Uniform Inductive Reasoning in Transitive
Closure Logic via Infinite Descent

Liron Cohen’ Reuben N.S. Rowe ?

Computer Science Logic
Wednesday 51 September 2018, Birmingham, UK

TDept of Computer Science, Cornell University, Ithaca, NY, USA

2School of Computing, University of Kent, Canterbury, UK

Non-well-founded Proofs: Syntactic Principles

(Axiom)

(Axiom) (Axiom)

(Inference)

Non-well-founded Proofs: Syntactic Principles

(Axiom)

(Inference)

Non-well-founded Proofs: Syntactic Principles

(Axiom)

‘o 3 o
(Inference)

2
™

- We trace syntactic elements 7 through judgements

Non-well-founded Proofs: Syntactic Principles

(Inference)

™

- We trace syntactic elements 7 through judgements
- At certain points, there is a notion of ‘progression’

Non-well-founded Proofs: Syntactic Principles

(Axiom)

‘o 3 o
(Inference)

2
™

- We trace syntactic elements 7 through judgements
- At certain points, there is a notion of ‘progression’

- Each infinite path must admit some infinite descent

Non-well-founded Proofs: Syntactic Principles

(Axiom)

- We trace syntactic elements 7 through judgements
- At certain points, there is a notion of ‘progression’

- Each infinite path must admit some infinite descent

- This global trace condition is an w-regular property
- i.e. decidable using Buchi automata

Non-well-founded Proofs: Soundness via Infinite Descent

(Axiom) o0

K 13 [73] o
(Inference)
Ja[72]

Jilm]

Non-well-founded Proofs: Soundness via Infinite Descent

(Axiom) o0

e Jlms) o
(Inference)
Ja[72]

My ¥ Ji[m]

- Assume for contradiction that the conclusion is invalid

Non-well-founded Proofs: Soundness via Infinite Descent

(Axiom) o0

K M3¢J3[%3] o
(Inference)
My ¥ Jo[1]

My ¥ Ji[m]

- Assume for contradiction that the conclusion is invalid
- Local soundness = counter-models My, My, M5, . ..

Non-well-founded Proofs: Soundness via Infinite Descent

(Axiom) o0

‘o M3}£]3[’}'3] '
(Inference)
My ¥ Jo[1]

My ¥ Ji[m]

- Assume for contradiction that the conclusion is invalid
- Local soundness = counter-models My, My, M5, . ..
- We demonstrate a mapping into well-founded (D, <) s.t.

* Ml < IM2lyfrg < IMslspr) < - -

Non-well-founded Proofs: Soundness via Infinite Descent

(Axiom) o0

o Mz ¥ J3[r] o
(Inference)
Mz ¥ J5[72]

My ¥ Ji[m]

- Assume for contradiction that the conclusion is invalid
- Local soundness = counter-models My, My, M5, . ..

- We demonstrate a mapping into well-founded (D, <) s.t.
* My < Mol < IMs]pm) < -
© M2, 1r) < [M3]),qry) fOr progression points

Non-well-founded Proofs: Soundness via Infinite Descent

(Axiom) o0

‘o M3}£]3[’}'3] '
(Inference)
My ¥ Jo[1]

My ¥ Ji[m]

- Assume for contradiction that the conclusion is invalid
- Local soundness = counter-models My, My, M5, . ..
- We demonstrate a mapping into well-founded (D, <) s.t.
© Ml < Mol < IMs]pm) < - -
© M2, 1r) < [M3]),qr,) for progression points
- Global trace condition = infinitely descending chain in D!

tudy Non-well-founded Proof Theory?

Non-well-founded/cyclic proof theory allows to:

- Obtain (cut-free) completeness results
p-calculus: Fortier&Santocanale, Afshari&Leigh, Doumane Et Al
Kleene Algebra: Das&Pous

- Effectively search for proofs of inductive properties

- Automatically verify properties of programs
[Brotherston, Bornat, Calcagno, Gorogiannis, Peterson, R, Tellez]

- Formally study explicit induction vs infinite descent
p-calculus: Santocanale, Sprenger&Dam, Baelde Et AL, Nollet Et AL
Ind. Defs: Brotherston&Simpson, Berardi&Tatsuta
Arithmetic: Simpson, Das

Example: Martin-Lof-style Inductive Predicates in FOL

- We give productions for each ‘inductive’ predicate P;
Qi($1) ... Qa(sn)
Pi(t)

- We take the smallest interpretation closed under the rules

N x Ox Ex

NO N sx EO E sx Osx
N] = {0,s0,ss0,...,s"0,...

