Realizability in Cyclic Proof

Extracting Ordering Information for Infinite Descent

Reuben N. S. Rowe ¹ James Brotherston ²

TABLEAUX, Brasília, Brazil, Tuesday 26th September 2017

¹School of Computing, University of Kent, Canterbury, UK

²Department of Computer Science, UCL, London, UK

```
struct ll { int data; ll *next; }
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)
  if ( x != NULL ) {
    ll *y = x -> next;
    rev(y);
    shuffle(y);
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)
   if ( x != NULL ) {
     ll *y = x -> next;
     rev(y);
     shuffle(y);
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x) { list(x, n) } {
   if ( x != NULL ) {
     ll *y = x -> next;
     rev(y);
     shuffle(v);
} { list(x, n) }
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x) { list(x, n) } {
   if ( x != NULL ) {
     { list(x->next, n-1) }
     ll *v = x -> next;
      \{ y = x - \text{next} \land \text{list}(y, n - 1) \}
     rev(y);
      shuffle(v);
} { list(x, n) }
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { list(x, n) } { ... } { list(x, n) }
void shuffle(ll *x) { list(x, n) } {
   if ( x != NULL ) {
     { list(x->next, n-1) }
     ll *v = x -> next;
      \{ y = x - \text{next} \land \text{list}(y, n - 1) \}
     rev(y);
      shuffle(v);
} { list(x, n) }
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { list(x, n) } { ... } { list(x, n) }
void shuffle(ll *x) { list(x, n) } {
   if ( x != NULL ) {
     { list(x->next, n-1) }
     ll *v = x -> next;
      \{ y = x - \text{next} \land \text{list}(y, n - 1) \}
     rev(y);
      shuffle(v);
} { list(x, n) }
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { list(x, n) } { ... } { list(x, n) }
void shuffle(ll *x) { list(x, n) } {
   if ( x != NULL ) {
      { list(x->next, n - 1) }
      ll *v = x -> next;
      \{ v = x - \text{next} \land \text{list}(v, n-1) \}
      rev(y);
      \{ y = x - \text{next} \land \text{list}(y, n - 1) \}
      shuffle(v):
} { list(x, n) }
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { list(x, n) } { ... } { list(x, n) }
void shuffle(ll *x) { list(x, n) } {
   if ( x != NULL ) {
      { list(x->next, n - 1) }
      ll *v = x -> next;
      \{ v = x - \text{next} \land \text{list}(v, n-1) \}
      rev(y);
      \{ y = x - \text{next} \land \text{list}(y, n - 1) \}
      shuffle(v):
} { list(x, n) }
```

```
struct ll { int data; ll *next; }
list(x, n) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next, n-1)
void rev(ll *x) { list(x, n) } { ... } { list(x, n) }
void shuffle(ll *x) { list(x, n) } {
    if ( x != NULL ) {
       { list(x->next, n - 1) }
      ll *v = x -> next;
       \{ v = x - \text{next} \land \text{list}(v, n-1) \}
      rev(v):
       \{ y = x - \text{next} \land \text{list}(y, n - 1) \}
       shuffle(v):
       \{ \mathbf{v} = \mathbf{x} - \mathbf{next} \land \mathbf{list}(\mathbf{v}, n-1) \}
} { list(x, n) }
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next)
void rev(ll *x) { list<sub>\alpha</sub>(x) } { ... } { list<sub>\alpha</sub>(x) }
void shuffle(ll *x) { list<sub>\alpha</sub>(x) } {
     if ( x != NULL ) {
         { list<sub>\beta</sub>(x->next) \land \beta < \alpha }
        ll *v = x -> next;
         \{ \mathbf{v} = \mathbf{x} - \mathbf{next} \wedge \mathbf{list}_{\beta}(\mathbf{v}) \wedge \beta < \alpha \}
        rev(v):
         \{ y = x - \text{next} \land \text{list}_{\beta}(y) \land \beta < \alpha \}
         shuffle(v);
         \{ y = x - \text{next} \land \text{list}_{\beta}(y) \land \beta < \alpha \}
\{ list_{\alpha}(x) \}
```



```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next)
void rev(\{x, x\}) { list<sub>\alpha</sub>(x) } { ... } { list<sub>\alpha</sub>(x) }
void shuff
          if (x
                                                           \llbracket \cdot \rrbracket : \mathsf{Formulas} \to \wp(\mathsf{Models})
                { list<sub>B</sub>
                                            \llbracket \cdot \rrbracket_{\perp} \sqsubseteq \llbracket \cdot \rrbracket_1 \sqsubseteq \dots \llbracket \cdot \rrbracket_{\alpha} \sqsubseteq \llbracket \cdot \rrbracket_{\alpha+1} \sqsubseteq \dots \sqsubseteq \llbracket \cdot \rrbracket
                11 *1
               \{ y =
                                                                                                                                                                            Termination Proofs
                                                                                                                                                                           res in Separation Logic
                rev()
                                                                                                                                                                           of Computer Science
                \{ y =
                                                                                                                                                                           College London, UK
                                                                                                                                                                            therston) Buclacuk
                shuffle(y);
                                                                                                                                                                                since Floyd's landmark paper [19] that proving termination
                                                                                                                                      We describe a formal verification framework and tool imple
                                                                                                                                                                                measure (a.k.a. "ranking function") that decreases regularly
                                                                                                                                      mentation, based upon cyclic proofs, for certifying the safe
                                                                                                                                                                                during every execution. Then, since the measure cannot
                \{ y = x - \text{next} \land \text{list}_{\beta}(y) \land \beta < \alpha \}
                                                                                                                                          nation of imperative pointer programs with recursive
                                                                                                                                                   mians are symbolic heaps in separation
                                                                                                                                                                                decrease infinitely often, there can be no infinite execution of
                                                                                                                                                           medicates; we employ ex-
