
Realizability in Cyclic Proof: Extracting
Ordering Information for Infinite Descent

Reuben N. S. Rowe1 and James Brotherston2

1 School of Computing, University of Kent, Canterbury, UK
2 Dept. of Computer Science, University College London, UK

Abstract. In program verification, measures for proving the termination
of programs are typically constructed using (notions of size for) the data
manipulated by the program. Such data are often described by means of
logical formulas. For example, the cyclic proof technique makes use of
semantic approximations of inductively defined predicates to construct
Fermat-style infinite descent arguments. However, logical formulas must
often incorporate explicit size information (e.g. a list length parameter)
in order to support inter-procedural analysis.
In this paper, we show that information relating the sizes of inductively
defined data can be automatically extracted from cyclic proofs of logical
entailments. We characterise this information in terms of a graph-theoretic
condition on proofs, and show that this condition can be encoded as
a containment between weighted automata. We also show that under
certain conditions this containment falls within known decidability results.
Our results can be viewed as a form of realizability for cyclic proof theory.

Keywords: Approximation semantics · Cyclic proof · Entailment · Inductive
predicates · Infinite Descent · Realizability · Sequent calculus · Weighted automata

1 Introduction

In program verification, it is well known that proving termination of a par-
ticular program depends on identifying a well-founded measure that decreases
monotonically during the program’s execution. Thus, since the measure cannot
decrease infinitely often, no execution of the program can be infinite. In practice,
termination measures are typically derived from the data manipulated by the
program itself (cf. size-change termination [14]), and in particular from notions
of the size of its data structures.

For example, consider the following code, which “shuffles” a linked list with
head pointer x, using an auxiliary list reversal procedure rev:

proc shuffle(*x) { if (x != nil) { y := [x]; rev(y); shuffle(y); } }

where the syntax [x] denotes pointer dereferencing. The termination of the
shuffle(x) procedure can be deduced by taking as termination measure the
length of the list from x. The call to rev and the recursive call to shuffle both

take place on the pointer y to the tail of the list. However, we also crucially rely
upon the fact that the reversal procedure rev does not increase the size of the
list. In a Hoare-style verification, this information is needed when we employ the
sequential composition rule:

{P} rev(y) {Q} {Q} shuffle(y) {R}

{P} rev(y);shuffle(y) {R}

Here, the information that rev maintains the size of the list must be reflected in
the relationship between its pre- and postconditions P and Q (which are logical
formulas). Typically, this must be done by endowing these formulas with explicit
size information; e.g., we could write an inductive predicate list(y, n) representing
linked lists in memory, with an explicit length parameter (cf. [3]).

In this paper, we show that this kind of information, relating the sizes of
inductively defined data, can often be extracted automatically from cyclic proofs
of logical entailments. Cyclic proofs can be seen as formalising proof by regular
infinite descent [7]; they are derivation trees with “backlinks” from (some) leaves
to interior nodes, subject to a global soundness condition ensuring that all infinite
paths correspond to sound infinite descent arguments. Cyclic proof systems have
been developed for a wide variety of settings ranging from pure logic [4, 5] to Hoare-
style logics for program termination [6, 17] and other temporal properties [9];
the common denominator is the presence of logical data defined using fixed
points. The soundness of cyclic proofs relies on infinite descent over the semantic
approximations of these fixed points, which can be seen as capturing a notion
of size for the corresponding data. Suitable entailments for which to construct
these cyclic proofs may be formulated by procedures for verifying the correctness
of (fragments of) programs. For example, a procedure to verify the Hoare triple
{list(y)} rev(y) {list(y)} might result in the entailment y 7→ x ∗ list(x) ` list(y) of
separation logic [11, 16]. Such entailments are commonly referred to as verification
conditions, since they must be discharged independently.

Relationships between the sizes of inductive data are reflected by inclusions
between the approximations of the fixed point semantics. To infer these inclusions,
we formulate a novel condition on the structure of cyclic entailment proofs (Def. 8)
which is sufficient to extract this information (Thm 2). This condition is equivalent
to an inclusion between weighted automata that can be constructed from the
cyclic proofs (Thm 3), and, when the cyclic proof is suitably structurally well-
behaved, this inclusion becomes decidable (Thm 4). For simplicity, we present our
results for the well-known cyclic proof system CLKIDω for first order logic with
inductive definitions [4, 7]. However, we stress that our results are not limited to
this setting: in a separate technical report we formulate and prove our results for
a general, abstract notion of cyclic proof [18]. Consequently our results also hold,
e.g. for separation logic with inductive predicates [5, 6], and so can be deployed
in our cyclic proof framework for proving program termination based on this
logic [17].

The remainder of this paper is structured as follows. First, Section 2 gives an
introductory example motivating our new structural condition for extracting size

⇒ N 0

Nx⇒ N sx

⇒ E 0

Ox⇒ E sx

Ex⇒ O sx

(N R1)
` N 0

(=L)
x = 0 ` Nx

Ex ` Nx
(Subst)

E z ` N z
(N R2)

E z ` N sz
(=L)

y = sz,E z ` N y
(Case O)

O y ` N y
(N R2)

O y ` N sy
(=L)

x = sy,O y ` Nx
(Case E)

Ex ` Nx

Fig. 1. Inductive definitions of N, E, and O, and cyclic proof of Ex ` Nx.

relationships from cyclic proofs. Section 3 then reprises the basics of first-order
logic with inductive predicates and its cyclic proof system CLKIDω from [4, 7].
In Section 4 we formulate our structural condition on cyclic proofs and prove its
soundness. In Section 5 we show how this condition can be encoded as an inclusion
between weighted automata and formulate further graph-theoretic conditions on
cyclic proofs under which this is decidable. Section 6 concludes.

For space reasons, we elide the detailed proofs of the results in this paper,
but they can be found in our longer technical report [18].

2 Motivating Example

Figure 1 gives inductive definitions of predicates N, E and O (intended to
capture the properties of being a natural number, even number and odd number
respectively) and a cyclic proof of the sequent Ex ` Nx. Note that E and O are
mutually defined. The (N Ri) rules indicate a right-unfolding of the N predicate,
and the (Case E) and (Case O) rules a left unfolding (or case analysis) on the
predicates E and O respectively. This cyclic proof is sound since its only infinite
path contains an infinite, unbroken “trace” of the E and O predicates in the
antecedent of each sequent that “progresses” infinitely often as these predicates
are unfolded.

This condition ensures that the proof is valid because it can be related to
approximations of the semantics [[·]] of the predicates, which form an ordinal-
indexed chain [[·]]0 ≤ [[·]]1 ≤ . . . ≤ [[·]]α ≤ . . . ≤ [[·]]. If Ex ` Nx is invalid then, by
local soundness of the rules, so is every sequent on the infinite path in the proof.
The trace along this path then corresponds to a non-increasing subsequence of
the ordinals in this chain, which strictly decreases when the trace progresses.
Since the trace progresses infinitely often, we obtain an infinitely decreasing chain
of ordinals, which is a contradiction.