[

[E] ={0,ss0,...,s*"0,...}

[0] ={s0,...,s*"""0,...}

Example: Martin-Lof-style Inductive Predicates in FOL

- We give productions for each ‘inductive’ predicate P;
Qi($1) ... Qa(sn)
Pi(t)

- We take the smallest interpretation closed under the rules

N x Ox Ex

NO N sx EO E sx 0 sx

INJo = { }
[E]o = { }
[Oo = { }

Example: Martin-Lof-style Inductive Predicates in FOL

- We give productions for each ‘inductive’ predicate P;
Qi($1) ... Qa(sn)
Pi(t)

- We take the smallest interpretation closed under the rules

N x Ox Ex

NO N sx EO E sx 0 sx

[[N]]T = {07 }
[Elx = {0, }
[O]: = { }

Example: Martin-Lof-style Inductive Predicates in FOL

- We give productions for each ‘inductive’ predicate P;
Qi($1) ... Qa(sn)
Pi(t)

- We take the smallest interpretation closed under the rules

N x Ox Ex

NO N sx EO Esx Osx
[N]. = {0, s0, }
[E]2 = {0, }

[O]2 = {sO, }

Example: Martin-Lof-style Inductive Predicates in FOL

- We give productions for each ‘inductive’ predicate P;
Qi($1) ... Qa(sn)
Pi(t)

- We take the smallest interpretation closed under the rules

N x Ox Ex

NO N sx EO E sx 0 sx

[N]s = {0,s0,ss0, }
[E]s = {0, ss0, }
[O]s = {s0, }

Example: Martin-Lof-style Inductive Predicates in FOL

- We give productions for each ‘inductive’ predicate P;
Qi($1) ... Qa(sn)
Pi(t)

- We take the smallest interpretation closed under the rules

N x Ox Ex

NO N sx EO E sx Osx
N]. = {0,s0,ss0, ...,s"0,...

[

[E]. = {0,ss0, ...,s*"0,...}
[0]. = {s0, ...,s*"*"0,...}

Example: A Cyclic Proof

(N\
ExF Nx
—— (Subst)
EzF Nz
(NR2)
EzF Nsz
= NO - (=1
NXx = Nsx y=sz,EzF Ny
— (Case 0)
EO
= OykF Ny
Ox = Esx (NRy) —— (NRy)
Ex = Osx FNO OyF Nsy
(=0 (=0
X=0FNx xX=5sy,0yFNx
(Case E)
ExkH Nx
N b,

Example: A Cyclic Proof

(N\
ExF Nx
—— (Subst)
[Left unfolding rule] Ezk Nz
(NRy)
EzF Nsz
NXx = Nsx y=sz,EzF Ny
— (Case 0)
EO
- OykF Ny
O = 26 (NRy) (NR2)
Ex= Osx FNO Oy FNWNQY
(=0 (=L)
X=0FNx xfsv,OyFNN
(Case E)
ExkF Nx
T b,

Example: A Cyclic Proof

(N\
ExF Nx
—— (Subst)
[Left unfolding rule] Ezk Nz
(NR2)
EzF Nsz
Nx = Nsx y=sz,EzF Ny
(Case 0)
= EO OykE Ny
Ox = Esx (NRy) —— (NRy)
Ex = Osx FNO OyF Nsy
(=0 (=0
X=0FNXx x=sy,0yF Nx
(Case E)
ExkH Nx
N b,

Example: A Cyclic Proof

(N\
ExF Nx
—— (Subst)
[Right unfolding rule] Ezk Nz
(NRy)
EzF Nsz
= NO (=L)
NXx = Nsx y=sz,EzF Ny
— (Case 0)
EO
- OykF Ny
Ox = Esx (NRy) ——(NRy)
Ex= Osx FNO Oy Nsy
(=0 (=0
X=0FNXx x=sy,0yF Nx
(Case E)
ExF Nx
T b,

Example: A Cyclic Proof

(N\
ExF Nx
——(Subst)
[Right unfolding rule] Ezk Nz
(NR2)
EzF Nsz
= NO (=L1)
Nx = Nsx y=sz,EzE Ny
(Case 0)
= EO T
Ox = Esx (NRy) — (NRy)
Ex= Osx FNO Oy Nsy
(=0 (=0
X=0F Nx xX=5sy,0yFNx
(Case E)
ExF Nx
T b,

Example: A Cyclic Proof

(N\
ExF Nx
—— (Subst)
[Right unfolding rule }\ EzF Nz
— (NRy)
EzF Nsz
= NO (=L1)
Nx = Nsx y=sz,EzE Ny
(Case 0)
EO
- OykF Ny
Ox = Esx (NRy) —— (NRy)
Ex = Osx FNO OyF Nsy
(=0 (=0
X=0FNXx x=sy,0yF Nx
(Case E)
ExkH Nx
N b,

