTCx,y φ)(s, t) ⊢ ∆

We trace formulas (RTCx,y φ)(s, t) in the antecedent of sequents

The trace progresses when it traverses the principal formula of
a case-split rule.

15

RTCωG : An Infinitary Proof System with ‘Implicit’ Induction

We simply replace the explicit induction rule of RTCG with:

case-split
Γ, s = t ⊢ ∆ Γ, (RTCx,y φ)(s, z), φ[z/x, t/y] ⊢ ∆

(z fresh)
Γ, (RTCx,y φ)(s, t) ⊢ ∆

We trace formulas (RTCx,y φ)(s, t) in the antecedent of sequents

The trace progresses when it traverses the principal formula of
a case-split rule.

15

Soundness of RTCωG

• Define a measure function for RTC-formulas:

δ(RTCx,y φ)(s,t)(M, v) =
{minimal no. of φ-steps
from v(s) to v(t) in M

v(s) a1 a2 an−1 v(t)
φ φ φ φ

• The proof rules have the following property:

Γ ⊢ ∆

δ(RTCv,w φ′)(r,u)(M′, v′) < δ(RTCx,y φ)(s,t)(M, v)

• Global trace condition⇒ n1 > n2 > n3 > . . .

16

Soundness of RTCωG

• Define a measure function for RTC-formulas:

δ(RTCx,y φ)(s,t)(M, v) =
{minimal no. of φ-steps
from v(s) to v(t) in M

v(s) a1 a2 an−1 v(t)
φ φ φ φ

• The proof rules have the following property:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

δ(RTCv,w φ′)(r,u)(M′, v′) < δ(RTCx,y φ)(s,t)(M, v)

• Global trace condition⇒ n1 > n2 > n3 > . . .

16

Soundness of RTCωG

• Define a measure function for RTC-formulas:

δ(RTCx,y φ)(s,t)(M, v) =
{minimal no. of φ-steps
from v(s) to v(t) in M

v(s) a1 a2 an−1 v(t)
φ φ φ φ

• The proof rules have the following property:

Γ1 ⊢ ∆1 . . . (M′, v′) ̸|= Γi ⊢ ∆i . . . Γn ⊢ ∆n

(M, v) ̸|= Γ ⊢ ∆

δ(RTCv,w φ′)(r,u)(M′, v′) < δ(RTCx,y φ)(s,t)(M, v)

• Global trace condition⇒ n1 > n2 > n3 > . . .

16

Soundness of RTCωG

• Define a measure function for RTC-formulas:

δ(RTCx,y φ)(s,t)(M, v) =
{minimal no. of φ-steps
from v(s) to v(t) in M

v(s) a1 a2 an−1 v(t)
φ φ φ φ

• The proof rules have the following property:

. . . (M′, v′) ̸|= Γi, (RTCv,w φ′)(r,u) ⊢ ∆i . . .

(M, v) ̸|= Γ, (RTCx,y φ)(s, t) ⊢ ∆

δ(RTCv,w φ′)(r,u)(M′, v′) ≤ δ(RTCx,y φ)(s,t)(M, v)

• Global trace condition⇒ n1 > n2 > n3 > . . .

16

Soundness of RTCωG

• Define a measure function for RTC-formulas:

δ(RTCx,y φ)(s,t)(M, v) =
{minimal no. of φ-steps
from v(s) to v(t) in M

v(s) a1 a2 an−1 v(t)
φ φ φ φ

• The proof rules have the following property:

Γ, s = t ⊢ ∆ (M′, v′) ̸|= Γ, (RTCx,y φ)(s, z), φ[z/x, t/y] ⊢ ∆

(M, v) ̸|= Γ, (RTCx,y φ)(s, t) ⊢ ∆

δ(RTCv,w φ′)(r,u)(M′, v′) < δ(RTCx,y φ)(s,t)(M, v)

• Global trace condition⇒ n1 > n2 > n3 > . . .