Interestingly, it turns out that, by examining the structure of this cyclic proof
more closely and also considering the (right) unfoldings of N, we can deduce that
the αth approximation of E is also included in the αth approximation of N, i.e.,
[[Ex]]α ⊆ [[Nx]]α. Intuitively, this is because on every maximally finite path in
the proof along which N is unfolded, the mutually defined E and O are together
unfolded at least as often as N. Thus when x is included in some approximation
of E, it is already included in the corresponding approximation of N. Later, in
Section 4, we will formalise this intuition as an additional syntactic, trace-based
condition on cyclic proofs. The upshot is that we may form “traces”, as described
above, between instances of E t and N t (for any term t) in the antecedent of
sequents, even though they are not related by their inductive definitions.

3 Cyclic Proofs for First Order Logic

In this section we summarise a variant of CLKIDω, a cyclic proof system for first
order logic with inductive predicates [4, 7].

3.1 First Order Logic with Inductive Definitions

We assume the standard syntax and semantics of first order logic. For simplicity,
we take models to be valuations of term variables to objects in the semantic
domain. A sequent Γ ` ∆ comprises two sequences of formulas: an antecedent Γ
and a consequent ∆. For a sequent S = Γ ` ∆, we write m |= S to mean that
the model m satisfies at least one formula in ∆ whenever it satisfies all fomulas
in Γ . Conversely, we write m 6|= S to mean that m satisfies all fomulas in Γ and
no formula in ∆. A sequent S is valid when m |= S for all models m.

We give the semantics of predicate symbols in the signature by means of sets
of inductive productions, in the style of Martin-Löf [15].

Definition 1 (Inductive Definition Set). An inductive definition set Φ is a
finite set of productions, each of the form P1 t1, . . . ,Pj tj ⇒ P0 t0, consisting of
a finite set of predicate formulas called premises and a predicate formula called
the conclusion. We say that P1 t1, . . . ,Pj tj ⇒ P0 t0 is a production for P0.

Predicate interpretations X are functions from predicate formulas to sets
of models. We write [[P t]]X to denote X(P t). An inductive definition set Φ
induces a characteristic operator ϕΦ on predicate interpretations, which applies
(substitution instances of) the productions in Φ, as follows (where θ is a substition
of terms for variables):

ϕΦ(X)(P tθ) = {m | P1 t1, . . . ,Pj tj ⇒ P t ∈ Φ
and m ∈ [[Pi tiθ]]X for all i ∈ {1, . . . , j}}

We define a partial ordering ≤ on the set of predicate interpretations I by
X ≤ X ′ ⇔ ∀F. X(F) ⊆ X ′(F). One can note that (I,≤) is a complete lattice

and the least element, denoted by X⊥, maps all predicate formulas to the
empty set. Moreover, characteristic operators are monotone with respect to ≤,
thus admitting the following (standard) construction that builds a canonical
interpretation via a process of approximation [1, 7]:

Definition 2 (Interpretation of Inductive Definitions). We interpret an
inductive definition set Φ as the least prefixed point of its characteristic oper-
ator, µX.ϕΦ(X). This least prefixed point, denoted by [[·]]Φ, can be approached
iteratively being the supremum of the (ordinal-indexed) chain X⊥ ≤ ϕΦ(X⊥) ≤
ϕΦ(ϕΦ(X⊥)) ≤ . . . ≤ ϕαΦ(X⊥) ≤ . . .; each ϕαΦ(X⊥) is an approximation of [[·]]Φ
and is denoted by [[·]]Φα. When the specific inductive rule set is not of immediate
relevance we leave it implicit, writing [[·]] and [[·]]α.

3.2 The Cyclic Proof System

The proof system is essentially Gentzen’s sequent calculus, LK, in which deriva-
tions are permitted to contain cycles. The full proof system is given in Appendix A.
To the standard proof rules of LK with equality and substitution we add intro-
duction rules for the inductive predicate symbols, derived from their productions.
Each predicate P has a single left introduction rule, (Case P), which performs
a case split over the full set of productions for P, and every ith production for
P induces a distinct right introduction rule (P Ri). Furthermore, we remove the
right introduction rules for implication and negation since they invalidate the
soundness of our realizability condition (specifically, not all instances of these
rules satisfy Property 1, in Section 4 below). Although this system is actually
quite weak, we believe these particular rules do not play a crucial role in deriving
entailments between inductive predicates in general. Note we do not need them
in our examples.

We view a cyclic derivation (or pre-proof) as a directed graph; each sequent is
a node of the graph, and edges go from conclusion to premise. To track sequences
of decreasing approximations, we use the notion of a trace in a pre-proof P.

Definition 3 (Traces).
(i) A trace value is a predicate formula (e.g. Ex).

(ii) A left-hand (resp. right-hand) trace is a possibly infinite sequence τ of
trace values in which those of each successive pair, (τi, τi+1), occur in the
antecedents (resp. consequents) of successive nodes in P, and either:
a) τi = τi+1;
b) τi and τi+1 occur as part of the conclusion and premise of a substitution

rule and τi is the result of applying the rule’s substitution to τi+1; or
c) τi and τi+1 occur as part of the conclusion and premise of a (Case P)

or (P Ri) rule, with τi of the form P t and τi+1 derived from the body of
the production for P associated with the premise of the rule (i.e. τi+1 is
derived from the unfolding of τi).

We call each pair (τi, τi+1) a trace pair. In the case that (c) holds, we say
the trace progresses at point i and call (τi, τi+1) a progressing trace pair.

(E R1)
(5) ` E 0,¬E 0

(E R1)
(8) ` E 0

(¬L)
(7) ¬E 0 `

(WR)
(6) ¬E 0 ` O 0

(Cut)
(4) ` E 0,O 0

(=L)
(2) x = 0 ` Ex,Ox

(1) Nx ` Ex,Ox
(Subst)

(12) N y ` E y,O y
(PR)

(11) N y ` O y,E y
(O R)

(10) N y ` O y,O sy
(E R2)

(9) N y ` E sy,O sy
(=L)

(3) x = sy,N y ` Ex,Ox
(Case N)

(1) Nx ` Ex,Ox

Fig. 2. A cyclic proof of the entailment Nx ` Ex,Ox; each node is numbered uniquely,
and the consequent trace pairs are indicated using under- and overlines.

(iii) For finite traces τ , we write | τ | for the length of the trace and denote by
prog(τ) the number of progression points in τ , which we call the sum of τ .