Example: A Cyclic Proof

(N\
ExF Nx
—— (Subst)
EzF Nz
(NR2)
EzF Nsz
= NO - (=1
NXx = Nsx y=sz,EzF Ny
— (Case 0)
EO
= OykF Ny
Ox = Esx (NRy) —— (NRy)
Ex = Osx FNO OyF Nsy
(=0 (=0
X=0FNx xX=5sy,0yFNx
(Case E)
ExkH Nx
N b,

Example: A Cyclic Proof

(N\
ExF Nx
—— (Subst)
EzF Nz
(NR2)
EzF Nsz
= NO (=L)
NXx = Nsx y=sz,EzF Ny
— (Case0)
EO
= OykF Ny
Ox = Esx (NRy) ——(NRy)
Ex = Osx FNO OyF Nsy
(=0 (=0
X=0FNx x=5sy,0yF Nx
(Case E)
ExkH Nx
N b,

Cyclic Proof vs Explicit Induction

- To reason explicitly by induction is more complex,
involving an induction formula F

I INDo,(F) (VQ; mutually recursive with P) T, F() F A

rPtFA
- E.g. the productions = N0 and Nx = Nsx give

FEFO) T,F(X)EF(sx) T,F(t)FA

MNtEA

- Implicit induction using unfolding conceptually simpler
- Induction schemes captured using cycles

Non-well-founded Proofs: Some Meta-theory

For FOL with Inductive Definitions:

- Non-well-founded proof system LKID“ sound and cut-free complete for
standard semantics

- Explicit induction system LKID sound and cut-free complete for a
Henkin-style semantics

- Cyclic system CLKID* subsumes explicit induction
[Brotherston & Simpson, LICS'07, JL&C'11]

- CLKID“ and LKID equivalent under arithmetic
[Berardi & Tatsuta, LICS"17]
[Simpson, FoSSaCS17]

- CLKID* and LKID not equivalent in general (2-Hydra counterexample)
[Berardi & Tatsuta, FoSSaCS'17]

Transitive Closure Logic

Transitive Closure (TC) Logic extends FOL with formulas:

* (RTCxy @)(s, 1)

- @isaformula
- x and y are distinct variables (which become bound in ¢)
- sandtare terms

whose intended meaning is an infinite disjunction

S= t\/(p[S/X,t/y]
Vv (3ws . @[s/x, wr /Y] A plwa/x, t/y])
V (Fwr, wa . [s/x, wa/y] A plwn /x, wa /Y] A p[wa /X, t/Y])
V...

Transitive Closure Logic

The formal semantics:

- M is a (standard) first-order model with domain D

- vis avaluation of terms in M:

M, v k= (RTCxy ©)(s, t)

Transitive Closure Logic

The formal semantics:

- M is a (standard) first-order model with domain D

- vis avaluation of terms in M:

M,V = (RTCxy @)(S,t) &
dag,...,a, € D

Transitive Closure Logic

The formal semantics:

- M is a (standard) first-order model with domain D

- vis avaluation of terms in M:

M,V = (RTCxy @)(S,t) &
dag,...,an € D.v(s) = ap A V(t) = ap

Transitive Closure Logic

The formal semantics:

- M is a (standard) first-order model with domain D

- vis avaluation of terms in M:

M,V = (RTCxy @)(S,t) &
dag,...,an € D.v(s) = ap A V(t) = ap
AMV[x:=a;,y:=a 4] E¢ foralli<n

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality

Nat(x) = (RTCywsv = w)(0,X)

S = . S = . S = . S =
0 X

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality
Nat(x) = (RTCywsv = w)(0,X)

x <y = (RTCywsv=w)(x,y)

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality and pairing
Nat(x) = (RTCywsv = w)(0,X)
x <y = (RTCywsv=w)(x,Yy)

X=y+7"=
(RTCyw 3n1, N7 . v = (N1, n3) Aw = (sn1,5n2))((0,y), (z,X))

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality and pairing
Nat(x) = (RTCywsv = w)(0,X)
x <y = (RTCywsv=w)(x,Yy)

X=y+7"=
(RTCyw 3n1, N7 . v = (N1, n3) Aw = (sn1,5n2))((0,y), (z,X))

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality and pairing
Nat(x) = (RTCywsv = w)(0,X)
x <y = (RTCywsv=w)(x,y)

X=y+7"=
(RTCyw 3n1, N7 . v = (N1, n3) Aw = (sn1,5n2))((0,y), (z,X))

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality and pairing
Nat(x) = (RTCywsv = w)(0,X)
x <y = (RTCywsv=w)(x,y)

X=y+7"=
(RTCyw 3n1, N7 . v = (N1, n3) Aw = (sn1,5n2))((0,y), (z,X))

(0,¥)

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality and pairing
Nat(x) = (RTCywsv = w)(0,X)
x <y = (RTCywsv=w)(x,y)