16

Soundness of RTCωG

• Define a measure function for RTC-formulas:

δ(RTCx,y φ)(s,t)(M, v) =
{minimal no. of φ-steps
from v(s) to v(t) in M

v(s) a1 a2 an−1 v(t)
φ φ φ φ

• The proof rules have the following property:

Γ, s = t ⊢ ∆ (M′, v′) ̸|= Γ, (RTCx,y φ)(s, z), φ[z/x, t/y] ⊢ ∆

(M, v) ̸|= Γ, (RTCx,y φ)(s, t) ⊢ ∆

δ(RTCv,w φ′)(r,u)(M′, v′) < δ(RTCx,y φ)(s,t)(M, v)

• Global trace condition⇒ n1 > n2 > n3 > . . .

16

Cut-free Completeness of RTCωG

Obtained using a variation of the standard technique:

1. Construct an infinite (cut-free) pre-proof via an exhaustive
search tree

2. If not a valid proof, then it is possible to construct a
counter-model

3. Thus search tree gives a valid proof for every valid sequent

17

CRTCωG : A Cyclic Subsystem

...
...

..

• • .
. . .

. . .
. ω

(Inference)
•···
•

(Axiom)
• ω·····•

• Restricting to all and only regular infinite pre-proofs gives
an effective system

• Regular pre-proofs can be represented as finite, possibly
cyclic graphs

18

CRTCωG : A Cyclic Subsystem

...
...

..

• • .
. . .

. . .
. •

(Inference)
•···
•

(Axiom)
• •·····•

• Restricting to all and only regular infinite pre-proofs gives
an effective system

• Regular pre-proofs can be represented as finite, possibly
cyclic graphs

18

Implicit induction subsumes explicit induction

(Ax)
Γ, ψ[v/x] ⊢ ∆, ψ[v/x]

(=L)
Γ, ψ[v/x], v = w ⊢ ∆, ψ[w/x] ..

..

..

..

Γ, ψ[v/x], (RTCx,y φ)(v,w) ⊢ ∆, ψ[w/x]
(Subst)

Γ, ψ[v/x], (RTCx,y φ)(v, z) ⊢ ∆, ψ[z/x]

···
Γ, ψ, φ ⊢ ∆, ψ[y/x]

(Subst)
Γ, ψ[z/x], φ[z/x,w/y] ⊢ ∆, ψ[w/x]

(Cut)
Γ, ψ[v/x], (RTCx,y φ)(v, z), φ[z/x,w/y] ⊢ ∆, ψ[w/x]

(case-split)
Γ, ψ[v/x], (RTCx,y φ)(v,w) ⊢ ∆, ψ[w/x]

(Subst)
Γ, ψ[s/x], (RTCx,y φ)(s, t) ⊢ ∆, ψ[t/x]

···

19

Implicit induction subsumes explicit induction

(Ax)
Γ, ψ[v/x] ⊢ ∆, ψ[v/x]

(=L)
Γ, ψ[v/x], v = w ⊢ ∆, ψ[w/x] ..

..

..

..

Γ, ψ[v/x], (RTCx,y φ)(v,w) ⊢ ∆, ψ[w/x]
(Subst)

Γ, ψ[v/x], (RTCx,y φ)(v, z) ⊢ ∆, ψ[z/x]

···
Γ, ψ, φ ⊢ ∆, ψ[y/x]

(Subst)
Γ, ψ[z/x], φ[z/x,w/y] ⊢ ∆, ψ[w/x]

(Cut)
Γ, ψ[v/x], (RTCx,y φ)(v, z), φ[z/x,w/y] ⊢ ∆, ψ[w/x]

(case-split)
Γ, ψ[v/x], (RTCx,y φ)(v,w) ⊢ ∆, ψ[w/x]

(Subst)
Γ, ψ[s/x], (RTCx,y φ)(s, t) ⊢ ∆, ψ[t/x]

···

19

Implicit induction subsumes explicit induction

(Ax)
Γ, ψ[v/x] ⊢ ∆, ψ[v/x]

(=L)
Γ, ψ[v/x], v = w ⊢ ∆, ψ[w/x] ..