(iv) For an inference rule r = 〈S0, (S1, . . . , Sn)〉 with trace values τ and τ ′ occur-
ring in the conclusion S0 and jth premise Sj , respectively, we write δA(r,j)(τ, τ

′)

(resp. δC(r,j)(τ, τ
′)) if (τ, τ ′) forms a left-hand (resp. right-hand) trace. We

call δ the trace pair relation (see Appendix B).

When the meaning is clear from the context, we may sometimes simply write
δr(τ, τ

′). In an abuse of notation we write δr(τ, τ
′) = 1 to indicate that (τ, τ ′)

is a progressing trace pair, and δr(τ, τ
′) = 0 otherwise. When τ occurs in the

conclusion of rule r, but there are no j and τ ′ such that δ(r,j)(τ, τ
′) is defined,

then we say τ is terminal for r.

Example 1. In Fig. 2 we show a cyclic proof of Nx ` Ex,Ox, i.e. that every
natural number is either even or odd. Each N t in an antecedent is related to the
N t′ in its premise(s); the trace pair relation for the consequent trace values is
more complex, and we indicate it visually using under- and overlines.

A pre-proof is valid if it satisfies the following condition on traces.

Definition 4 (Global Soundness). A pre-proof is globally sound when every
infinite path has some tail that is followed by a left-hand trace which progresses
infinitely often; when this holds we say that it is a (cyclic) proof.

The global soundness of a pre-proof can be checked using Büchi automata.

Proposition 1 ([7, Prop. 7.4]). It is decidable if a pre-proof is globally sound.

Example 2. The pre-proof in Fig. 1 has only one infinite path (along the cycle),
and there is a left-hand trace along this path formed by the alternating occurrences
of the E and O predicates in the antecedent of each sequent. This progresses at
two points around each cycle on traversing the (Case) rules and therefore the

pre-proof is globally sound. A similar argument shows the pre-proof in Fig. 2 is
also globally sound: the (unique) infinite left-hand trace progresses once each
time around the loop.

We may think of models as realizers of trace values. We define a trace
realization function to specify which models realize trace values and how quickly
they realize them.

Definition 5 (Trace Realization Function). The trace realization function
Θ maps models to the least approximations of trace values in which they appear:

Θ(τ,m)
def
= min ({α | m ∈ [[τ]]α})

The value assigned by Θ corresponds to the ordinal position of this approximation
in the chain constructed in Definition 2. Notice that a model may not necessarily
satisfy a given predicate formula, so Θ is partial and we write Θ(τ,m)↓ to indicate
that Θ is defined on (τ,m).

The global soundness condition ensures the validity of cyclic proofs because
the trace realization function enables us to relate traces to descending chains
of approximations. If a cyclic proof were to contain invalid sequents then the
trace realization function could be used to derive an infinite descending chain of
ordinals and hence a contradiction.

Theorem 1 ([7, Prop. 5.8]). If Γ ` ∆ has a cyclic proof then it is valid.

4 Extracting Semantic Inclusions from Cyclic Proofs

We are aiming to deduce inclusions between the semantic approximations of
predicates (viz. trace values), e.g. that whenever there is a model m ∈ [[Ex]]α
then also m ∈ [[Nx]]α (cf. Fig. 1). We can express this using the trace realization
function as Θ(Nx,m) ≤ Θ(Ex,m), since predicate approximations increase
monotonically. We will deduce such relationships from sequents Γ [τ] ` ∆[τ ′] in
cyclic proofs (where Γ [τ] indicates that the trace value τ occurs in Γ), and so
in general we deduce such orderings within a context, Γ . Thus we will write
Γ : τ ′ ≤ τ to mean:

for all models m, if m |= Γ and Θ(τ ′,m)↓ then Θ(τ ′,m) ≤ Θ(τ,m),

where m |= Γ denotes that m satisfies all the formulas in Γ . We formulate an
additional trace condition for cyclic proofs (Def. 8, below) and show that the
existence of a proof satisfying this extra condition is sufficient to guarantee this
ordering. We say that such a proof realizes the ordering, and so refer to the new
trace condition as the realizability condition.

This realizability condition will express that for every right-hand trace of a
certain kind, we can find a left-hand trace which ‘matches’ it in a sense that we
will make precise below. We specify the kinds of right-hand traces of interest
using the following concepts.

Definition 6 (Maximal Right-hand Traces). A finite right-hand trace τ
(| τ | = n) following a path in a cyclic proof is called maximal when it cannot be
extended any further, i.e. there is no trace value τ ′ and premise of the final node
in the trace for which δr(τn, τ

′) is defined (where r is the rule used to derive the
final node). If the final node in the trace is derived using an axiom, then we say
the trace is partially maximal; otherwise it is called fully maximal.

Fully maximal traces are ones whose final trace value is introduced by an
inference rule, e.g. weakening, as in node (6) of the proof in Fig. 2.

Definition 7 (Groundedness and Polarity). We call a trace value derivable
using a base production (i.e. a production without premises) ground, e.g. N 0
or E 0. A grounded trace is one whose final trace value is ground. When the
antecedent of a sequent contains the negation of a ground predicate instance, we
say that it is negative. A positive sequent is one with no such negated predicate. A
negative (resp. positive) trace is one whose final sequent is negative (resp. positive).

For example, in Fig. 2 the right-hand trace (1,Ex), (2,Ex), (4,E 0), (5,E 0)
is grounded, but (1,Ox), (2,Ox), (4,O 0), (6,O 0) is not. Moreover, the latter
trace is negative. Note that, by definition, all models m must satisfy ground
predicate instances τ and Θ(τ,m) = 1. Thus no models may satisfy the antecedent
of a negative sequent. This means that we can exclude negative traces when
considering the realizability of trace value orderings. We can now formulate the
realizability condition itself.

Definition 8 (The Realizability Condition). We write P : τ ≤ Γ [τ ′] when
P is a cyclic proof containing a node Γ [τ ′] ` ∆[τ] satisfying the following: for
every positive maximal right-hand trace τ starting at τ , there exists a left-hand
trace τ ′ starting with τ ′ and following some prefix of the same path in the proof
such that:

1. prog(τ) ≤ prog(τ ′) and
2. either a) τ is grounded; or b) τ is partially maximal, | τ ′ | = | τ |, and the

final trace values in τ and τ ′ match.

Consider the proof P1 in Fig. 2.