X=y+7"=
(RTCyw 3n1, N7 . v = (N1, n3) Aw = (sn1,5n2))((0,y), (z,X))

<07y> S === (SZO7SZy>

Example: Arithmetic in TC

- Take a signature X = {0, s} + equality and pairing
Nat(x) = (RTCywsv = w)(0,X)
x <y = (RTCywsv=w)(x,y)
X=y+7"=
(RTCyw 3N1, Ny . v = (N, n2) AW = (sns,sn2))((0,y), (z,X))

- The following characterise natural numbers in TC:

Vx.SX # 0
VX, y.s(x) =s(y) > x=y
Vx . Nat(x)

Why Study TC and its Non-well-founded Proof Theory?

- Provides a uniform way to express inductive definitions
- Single framework for modelling many areas of CS
- Better for automated reasoning?

- It is a minimal, yet expressive, extension of FOL

Theorem (Avron '03, Thm. 3)
All finitely inductively definable relations' are definable in TC.

A. Avron, Transitive Closure and the Mechanization of Mathematics.

- Alternative setting for studying cyclic vs explicit induction
- No need to ‘choose’ predicates up-front
- Uniformity makes meta-theory more straightforward
- Displays some subtle but important differences with FOL+ID

tas formalised in: S. Feferman, Finitary Inductively Presented Logics, 1989

10

Implicit and Explicit Induction Rules for TC

reflexivity
F (RTCGy)(t, 1)

Mk Av (RTCXJ/ 90)(57 l') M= A7 L)D[r/xv t/y]
step

FE A (RTCy @)(s, 1)

Ms=tEA T,(RTCye)(s,2),elz/x,t/y] F A
case-split (z fresh)
I, (RTCxy ©)(s,t) F A

n

Implicit and Explicit Induction Rules for TC

reflexivity
F (RTCGy)(t, 1)

Mk Av (RTCXJ/ 90)(57 l') M= A7 L)D[r/xv t/y]
step

FE A (RTCy @)(s, 1)

Ms=tFA T,(RTCy»)(s,2),[z/x,t/y]F A
case-split (z fresh)
I, (RTCqy @)(s,t) = A

n

Implicit and Explicit Induction Rules for TC

reflexivity
F (RTCGy)(t, 1)

Mk Av (RTCXJ/ 90)(57 l') M= A7 L)D[r/xa t/y]

step
FE A (RTCy @)(s, 1)

Ms=tEA T,(RTCye)(s,2),elz/x,t/y] F A
case-split (z fresh)
I, (RTCxy ©)(s,t) F A

FEAYPIs/X T, 000y) F A Ply/x] Tgft/x] - A

induction
I, (RTCy p)(s,t) A

x g fu(l,A)andy & fu(l, A,)
11

Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY

12

Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY

- Systems with arithmetic are equivalent

RTCo+A CRTCY +A

12

Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY

- Systems with arithmetic are equivalent

RTC6+A |[«——— PAg CRTCE+A

C & Avron, 15 1

Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY

- Systems with arithmetic are equivalent

w

RTC6+A PAG CAc CRTCE+A

C & Avron, 15 1

Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY

- Systems with arithmetic are equivalent

w

RTC6+A PA CA CRTCE+A
G G G &R G

C & Avron, 15 1

Proof-theoretic Results for TC

- Non-well-founded system RTC¢ sound + cut-free complete for
standard semantics

- Explicit induction system RTCs sound + cut-free complete for a
Henkin-style semantics

- Cyclic system subsumes explicit induction
RTCs € NCRTCY (non-overlapping cycles) C CRTCY

- Systems with arithmetic are equivalent

- 2-Hydra counterexample does not show RTCs € CRTCY¢

- Relies on not being able to express ordering on numbers
- TC allows all inductive definitions ‘at once’

12

Future Work

- open question of equivalence for RTCs, NCRTCZ and CRTC{
- Implementing CRTC¢ to support automated reasoning.
- Use TC to better study implicit vs explicit induction.

- Adapt TC for coinductive reasoning?

13

(Non-reflexive) transitive closure is a least fixed point

RT = pX.Wr(X) Vp(S)=RU(R0S)

The greatest fixed point gives the transitive co-closure

- Pairs (s, t) in vX.Wg(X) are those connected by a possibly
infinite number of R-steps

- We can write (RTG.Y ¢)(s,t) to denote that (s, t) is in the
reflexive, transitive co-closure of ¢

We have the following standard semantics

M,v = (RTGE ©)(s,t) &
d)izo - Vi > 0.a; = V(t) VM, V[x = a;,y = Q1] F ¢

E.g. The following formula defines possibly infinite lists

(RTGYS, 3z . x = cons(z,y))(v, [1)