..

..

..

Γ, ψ[v/x], (RTCx,y φ)(v,w) ⊢ ∆, ψ[w/x]
(Subst)

Γ, ψ[v/x], (RTCx,y φ)(v, z) ⊢ ∆, ψ[z/x]

···
Γ, ψ, φ ⊢ ∆, ψ[y/x]

(Subst)
Γ, ψ[z/x], φ[z/x,w/y] ⊢ ∆, ψ[w/x]

(Cut)
Γ, ψ[v/x], (RTCx,y φ)(v, z), φ[z/x,w/y] ⊢ ∆, ψ[w/x]

(case-split)
Γ, ψ[v/x], (RTCx,y φ)(v,w) ⊢ ∆, ψ[w/x]

(Subst)
Γ, ψ[s/x], (RTCx,y φ)(s, t) ⊢ ∆, ψ[t/x]

···

NCRTCωG , the subsystem of non-overlapping
cyclic proofs, is a Henkin-complete

19

Equivalence Under Arithmetic

Obtain RTCG+A and CRTCωG+A by adding the following schemas:

1. s 0 ⊢
2. s x = s y ⊢ x = y
3. ⊢ x+ 0 = x
4. ⊢ x+ s y = s (x+ y)
5. ⊢ (RTCv,w s v = w)(0, x)

RTCG+A

PAG CAG

CRTCωG+A

20

Equivalence Under Arithmetic

Obtain RTCG+A and CRTCωG+A by adding the following schemas:

1. s 0 ⊢
2. s x = s y ⊢ x = y
3. ⊢ x+ 0 = x
4. ⊢ x+ s y = s (x+ y)
5. ⊢ (RTCv,w s v = w)(0, x)

RTCG+A PAG

CAG

CRTCωG+A
β

C & Avron, ’15
20

Equivalence Under Arithmetic

Obtain RTCG+A and CRTCωG+A by adding the following schemas:

1. s 0 ⊢
2. s x = s y ⊢ x = y
3. ⊢ x+ 0 = x
4. ⊢ x+ s y = s (x+ y)
5. ⊢ (RTCv,w s v = w)(0, x)

RTCG+A PAG CAG CRTCωG+A
β

C & Avron, ’15

Simpson, ’17

20

Equivalence Under Arithmetic

Obtain RTCG+A and CRTCωG+A by adding the following schemas:

1. s 0 ⊢
2. s x = s y ⊢ x = y
3. ⊢ x+ 0 = x
4. ⊢ x+ s y = s (x+ y)
5. ⊢ (RTCv,w s v = w)(0, x)

RTCG+A PAG CAG CRTCωG+A
β β

R&C

C & Avron, ’15

Simpson, ’17

20

Equivalence: The General Case

For FOLID, implicit (cyclic) induction generally stronger than
explicit induction [Berardi & Tatsuta, ’17]

• For signature {0, s}+ {N}:
• 0,s-axioms ⊢CLKIDω “2-hydra”
• 0,s-axioms ̸⊢LKID “2-hydra”

(Henkin counter-model construction)

• However, for signature {0, s}+ {N,≤}
• 0,s-axioms ⊢LKID 2-hydra

So this does not serve to show RTCG and CRTCωG inequivalent

• TC has all inductive definitions available

21

Equivalence: The General Case

For FOLID, implicit (cyclic) induction generally stronger than
explicit induction [Berardi & Tatsuta, ’17]

• For signature {0, s}+ {N}:
• 0,s-axioms ⊢CLKIDω “2-hydra”

• 0,s-axioms ̸⊢LKID “2-hydra”
(Henkin counter-model construction)