Example 3 (P1 : Ex ≤ Nx). The right-hand trace from Ex following the path
(1)(2)(4)(5) is positive, maximal and grounded. The left-hand trace (1) follows
this path and the sum of both traces is 0. The next longest maximal right-hand
trace traverses the cycle once, following the path (1)(3)(9) . . . (12)(1)(2)(4)(6)
along the right-hand side of the (Cut) rule. However, this trace is negative and
so we need not consider it. The other positive maximal traces are obtained
by following the cycle an even number of times before ending at node (5); the
progression points occur at (E R2) on the odd-numbered traversals and (O R2) on
the even-numbered ones, which is matched by progressions in the corresponding
left-hand trace at the (Case) rule. These traces also suffice to demonstrate that
P1 : Ox ≤ Nx holds.

(N R1)
(4) ` N 0

(=L)
(2) x = 0 ` Nx

(Ax)
(10) N ss0 ` N ss0

(N R2)
(9) N ss0 ` N sss0

(=L)
(7) y = sss0,N ss0 ` N y

(1) Ex ` Nx
(Subst)

(12) E z ` N z
(N R2)

(11) E z ` N sz
(=L)

(8) y = sz,E z ` N y
(Case O)

(6) O y ` N y
(N R2)

(5) O y ` N sy
(=L)

(3) x = sy,O y ` Nx
(Case E)

(1) Ex ` Nx

Fig. 3. A cyclic proof of the entailment Ex ` Nx, accommodating the extra production
N ss0 ⇒ O sss0 for O.

Notice that we can obtain a globally sound cyclic proof of Nx ` Ex,Ox
without using (Cut), by immediately closing node (4) with (E R1) (See Fig. 7
in Appendix C). In this case the now (partially) maximal right-hand trace from
Ox in node (1) to O 0 in node (4) is positive and so would have to be considered.
Unfortunately this trace is not grounded, nor does there exist a matching left-
hand trace of equal length ending with O 0, and so this simpler (and arguably
more natural) proof does not satisfy the realizability condition.

It may seem odd that we cannot use the simpler proof to realize the ordering.
We must discount the right-hand traces ending with O 0 since they have no
models; yet it is not possible in general to determine syntactically when predicate
instances do not have models. Our approximation, using negative traces, works
at the level of entire sequents and thus the traces ending with E 0 (which we do
consider) must be separated from those ending in O 0 (which we must not). This
highlights the syntactic nature of our results.

Now consider the proof P2 of Ex ` Nx in Fig. 3, which is a modified version
of the proof in Fig. 1 that accommodates an additional production for O.

Example 4 (P2 : Nx ≤ Ex). The right-hand trace following (1)(2)(4) is maximal,
positive and grounded and the left-hand trace (1,Ex) follows (a prefix of) the
same path; the sum of both of these traces is 0. Similarly, the positive right-hand
trace following (1)(3)(5)(6)(7)(9)(10) is not grounded, but is partially maximal
and there is a left-hand trace of equal length following this same path with a
matching final trace value. The sum of both traces in this case is 2: the right-hand
trace progresses once at each instance of the (N R2) rule; the left-hand one at the
(Case) rules. Other maximal right-hand traces are obtained by prefixing the cycle
(1) . . . (12) to the two already considered; notice the left-hand trace following the
cycle progresses an equal number of times.

Soundness of Realizability. To show that the realizability condition is suf-
ficient to realize trace value orderings, we extend the concept that models
realize trace values and use sequences of models to realize traces. We say
that a sequence of models m realizes a left-hand trace τ when for every
sequent Γi[τi] ` ∆i in the corresponding path we have that mi |= Γi and
Θ(τi+1,mi+1) + δ(τi, τi+1) ≤ Θ(τi,mi). Dually, m realizes a right-hand trace
τ when mi |= ∆i and Θ(τi+1,mi+1) + δ(τi, τi+1) ≥ Θ(τi,mi) for every sequent
Γi ` ∆i[τi] in the path. Trace realizers guarantee the following.

Lemma 1. If m realizes a trace τ of length n then Θ(τn,mn) + prog(τ) ≤
Θ(τ1,m1) holds if τ is a left-hand trace, and Θ(τn,mn) + prog(τ) ≥ Θ(τ1,m1)
if τ is a right-hand trace.

We say a rule instance is valid when its conclusion and premises are all valid
sequents.3 We note the following property of the trace realization function.

Property 1 (Descending Model Property). For all valid, non-axiomatic rule in-
stances r = 〈Γ [τ] ` ∆[τ ′], (S1, . . . , Sn)〉 and models m |= Γ , there exists some
Sj = Σ ` Π and a model m′ |= Σ such that: either τ ′ is terminal for r, or there
exists τ ′′ with δ(r,j)(τ

′, τ ′′) defined; furthermore, for all trace values τ ′′:

1. if δA(r,j)(τ, τ
′′) = α and Θ(τ,m)↓, then Θ(τ ′′,m′)↓ and Θ(τ ′′,m′) + α ≤

Θ(τ,m)

2. if δC(r,j)(τ, τ
′′) = α and Θ(τ ′,m)↓, then Θ(τ ′′,m′)↓ and Θ(τ ′′,m′) + α ≥

Θ(τ ′,m)

This property asserts that the trace pair relation soundly bounds the difference
in how quickly models realize trace pairs. In the case of antecedents this difference
is bounded from above, and for consequents from below. The descending model
property guarantees every model of a consequent trace value in a globally sound
cyclic proof corresponds to a realizer of a positive maximal right-hand trace.

Lemma 2 (Trace Realization). If P is a globally sound cyclic proof containing
a node Γ [τ ′] ` ∆[τ] and m is a model such that m |= Γ and Θ(τ,m)↓, then there
exists a positive, maximal right-hand trace τ starting from τ and a sequence of
models m with m1 = m that realizes it; moreover, m realizes all left-hand traces
following the same path starting from τ ′.

As a result, the realizability condition is sufficient to guarantee trace value
orderings (see the technical report for a detailed proof [18, Thm. 22]).

Theorem 2 (Soundness of Realizability). If P : τ ≤ Γ [τ ′] then Γ : τ ≤ τ ′.

3 Note this is a stronger property than local soundness, which only requires the
conclusion to be valid whenever all of the premises are.

5 Computing Realizable Orderings using Weighted
Automata

In this section, we demonstrate a close connection between cyclic proofs and
weighted automata. Under this correspondence, the realizability condition can
be seen to be equivalent to an inclusion between particular weighted automata,
allowing us to make use of known decision procedures in the world of weighted
automata for deciding the realizability condition.

Weighted automata generalise standard finite state automata, assigning to
words over alphabet Σ values from a semiring (V,⊕,⊗) of weights (see [8]).

Definition 9 (Weighted Automata). A weighted automaton A is a tuple
(Q, qI , F, γ) consisting of a set Q of states containing an initial state qI ∈ Q, a
set F ⊆ Q of final states, and a weighting function γ : (Q×Σ ×Q)→ V .