                                                                                                                                                                                 For example, consider the following C procedure for
                                                                                                                                                                                traversine a null-terminated linked list in memory pointed to
                                                                                                                                                                                      >mxt; TraverseList(y); TraverseList(y);}}
\{ list_{\alpha}(x) \}
                                                                                                                                                                                         suthe linked list is emety (x -- MULL), termi
                                                                                                                                                                                            For non-empty lists, intuitively we can
                                                                                                                                                                                                     mages a smaller linked list
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next)
void rev(\{x, x\}) { list<sub>\alpha</sub>(x) } { ... } { list<sub>\alpha</sub>(x) }
void shuf₽
          if (x
                                                             \llbracket \cdot \rrbracket : \mathsf{Formulas} \to \wp(\mathsf{Models})
                 { list<sub>B</sub>
                                              \llbracket \cdot \rrbracket_{\perp} \sqsubseteq \llbracket \cdot \rrbracket_1 \sqsubseteq \dots \llbracket \cdot \rrbracket_{\alpha} \sqsubseteq \llbracket \cdot \rrbracket_{\alpha+1} \sqsubseteq \dots \sqsubseteq \llbracket \cdot \rrbracket
                 11 *1
                \{ y =
                                                                                                                                                                                 Termination Proofs
                                                                                                                                                                                 res in Separation Logic
                 rev(v
                                            \forall \alpha . \llbracket P(\vec{x}) \rrbracket_{\alpha} \subseteq \llbracket Q(\vec{y}) \rrbracket_{\alpha}
                                                                                                                                                                                 of Computer Science
                \{ y =
                                                                                                                                                                                 College London, UK
                                                                                                                                                                                  herston)@ucl.ac.uk
                 shuffle(y);
                                                                                                                                                                                      since Floyd's landmark paper [19] that proving termination
                                                                                                                                          We describe a formal verification framework and tool imple
                                                                                                                                                                                      measure (a.k.a. "ranking function") that decreases regularly
                                                                                                                                          mentation, based upon cyclic proofs, for certifying the safe
                                                                                                                                                                                      during every execution. Then, since the measure cannot
                 \{ y = x - \text{next} \land \text{list}_{\beta}(y) \land \beta < \alpha \}
                                                                                                                                               ation of imperative pointer programs with recursive
                                                                                                                                                        mians are symbolic heaps in separation
                                                                                                                                                                                      decrease infinitely often, there can be no infinite execution of
                                                                                                                                                                                     the program
                                                                                                                                                                medicates; we employ ex-
                                                                                                                                                                                       For example, consider the following C procedure for
                                                                                                                                                                                      traversine a null-terminated linked list in memory pointed to
                                                                                                                                                                                            >mxt; TraverseList(y); TraverseList(y);}}
\{ list_{\alpha}(x) \}
                                                                                                                                                                                               suthe linked list is emety (x -- MULL), termi
                                                                                                                                                                                                  For non-empty lists, intuitively we can
                                                                                                                                                                                                           mages a smaller linked list
```

```
struct ll { int data; ll *next; } list(x) \Leftrightarrow (n = 0 \land x = NULL) \lor list(x->next) void rev(ll *x) { list_{\alpha}(x) } { ... } { list_{\alpha}(x) }
```