• However, for signature {0, s}+ {N,≤}
• 0,s-axioms ⊢LKID 2-hydra

So this does not serve to show RTCG and CRTCωG inequivalent

• TC has all inductive definitions available

21

Equivalence: The General Case

For FOLID, implicit (cyclic) induction generally stronger than
explicit induction [Berardi & Tatsuta, ’17]

• For signature {0, s}+ {N}:
• 0,s-axioms ⊢CLKIDω “2-hydra”
• 0,s-axioms ̸⊢LKID “2-hydra”

(Henkin counter-model construction)

• However, for signature {0, s}+ {N,≤}
• 0,s-axioms ⊢LKID 2-hydra

So this does not serve to show RTCG and CRTCωG inequivalent

• TC has all inductive definitions available

21

Equivalence: The General Case

For FOLID, implicit (cyclic) induction generally stronger than
explicit induction [Berardi & Tatsuta, ’17]

• For signature {0, s}+ {N}:
• 0,s-axioms ⊢CLKIDω “2-hydra”
• 0,s-axioms ̸⊢LKID “2-hydra”

(Henkin counter-model construction)

• However, for signature {0, s}+ {N,≤}
• 0,s-axioms ⊢LKID 2-hydra

So this does not serve to show RTCG and CRTCωG inequivalent

• TC has all inductive definitions available

21

Equivalence: The General Case

For FOLID, implicit (cyclic) induction generally stronger than
explicit induction [Berardi & Tatsuta, ’17]

• For signature {0, s}+ {N}:
• 0,s-axioms ⊢CLKIDω “2-hydra”
• 0,s-axioms ̸⊢LKID “2-hydra”

(Henkin counter-model construction)

• However, for signature {0, s}+ {N,≤}
• 0,s-axioms ⊢LKID 2-hydra

So this does not serve to show RTCG and CRTCωG inequivalent

• TC has all inductive definitions available

21

Summary of Results

standard
validity

admissible
standard
validity

Henkin validity
admissible

Henkin validity

(cut-free)
RTCωG

(cut-free)
⟨RTC⟩ωG

⟨CRTC⟩ωG CRTCωG

⟨NCRTC⟩ωG NCRTCωG

RTCG⟨RTC⟩G

⟨CRTC⟩ωG+A CRTCωG+A

⟨RTC⟩G+A RTCG+A

Thm

Thm

Thm

Thm

⊆

⊆

⊆

⊆

ThmThm

⊆⊆

ThmThm

? ?

? ?

ThmThm

⊆ ⊆

⊆⊆

22

Future Work

• Resolving the open question of the (in)equivalence of
RTCG, NCRTCωG and CRTCωG .

• Implementing CRTCωG and investigating the practicalities of
TC-logic to support automated inductive reasoning.

• Using the uniformity of TC-logic to better study the
relationship between implicit and explicit induction.

• Cuts required in each system
• Relative complexity of proofs

• A uniform framework for coinductive reasoning?

23

Recall transitive closure as a fixed point:

R+ = µX.ΨR(X) ΨR(S) = R ∪ (R ◦ S)

The greatest fixed point gives the transitive co-closure

• Pairs (s, t) in νX.ΨR(X) are those connected by a possibly
infinite number of R-steps

• We can write (RTCopx,y φ)(s, t) to denote that (s, t) is in the
reflexive, transitive co-closure of φ

• E.g. The following formula defines possibly infinite lists

(RTCopx,y ∃z . x = cons(z, y))(v,[])

24

We have the following standard semantics

M, v |= (RTCopx,y φ)(s, t) ⇔
∃(a⃗i)i≥0 . ∀i ≥ 0 . ai = v(t) ∨M, v[x := ai, y := ai+1] |= φ

We have the following Henkin-semantics

H, v |=H (RTCopx,y φ)(s, t) ⇔
there exists A ∈ D such that v(s) ∈ A and

∀a ∈ A . either a = v(t) or ∃b ∈ A . H, v[x := a, y := b] |=H φ

25