A run of A over a (finite) word σ1 . . . σn ∈ Σ∗ is a sequence of states q0 . . . qn
such that (qj−1, σj , qj) ∈ dom(γ) for each σj . We write ρ : q0

w−→ qn to denote
that ρ is a run over w. The value V(ρ) of the run is the (left-to-right) semiring
product of the weight γ(qj−1, σj , qj) of each transition. If q0 = qI and qn ∈ F
then ρ is called an accepting run. The value of a word is the semiring sum of
the values of all the accepting runs of that word, and is undefined if there are
no such runs. Sum automata are weighted automata over the max-plus semiring
(N,max,+), which is also referred to as the arctic semiring.

The (quantitative) language LA of an automaton A is the (partial) function
over Σ∗ computed by the automaton. The standard notion of inclusion between
regular languages extends naturally to quantitative languages:

Definition 10 (Weighted Inclusion). L1 ≤ L2 if and only if for every word
w such that L1(w) is defined, L2(w) is also defined and L1(w) ≤ L2(w).

The inclusion problem for sum automata is known to be undecidable [13, 2],
but has recently been shown to be decidable for finite-valued sum automata, for
which a finite bound can be given on the number of distinct values for runs over
a given word [10].

5.1 Cyclic Proofs as Sum Automata

Given a node n = Γ [τ] ` ∆[τ ′] in a cyclic proof P we construct two sum automata
A τ
P and C τ ′

P called left-hand and right-hand trace automata, respectively. Each
state (n, τ) of a trace automaton corresponds to a particular trace value τ in
some node n of P , and the transitions are given by the trace pair relation. That is,
there is a transition from (n, τ) to (n′, τ ′) with weight k ∈ {0, 1} precisely when
n and n′ are the conclusion and jth premise, respectively, of a rule instance r
with δ(r,j)(τ, τ

′) = k. The letter accepted on the transition is the node n′. Thus, a
run of one of these automata corresponds to a trace in P , and the word accepted
by the run is the path followed by the trace.

qAstart

(1,Ex) (12,E z) (11,E z) (8,E z) (6,O y)

(5,O y)(3,O y)

(7,N ss0) (9,N ss0)

(10,N ss0)⊥

>

(1),[0]

(2), [0]

(3), [0]

(3),[1]
(5),[0]

(6),[0]

(7),[1](8),[1](11),[0](12),[0](1),[0] (9),[0]

(10),[0]

(N ss0),[0]

(10),[0]

(9),[0](7), [0]
(8), [0](11),[0](12),[0](1),[0]

(6),[0]

(5),[0]

(1), [0]
...

(12), [0]

Fig. 4. The left-hand trace automaton A E x
P for the proof of Ex ` Nx in Fig. 3.

qCstart (1,Nx)

(2,Nx)

(3,Nx)

(4,N 0)

(5,N sy) (6,N y) (7,N y)

(8,N y)

(9,N sss0) (10,N ss0)

(11,N sz)(12,N z) ⊥

(1),[0]

(2),[0]

(3),[0]

(4),[0]

(5),[0] (6),[1] (7),[0]

(8),[0]

(9),[0]

(11),[0]

(10),[1]

(12),[1]

(N ss0),[0]

(1),[0]

Fig. 5. The right-hand trace automaton C N x
P for the proof of Ex ` Nx in Fig. 3.

For lack of space, we elide the formal definition of the automata construction
(see Appendix D and [18, Def. 23]), but in Figs. 4 and 5 we show the trace
automata corresponding to the proof in Fig. 3. Accepting states are indicated by
a double circle, and for each transition we show the node accepted in parentheses
and the weight of the transition in brackets. We draw attention to the following:

– The left-hand trace automaton also includes (zero-weight) transitions to a
state> with a self-transition accepting any node. Thus, the weight it computes
for a path is the maximum value of prog(τ) over all traces τ following a
prefix of that path. In contrast, the right-hand automaton considers only
traces following the full path.

– Each automaton also includes a state⊥, the transitions to which accept a trace
value rather than a node. The effect of this is that any word w = n1 . . . nkτ
accepted by the right-hand automaton corresponds to a partially maximal
right-hand trace ending in τ . If the left-hand automaton also accepts w, then
we know there is a matching left-hand trace of equal length (cf. Def. 8).

– The accepting states of right-hand trace automata (excluding ⊥) correspond
to terminal trace values in non-axiomatic rules instances; when each such
trace value is ground, we say the trace automaton is grounded.

This construction results in automata polynomial in the size of the proof P , and
allows the realizability condition to be encoded by the inclusion of the right-hand
trace automaton within the left-hand one.

Theorem 3. P : τ ≤ Γ [τ ′] holds if and only if C τ
P ≤ A τ ′

P and C τ
P is grounded.

5.2 Decidability of the Realizability Condition

We now demonstrate that under certain conditions our trace automata become
finite-valued, and so we can decide inclusion between them in polynomial time [10].

Remark 1. The trace pair relation δ satisfies an injectivity property4. Namely,
if both δ(r,j)(τ

′, τ) and δ(r,j)(τ
′′, τ) are defined, then τ ′ = τ ′′. This means that,

along any given path, traces may only branch and never converge. Consequently,
there is at most one trace along a given path between an initial and final trace
value. This immediately gives the following result.

Lemma 3. Every right-hand trace automaton CτP is finite-valued.

Unfortunately, because left-hand trace automata include the state > and
associated transitions, they are not in general finite-valued. When a proof contains
a (left-hand) trace cycle (of the form (n1, τ1) . . . (nj , τj) with nodes n1 = nj and
trace values τ1 = τj), the resulting left-hand trace automaton will contain the
following configuration of states:

n1

τ1
. . .

nj−1

τj−1
> n1, . . . , nj−1

n2 nj−1

n1

n1

That is, there are runs (nj−1, τj−1)
w−→ (nj−1, τj−1), (nj−1, τj−1)

w−→ >, and

> w−→ > with w = n1 . . . nj−1. This results in the automaton being infinitely
ambiguous [19, §3] and thus when the weight of the cycle is non-zero it is also
infinite-valued.

To avoid this we modify our construction to produce a series of approximate
left-hand trace automata A [k]τP , where k > 0 is called the degree of approximation.
These refine the ‘sink’ state > into a finite chain of k sink states for each node
(thus, these approximate automata are a factor of k larger than the original
automaton). In Appendix D, we show the approximate automaton of degree k = 2
corresponding to the proof in Fig. 3. Once a run enters a chain of sink states >1..k

n ,
only a finite number of further occurrences of the node n are accepted. In contrast,
the full automaton accepts paths with any number of further occurrences. This
construction approximates the original one and results in finite-valued automata.

Lemma 4. Every approximate left-hand trace automaton A [k]τP is finite-valued.