Intra-procedural analysis produces verification conditions, in the form of *entailments*, e.g.

$$x \neq \mathsf{NULL} \land y = x - \mathsf{>next} \land \mathsf{list}(y) \vdash \mathsf{list}(x)$$

We show that:

 Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments

We show that:

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define

We show that:

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph

We show that:

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph
 - Under certain extra structural conditions, this containment falls within existing decidability results

 $\Rightarrow N 0$ $N x \Rightarrow N sx$ $\Rightarrow E 0$ $O x \Rightarrow E sx$ $E x \Rightarrow O sx$

 $Nx \Rightarrow Nsx$

 \Rightarrow E0

 \Rightarrow N 0

 $Nx \Rightarrow Nsx$

 $\begin{array}{c}
N x \Rightarrow N sx \\
\Rightarrow E 0 \\
O x \Rightarrow E sx
\end{array}$

 $Ex \Rightarrow 0sx$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 \Rightarrow N0

 $\Rightarrow E0$

 $Nx \Rightarrow Nsx$

 $0x \Rightarrow Esx$

 $Fx \Rightarrow 0sx$

 $Ex \vdash Nx$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 \Rightarrow N0

 $\Rightarrow E0$

 $Nx \Rightarrow Nsx$

 $0x \Rightarrow Esx$

 $Fx \Rightarrow 0sx$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 \Rightarrow N0

 $\Rightarrow E0$

 $Nx \Rightarrow Nsx$

 $0x \Rightarrow Esx$

 $Fx \Rightarrow 0sx$

 $Ex \vdash Nx$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 $Ex \vdash Nx$

$$Nx \Rightarrow Nsx$$

$$\Rightarrow E0$$

$$0x \Rightarrow Esx$$

$$Ex \Rightarrow 0sx$$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 $Ex \vdash Nx$

$$\begin{array}{c}
N x \Rightarrow N sx \\
\Rightarrow E 0 \\
O x \Rightarrow E sx \\
E x \Rightarrow O sx
\end{array}$$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 $Ex \vdash Nx$

$$\begin{array}{c}
Nx \Rightarrow Nsx \\
\Rightarrow E0 \\
Ox \Rightarrow Esx \\
Ex \Rightarrow Osx
\end{array}$$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 $Ex \vdash Nx$

$$\begin{array}{c}
N x \Rightarrow N sx \\
\Rightarrow E 0 \\
O x \Rightarrow E sx \\
E x \Rightarrow O sx
\end{array}$$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 \Rightarrow N0

 $\Rightarrow E0$

 $Nx \Rightarrow Nsx$

 $0x \Rightarrow Esx$

 $Fx \Rightarrow 0sx$

 $Ex \vdash Nx$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 $Ex \vdash Nx$

