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- We trace syntactic elements 7 through judgements
- At certain points, there is a notion of ‘progression’

- Each infinite path must admit some infinite descent

- This global trace condition is an w-regular property
- i.e. decidable using Buchi automata
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Non-well-founded Proofs: Soundness via Infinite Descent

(Axiom) o0

‘o M3}£]3[’}'3] '
(Inference)
My ¥ Jo[1]

My ¥ Ji[m]

- Assume for contradiction that the conclusion is invalid
- Local soundness = counter-models My, My, M5, . ..
- We demonstrate a mapping into well-founded (D, <) s.t.
© Ml < Mol < IMs]pm) < - -
© M2, 1r) < [M3]),qr,) for progression points
- Global trace condition = infinitely descending chain in D!



tudy Non-well-founded Proof Theory?

Non-well-founded/cyclic proof theory allows to:

- Obtain (cut-free) completeness results
p-calculus: Fortier&Santocanale, Afshari&Leigh, Doumane Et Al
Kleene Algebra: Das&Pous

- Effectively search for proofs of inductive properties

- Automatically verify properties of programs
[Brotherston, Bornat, Calcagno, Gorogiannis, Peterson, R, Tellez]

- Formally study explicit induction vs infinite descent
p-calculus: Santocanale, Sprenger&Dam, Baelde Et AL, Nollet Et AL
Ind. Defs: Brotherston&Simpson, Berardi&Tatsuta
Arithmetic: Simpson, Das
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Cyclic Proof vs Explicit Induction

- To reason explicitly by induction is more complex,
involving an induction formula F

I INDo,(F) (VQ; mutually recursive with P) T, F() F A

rPtFA
- E.g. the productions = N0 and Nx = Nsx give

FEFO) T,F(X)EF(sx) T,F(t)FA

MNtEA

- Implicit induction using unfolding conceptually simpler
- Induction schemes captured using cycles



Non-well-founded Proofs: Some Meta-theory

For FOL with Inductive Definitions:

- Non-well-founded proof system LKID“ sound and cut-free complete for
standard semantics

- Explicit induction system LKID sound and cut-free complete for a
Henkin-style semantics

- Cyclic system CLKID* subsumes explicit induction
[Brotherston & Simpson, LICS'07, JL&C'11]

- CLKID“ and LKID equivalent under arithmetic
[Berardi & Tatsuta, LICS"17]
[Simpson, FoSSaCS17]

- CLKID* and LKID not equivalent in general (2-Hydra counterexample)
[Berardi & Tatsuta, FoSSaCS'17]



Transitive Closure Logic

Transitive Closure (TC) Logic extends FOL with formulas:

* (RTCxy @)(s, 1)

- @isaformula
- x and y are distinct variables (which become bound in ¢)
- sandtare terms

whose intended meaning is an infinite disjunction

S= t\/(p[S/X,t/y]
Vv (3ws . @[s/x, wr /Y] A plwa/x, t/y])
V (Fwr, wa . [s/x, wa/y] A plwn /x, wa /Y] A p[wa /X, t/Y])
V...
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Transitive Closure Logic

The formal semantics:

- M is a (standard) first-order model with domain D

- vis avaluation of terms in M:

M,V = (RTCxy @)(S,t) &
dag,...,an € D.v(s) = ap A V(t) = ap
AMV[x:=a;,y:=a 4] E¢ foralli<n
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Example: Arithmetic in TC

- Take a signature X = {0, s} + equality and pairing
Nat(x) = (RTCywsv = w)(0,X)
x <y = (RTCywsv=w)(x,y)
X=y+7"=
(RTCyw 3N1, Ny . v = (N, n2) AW = (sns,sn2))((0,y), (z,X))

- The following characterise natural numbers in TC:

Vx.SX # 0
VX, y.s(x) =s(y) > x=y
Vx . Nat(x)



Why Study TC and its Non-well-founded Proof Theory?

- Provides a uniform way to express inductive definitions
- Single framework for modelling many areas of CS
- Better for automated reasoning?

- It is a minimal, yet expressive, extension of FOL

Theorem (Avron '03, Thm. 3)
All finitely inductively definable relations' are definable in TC.

A. Avron, Transitive Closure and the Mechanization of Mathematics.

- Alternative setting for studying cyclic vs explicit induction
- No need to ‘choose’ predicates up-front
- Uniformity makes meta-theory more straightforward
- Displays some subtle but important differences with FOL+ID

tas formalised in: S. Feferman, Finitary Inductively Presented Logics, 1989

10



Implicit and Explicit Induction Rules for TC
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Implicit and Explicit Induction Rules for TC

reflexivity
F (RTCGy )(t, 1)

Mk Av (RTCXJ/ 90)(57 l') M= A7 L)D[r/xa t/y]

step
FE A (RTCy @)(s, 1)

Ms=tEA T,(RTCye)(s,2),elz/x,t/y] F A
case-split (z fresh)
I, (RTCxy ©)(s,t) F A

FEAYPIs/X T, 000y) F A Ply/x] Tgft/x] - A

induction
I, (RTCy p)(s,t) A

x g fu(l,A)andy & fu(l, A, )
11



Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY
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Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY

- Systems with arithmetic are equivalent

- 2-Hydra counterexample does not show RTCs € CRTCY¢

- Relies on not being able to express ordering on numbers
- TC allows all inductive definitions ‘at once’

12



Future Work

- open question of equivalence for RTCs, NCRTCZ and CRTC{
- Implementing CRTC¢ to support automated reasoning.
- Use TC to better study implicit vs explicit induction.

- Adapt TC for coinductive reasoning?

13



(Non-reflexive) transitive closure is a least fixed point

RT = pX.Wr(X) Vp(S)=RU(R0S)

The greatest fixed point gives the transitive co-closure

- Pairs (s, t) in vX.Wg(X) are those connected by a possibly
infinite number of R-steps

- We can write (RTG.Y ¢)(s,t) to denote that (s, t) is in the
reflexive, transitive co-closure of ¢



We have the following standard semantics

M,v = (RTGE ©)(s,t) &
d)izo - Vi > 0.a; = V(t) VM, V[x = a;,y = Q1] F ¢

E.g. The following formula defines possibly infinite lists

(RTGYS, 3z . x = cons(z,y))(v, [ 1)