Lemma 5 (Soundness of Approximate Automata). For each k > 0, the
inclusion A [k]τP ≤ A τ

P holds.

4 excepting certain instances of the (=L) rule, e.g. Px,Px ` ∆⇒ Px,P y, x = y ` ∆.
However, note that one can check whether any given instance of (=L) satisfies the
injectivity property, and exclude proofs containing such instances from consideration.

The following further restrictions on proofs allow a relative completeness
result. They are expressed in terms of simple trace cycles (containing no repeated
trace values other than the first and last). A binary trace cycle is a pair of trace
cycles following the same path.

Definition 11. Let S = Γ [τ ′] ` ∆[τ] be a node in a cyclic proof P. We say
P is dynamic (w.r.t. S) when prog(τ) > 0 for every simple left- and right-
hand trace cycle τ reachable from τ ′ and τ , respectively. We say P is balanced
(w.r.t. S) when prog(τ 1) = prog(τ 2) for every simple left-hand binary cycle
(τ 1, τ 2) reachable from τ ′.

Checking whether a proof is balanced and dynamic requires finding the simple
cycles, which can be done in time O((N + E)(C + 1)), where N , E, and C are
the number of nodes, edges and basic cycles in the graph, respectively [12]. The
number of basic cycles in a complete graph is factorial in the number of nodes,
thus the worst case complexity is super-exponential. Notwithstanding, cyclic
proofs are by nature sparse graphs, so we expect the average runtime complexity
to be much lower. All of our example proofs are both balanced and dynamic.

When a balanced, dynamic proof satisfies the realizability condition, its
positive fully-maximal right-hand traces are always matched by left-hand traces
that can be recognised by an approximate left-hand automaton whose degree of
approximation can be bounded by the following two graph-theoretic quantities
(which are polynomially bounded in the size of P).

a) The trace width W(P) is the maximum number of trace values occurring in
the antecedent or consequent of any node in P. Any trace visiting a given
node more than W(P) times must contain a cycle.

b) The binary left-hand cycle threshold C(P) is the number of distinct pairs of
left-hand trace values occurring in P. Any pair of left-hand traces following
the same path of length greater than C(P) must contain a binary cycle.

Lemma 6 (Relative Completeness). If P : τ ≤ Γ [τ ′] and P is both dynamic
and balanced with respect to Γ [τ ′] ` ∆[τ], then C τ

P ≤ A [N]τ
′

P and C τ
P is grounded,

where N = 2 + W(P)× (C(P) + 1).

From this, a qualified form of decidability follows. Note that when P is not
balanced and dynamic we still have a semi-decision procedure.

Theorem 4. If P is dynamic and balanced with respect to Γ [τ ′] ` ∆[τ], then it
is decidable whether P : τ ≤ Γ [τ ′] holds.

6 Conclusions and Future Work

In this paper, we have demonstrated that cyclic proofs of entailments involving
inductively defined predicates implicitly contain information about the relation-
ship between the semantic approximations of these predicates. This information
is useful because indexing ordinals for these approximations can be used, e.g.,

as (components of) ranking functions in a program termination proof. We have
shown that this information can be made explicit via a novel trace condition,
and furthermore we have proved this condition to be decidable via a construction
using weighted automata. Although different in form, we have drawn tacit paral-
lels between our work and the (intuitionistic) concept of realizability because we
extract the semantic information directly from the proofs themselves.

Our results also increase the expressive power of the cyclic proof technique.
For example, if we can deduce from the proof of Γ,P t ` Σ,Qu that Qu ≤ P t
then we can safely form a well-founded trace across the active formula in the cut
application

Γ,P t ` Σ,Qu Σ,Qu ` ∆

Γ,P t ` ∆

from P t in the conclusion to Qu in the right-hand premise, and therefore witness
the validity of cyclic pre-proofs that do not satisfy the existing global soundness
condition for cyclic proofs.

An obvious direction for future work is to implement our decision procedure
and integrate it with existing cyclic proof-based program verifiers, such as [17]
which currently relies on explicit ordinal variables to track approximations. A
question of practical importance is whether entailment proofs typically encoun-
tered in program verification fall under the conditions for decidability of the
trace condition. It is interesting to consider whether weaker conditions exist that
still guarantee decidability. There are also wider theoretical questions to consider.
Our trace condition is sound, but it is also natural to ask for completeness: if
Γ : τ ≤ τ ′ holds does there also exist a proof P for which P : τ ≤ Γ [τ ′] holds?

Acknowledgements. We extend thanks to Radu Grigore, Carsten Fuhs, and
the PPLV group at UCL for useful discussions and invaluable comments. We
are grateful to Alexandra Silva for suggesting to investigate weighted automata.
This work was supported primarily by EPSRC grant EP/K040049/1, and also
by EPSRC grant EP/N028759/1.

References

1. Peter Aczel. An Introduction to Inductive Definitions. In Jon Barwise, editor,
Handbook of Mathematical Logic, pages 739–782. North-Holland, 1977.

2. Shaull Almagor, Udi Boker, and Orna Kupferman. What’s Decidable about
Weighted Automata? In ATVA-9, volume 6996 of LNCS, pages 482–491. Springer-
Verlag, 2011. doi: 10.1007/978-3-642-24372-1_37.

3. Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic
Termination Proofs for Programs with Shape-shifting Heaps. In CAV, volume 4144
of LNCS, pages 386–400. Springer, 2006. doi: 10.1007/11817963_35.

4. James Brotherston. Cyclic Proofs for First-Order Logic with Inductive Definitions.
In TABLEAUX-14, volume 3702 of LNAI, pages 78–92. Springer-Verlag, 2005. doi:
10.1007/11554554_8.

5. James Brotherston. Formalised Inductive Reasoning in the Logic of Bunched
Implications. In SAS-14, volume 4634 of LNCS, pages 87–103. Springer-Verlag,
2007. doi: 10.1007/978-3-540-74061-2_6.

6. James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic Proofs of
Program Termination in Separation Logic. In POPL-35, volume 43 of ACM
SIGPLAN Notices, pages 101–112. ACM, 2008. doi: 10.1145/1328438.1328453.

7. James Brotherston and Alex Simpson. Sequent Calculi for Induction and Infinite
Descent. Journal of Logic and Computation, 21(6):1177–1216, December 2011. doi:
10.1093/logcom/exq052.

8. Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Monographs in Theoretical Computer Science. Springer-Verlag, 2009. doi: 10.1007/
978-3-642-01492-5.

9. Gadi Tellez Espinosa and James Brotherston. Automatically Verifying Temporal
Properties of Programs with Cyclic Proof. In CADE-26, 2017. To appear.

10. Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Finite-Valued
Weighted Automata. In FSTTCS-34, volume 29 of LIPICS, pages 133–145, 2014.
doi: 10.4230/LIPIcs.FSTTCS.2014.133.

11. Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data
structures. In Proc. POPL-28, pages 14–26. ACM, 2001. doi: 10.1145/373243.
375719.

12. Donald B. Johnson. Finding All the Elementary Circuits of a Directed Graph.
SIAM J. Comput., 4(1):77–84, 1975. doi: 10.1137/0204007.

13. Daniel Krob. The Equality Problem for Rational Series with Multiplicities in
the Tropical Semiring is Undecidable. IJAC, 4(3):405–426, 1994. doi: 10.1142/
S0218196794000063.

14. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The Size-change Principle
for Program Termination. In POPL-28, pages 81–92. ACM, 2001. doi: 10.1145/
373243.360210.

15. Per Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Inductive
Definitions. In 2nd Scandinavian Logic Symposium, volume 63 of Studies in Logic
and the Foundations of Mathematics, pages 179–216. North-Holland, 1971.

16. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proc. LICS-17, pages 55–74. IEEE, 2002. doi: 10.1109/LICS.2002.1029817.

17. Reuben N. S. Rowe and James Brotherston. Automatic Cyclic Termination Proofs
for Recursive Procedures in Separation Logic. In CPP-6, pages 53–65. ACM, 2017.
doi: 10.1145/3018610.3018623.

18. Reuben N. S. Rowe and James Brotherston. Size Relationships in Abstract Cyclic
Entailment Systems. Technical report, 2017. https://arxiv.org/abs/1702.03981.

19. Andreas Weber and Helmut Seidl. On the Degree of Ambiguity of Finite Automata.
Theor. Comput. Sci., 88(2):325–349, 1991. doi: 10.1016/0304-3975(91)90381-B.

A Proof Rules

Structural Rules

(Axiom):
F ` F

(Subst):
Γ ` ∆

Γθ ` ∆θ
(Cut):

Γ ` F,∆ Σ,F ` Π

Γ,Σ ` ∆,Π

(WL):
Γ ` ∆

Γ,F ` ∆
(WR):

Γ ` ∆

Γ ` ∆,F
(PL):

Γ,A,B,Σ ` ∆

Γ,B,A,Σ ` ∆

(CL):
Γ, F, F ` ∆

Γ,F ` ∆
(CR):

Γ ` F, F,∆

Γ ` F,∆
(PR):

Γ ` ∆,A,B,Σ

Γ ` ∆,B,A,Σ

Logical Rules

(∨L):
Γ ` A,∆ Γ,B ` ∆

Γ,A ∨B ` ∆

(∧L):
Γ,A,B ` ∆

Γ,A ∧B ` ∆

(→L):
Γ ` A,∆ Γ,B ` ∆

Γ,A→ B ` ∆

(∀L):
Γ, F [t/x] ` ∆

Γ,∀xF ` ∆

(∃L):
Γ, F ` ∆

x 6∈ FV (Γ,∆)
Γ,∀xF ` ∆

(=L):
Γ [u/x, t/y] ` ∆[u/x, t/y]

Γ [t/x, u/y], t = u ` ∆[t/x, u/y]

(∨R):
Γ ` A,B,∆

Γ ` A ∨B,∆

(∧R):
Γ ` A,∆ Γ ` B,∆

Γ ` A ∧B,∆

(¬L):
Γ ` F,∆

Γ,¬F ` ∆

(∀R):
Γ ` F,∆

x 6∈ FV (Γ,∆)
Γ ` ∀xF,∆

(∃R):
Γ ` F [t/x],∆

Γ ` ∀xF,∆

(=R):
Γ ` t = t,∆

Excluded Rules

(¬R):
Γ, F ` ∆

Γ ` ¬F,∆
(→R):

Γ,A ` B,∆

Γ ` A→ B,∆

Fig. 6. Proof Rules for Gentzen’s Sequent Calculus LK with Equality and Substitution.

Proof Rules Induced by Inductive Predicate Definitions

For an inductive definition set Φ, we write ΦP for the set of productions in Φ for P.
Each predicate P defined by Φ induces a single left introduction rule and a number

of right introduction rules for P. For each production P1 t1, . . . ,Pn tn ⇒ P t0,
we include a right introduction rule for P (where θ is a substitution of terms for
variables):

(P Ri):
Γ ` P1 t1θ,∆ . . . Γ ` Pn tnθ,∆

Γ ` P t0θ,∆

We also include a single left introduction rule for P, which performs a case split
over all the productions in ΦP = {Π1 ⇒ P t1, . . . ,Πn ⇒ P tn}:

(Case P):
Γ,u = t1θ1, Π1θ1 ` ∆ . . . Γ,u = tnθn, Πnθn ` ∆

Γ,Pu ` ∆

where, for sequences of terms t and u of equal length m, u = tθ stands for the
sequence of equalities u1 = t1θ, . . . , um = tmθ, and each θi is a substitution that
freshens the variables in FV(Πi,P ti) so that they do not clash with the variables
in FV(Γ,∆,Pu).

B The Trace Pair Relation

A trace value τ is an atomic predicate formula (i.e. of the form P t). For a
sequence of formulas Γ , we write τ ∈ Γ to indicate that the trace value τ appears
in Γ . In the following definition, when we use Γ , ∆, P ti, θ, etc., we mean to
refer to these elements as they appear in the appropriate rule schema presented
in Appendix A.

Definition 12 (Trace Pair Relation). Writing δr(τ, τ
′) = 1 and δr(τ, τ

′) = 0
to indicate progressing and non-progressing trace pairs, respectively, the trace
pair relation δ is defined by cases as follows (we elide the subscript indicating the
particular premise under consideration, when the rule instance has only a single
one):

δA(Subst)(τθ, τ) = 0, if τ ∈ Γ

δC(Subst)(τθ, τ) = 0, if τ ∈ ∆

δA(=L)(τ [t/x, u/y], τ [u/x, t/y]) = 0, if τ ∈ Γ

δC(=L)(τ [t/x, u/y], τ [u/x, t/y]) = 0, if τ ∈ ∆

δC(PRi, j)
(P t0θ,Pj tjθ) = 1 (1 ≤ j ≤ n)

δA(Case P, j)(Pu, τθj) = 1, if τ ∈ Πj (1 ≤ j ≤ n)

δA(PRi, j)
(τ, τ) = 0, if τ ∈ Γ δC(PRi, j)

(τ, τ) = 0, if τ ∈ ∆ (1 ≤ j ≤ n)

δA(Case P, j)(τ, τ) = 0, if τ ∈ Γ δC(Case P, j)(τ, τ) = 0, if τ ∈ ∆ (1 ≤ j ≤ n)

and for all other non-axiomatic rules (r), each of the general form:

(r):
Σ1 ` Π1 . . . Σn ` Πn (n ≤ 2)

Γ ` ∆

we include the following cases (1 ≤ i ≤ n):

δA(r,i)(τ, τ) = 0, if τ ∈ Γ and τ ∈ Σi
δC(r,i)(τ, τ) = 0, if τ ∈ ∆ and τ ∈ Πi

C Alternative Proof of Nx ` Ex,Ox

(E R1)
` E 0,O 0

(=L)
x = 0 ` Ex,Ox

Nx ` Ex,Ox
(Subst)

N y ` E y,O y
(PR)

N y ` O y,E y
(O R1)

N y ` O y,O sy
(E R2)

N y ` E sy,O sy
(=L)

x = sy,N y ` Ex,Ox
(Case N)

Nx ` Ex,Ox

Fig. 7. An alternative cyclic proof of the entailment Nx ` Ex,Ox which does not
satisfy the realizability condition.