 \Rightarrow N0

 $Nx \Rightarrow Nsx$

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

 $Ex \vdash Nx$

 \Rightarrow N0

 $\Rightarrow E0$

 $Nx \Rightarrow Nsx$

 $0x \Rightarrow Esx$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce *characteristic operators* φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$\varphi_{\Phi}(X)(\mathsf{P}\,\vec{t}\theta) = \{m \mid \mathsf{P}_1\,\vec{t}_1,\ldots,\mathsf{P}_j\,\vec{t}_j \Rightarrow \mathsf{P}\,\vec{t} \in \Phi,\, m \in X(\mathsf{P}_i\,\vec{t}_i\theta) \text{ for all } 1 \leq i \leq j\}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce *characteristic operators* φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$\varphi_{\Phi}(X)(\mathsf{P}\,\vec{t}\theta) = \{m \mid \mathsf{P}_1\,\vec{t_1},\ldots,\mathsf{P}_j\,\vec{t_j} \Rightarrow \mathsf{P}\,\vec{t} \in \Phi,\, m \in X(\mathsf{P}_i\,\vec{t_i}\theta) \text{ for all } 1 \leq i \leq j\}$$

The ordered set of predicate interpretations $(\mathcal{X},\sqsubseteq)$ is a complete lattice

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce *characteristic operators* φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$\varphi_{\Phi}(X)(\mathsf{P}\,\vec{t}\theta) = \{m \mid \mathsf{P}_1\,\vec{t_1},\ldots,\mathsf{P}_j\,\vec{t_j} \Rightarrow \mathsf{P}\,\vec{t} \in \Phi,\, m \in X(\mathsf{P}_i\,\vec{t_i}\theta) \text{ for all } 1 \leq i \leq j\}$$

The ordered set of predicate interpretations $(\mathcal{X},\sqsubseteq)$ is a complete lattice

Characteristic operators φ_{Φ} are monotone wrt \sqsubseteq

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_i \vec{t_i} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce *characteristic operators* φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$\varphi_{\Phi}(X)(\mathsf{P}\,\vec{t}\theta) = \{m \mid \mathsf{P}_1\,\vec{t_1},\ldots,\mathsf{P}_j\,\vec{t_j} \Rightarrow \mathsf{P}\,\vec{t} \in \Phi,\, m \in X(\mathsf{P}_i\,\vec{t_i}\theta) \text{ for all } 1 \leq i \leq j\}$$

The ordered set of predicate interpretations $(\mathcal{X},\sqsubseteq)$ is a complete lattice

Characteristic operators φ_Φ are monotone wrt \sqsubseteq

We interpret predicates using the least fixed point, $\llbracket \cdot \rrbracket_{\Phi} \stackrel{\textit{def}}{=} \mu X. \varphi_{\Phi}(X)$

$$X_{\perp} \sqsubseteq \varphi_{\Phi}(X_{\perp}) \sqsubseteq \varphi_{\Phi}(\varphi_{\Phi}(X_{\perp})) \sqsubseteq \ldots \sqsubseteq \varphi_{\Phi}^{\alpha}(X_{\perp}) \sqsubseteq \ldots \sqsubseteq \mu X. \varphi_{\Phi}(X)$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce *characteristic operators* φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$\varphi_{\Phi}(X)(\mathsf{P}\,\vec{t}\theta) = \{m \mid \mathsf{P}_1\,\vec{t_1},\ldots,\mathsf{P}_j\,\vec{t_j} \Rightarrow \mathsf{P}\,\vec{t} \in \Phi,\, m \in X(\mathsf{P}_i\,\vec{t_i}\theta) \text{ for all } 1 \leq i \leq j\}$$

The ordered set of predicate interpretations $(\mathcal{X},\sqsubseteq)$ is a complete lattice