D Trace Automata

In the following definitions, we write (n, n′) ∈ P to mean that there is an edge
from node n to n′ in P. In an abuse of notation, we also use nodes to refer to
the rule instance of which they are a conclusion and write δA(n,n′) and δC(n,n′) for

δA(r,j) and δC(r,j) respectively, when n and n′ are, respectively, the conclusion and

jth premise of the rule instance r.
Trace automata recognise words over the alphabet ΣP = N(P)∪T(P), where

N(P) and T(P) denote the set of nodes and set of trace values (i.e. predicate
formulas) occurring in P, respectively.

Definition 13 (Trace Automata). Let ninit = Γ [τ] ` ∆[τ ′] be a node in
a cyclic proof P, then the sum automata A τ

P = (QA, qA, FA, γA) and C τ ′

P =

(QC , qC , FC , γC) over ΣP are called left- and right-hand trace automata, respec-
tively, and are defined as follows:

QA = qA] (N(P)×T(P))] {⊥}] {>}
QC = qC] (N(P)×T(P))] {⊥}
FA = QA \ {qA}
FC = {⊥} ∪ {(n, τ) | n positive and not an axiom, τ terminal for n}

∪ {(n, τ) | n positive and an axiom, τ ground}
dom(γA) = {(qA, ninit, (ninit, τ))}

∪ {((n, τ1), n′, (n′, τ2)) | (n, n′) ∈ P and (τ1, τ2) ∈ dom(δA(n,n′))}
∪ {((n, τ), τ,⊥) | n = Γ [τ] ` ∆ is an axiom}
∪ {((n, τ), n′,>) | (n, n′) ∈ P} ∪ {(>, n,>) | n ∈ N(P)}

γA(q, σ, q′) =

{
k if q = (n, τ1), q′ = (n′, τ2) and δA(n,n′)(τ1, τ2) = k

0 otherwise

dom(γC) = {(qC , ninit, (ninit, τ ′))}
∪ {((n, τ1), n′, (n′, τ2)) | (n, n′) ∈ P and (τ1, τ2) ∈ dom(δC(n,n′))}
∪ {((n, τ), τ,⊥) | n = Γ ` ∆[τ] is positive and an axiom,

τ not ground}

γC(q, σ, q
′) =

{
k if q = (n, τ1), q′ = (n′, τ2) and δC(n,n′)(τ1, τ2) = k

0 otherwise

We say that C τ
P is grounded whenever τ is ground for every final state (n, τ). Note,

we may assume w.l.o.g. that the automata are trim, i.e. every state is reachable
from the initial state (accessible) and can reach some final state (co-accessible).

Definition 14 (Approximate Trace Automata). Let ninit = Γ [τ] ` ∆[τ ′]
be a node in a cyclic proof P, then for each k > 0, we construct the approximate
left-hand trace automaton A [k]τP = (QA, qA, FA, γA) using the following:

QA = qA] (N(P)×T(P))] {⊥}] {>in | 0 < i ≤ k, n ∈ N(P)}
FA = QA \ {qA}

dom(γA) = {(qA, ninit, (ninit, τ))}
∪ {((n, τ1), n′, (n′, τ2)) | (n, n′) ∈ P and (τ1, τ2) ∈ dom(δA(n,n′))}
∪ {((n, τ), τ,⊥) | n = Γ [τ] ` ∆ is an axiom}
∪ {((n, τ), n′,>1

n′) | (n, n′) ∈ P} ∪ {(>in, n,>i+1
n) | 0 < i < k}

∪ {(>in, n′,>in) | n′ ∈ N(P), n 6= n′, 0 < i ≤ k}

γA(q, σ, q′) =

{
k if q = (n, τ1), q′ = (n′, τ2) and δA(n,n′)(τ1, τ2) = k

0 otherwise

Fig. 8 shows the (trimmed) approximate automaton for the proof in Figure 3
with k = 2. Accepting states are indicated by a double circle, and the transitions
between states show (in parentheses) the nodes or trace values accepted by the
transition and (in brackets) their associated weights. We write, e.g., ¬(3), [0] on
a transition to indicate that the transition accepts with weight 0 all nodes except
node (3).

qAstart

(1,Ex)

(3,O y)

(5,O y)

(6,O y)

(8,E z)(7,N ss0)

(9,N ss0)

(10,N ss0)

(11,E z) (12,E z)

⊥

>1
1

>2
1

>1
2>2

2

>1
3 >2

3

>1
5>2

5

>1
6>2

6

>1
7>2

7 >1
8 >2

8

>1
9>2

9

>1
10>2

10 >1
11

>2
11

>1
12

>2
12

(1),[0]

(3),[1]

(2),[0]

¬(2),[0]

(2),[0]

¬(2),[0] (3),[0]

¬(3),[0]

(3),[0]

¬(3),[0]

(5),[0]

(5),[0]

¬(5),[0]

(5),[0]

¬(5),[0]

(6),[0]

(6),[0]

¬(6),[0]

(6),[0]

¬(6),[0]

(7),[1]

(6),[0]

¬(7),[0]

(7),[0]

¬(7),[0]

(8),[1]

(8),[0]

¬(8),[0]

(8),[0]

¬(8),[0]

(9),[0]

(9),[0]

¬(9),[0]

(9),[0]

¬(9),[0]

(10),[0]

(10),[0]

¬(10),[0]

(10),[0]

¬(10),[0]

(N ss0),[0]

(11),[0]

(11),[0]

¬(11),[0]

(11),[0]

¬(11),[0]

(12),[0]

(12),[0]

¬(12),[0]

(12),[0]

¬(12),[0]

(1),[0]

(1),[0]

¬(1),[0]

(1),[0]

¬(1),[0]

Fig. 8. The approximate trace automaton A [2]E x
P for the proof of Ex ` Nx in Figure 3