Characteristic operators φ_Φ are monotone wrt \sqsubseteq

We interpret predicates using the least fixed point, $\llbracket \cdot \rrbracket_{\Phi} \stackrel{\textit{def}}{=} \mu X. \varphi_{\Phi}(X)$

$$\llbracket \cdot \rrbracket_0^{\Phi} \sqsubseteq \llbracket \cdot \rrbracket_1^{\Phi} \sqsubseteq \llbracket \cdot \rrbracket_2^{\Phi} \sqsubseteq \dots \sqsubseteq \llbracket \cdot \rrbracket_{\alpha}^{\Phi} \sqsubseteq \dots \llbracket \cdot \rrbracket_{\alpha}^{\Phi}$$

Cyclic Proof Formalises Infinite Descent

- Suppose, for contradiction, that the conclusion of the proof is not valid
 - · That is, there is a counter-model of the sequent

Cyclic Proof Formalises Infinite Descent

- Suppose, for contradiction, that the conclusion of the proof is not valid
 - · That is, there is a counter-model of the sequent
- By local soundness of the inference rules, we obtain an infinite sequence of counter-models for some infinite path in the proof
 - Each model can be mapped to an ever smaller approximation $\mathbb{P}\vec{t}\|_{\alpha}^{\Phi}$ in which it appears
 - These strictly decrease over a case-split

Cyclic Proof Formalises Infinite Descent

- Suppose, for contradiction, that the conclusion of the proof is not valid
 - · That is, there is a counter-model of the sequent
- By local soundness of the inference rules, we obtain an infinite sequence of counter-models for some infinite path in the proof
 - Each model can be mapped to an ever smaller approximation $[P\vec{t}]_{\alpha}^{\Phi}$ in which it appears
 - These strictly decrease over a case-split
- By global soundness of the proof, this gives an infinitely descending chain in $(\mathcal{X},\sqsubseteq)$
 - But $(\mathcal{X}, \sqsubseteq)$ is a well-ordered set \Rightarrow contradiction!

Extracting Semantic Orderings from Cyclic Proofs

Extracting Semantic Orderings from Cyclic Proofs

Extracting Semantic Orderings from Cyclic Proofs

Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of sequents, which are
 - maximally finite
 - matched by some left-hand trace along the same path
- We then count the number of times each trace progresses
 - the left-hand one must progress at least as often as the right-hand one

Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)

For every maximal right-hand trace, there must exist a left-hand trace following some prefix of the same path such that:

- either the right-hand trace is grounded, or it is partially maximal with the left-hand trace matching in the length and final predicate
- right unfoldings ≤ left unfoldings

Soundness of the Realizability Condition

Theorem

Suppose \mathcal{P} is a cyclic proof of $P\vec{x} \vdash Q\vec{y}$ satisfying the realizability condition, then $[\![P\vec{x}]\!]_{\alpha} \subseteq [\![Q\vec{y}]\!]_{\alpha}$, for all α (i.e. $Q\vec{y} \leq P\vec{x}$)

Proof.

Soundness of the Realizability Condition

Theorem

Suppose \mathcal{P} is a cyclic proof of $P\vec{x} \vdash Q\vec{y}$ satisfying the realizability condition, then $[\![P\vec{x}]\!]_{\alpha} \subseteq [\![Q\vec{y}]\!]_{\alpha}$, for all α (i.e. $Q\vec{y} \leq P\vec{x}$)

Proof.

Pick a model $m \in \llbracket P\vec{x} \rrbracket_{\alpha}$ (i.e. $\exists \beta \leq \alpha : m \in \llbracket P\vec{x} \rrbracket_{\beta}$)

- \cdot m corresponds to a maximal right-hand trace in ${\cal P}$
- Since \mathcal{P} is a proof $P\vec{x} \vdash Q\vec{y}$ is valid, in particular $m \in \llbracket Q\vec{y} \rrbracket$
- The number of unfoldings in this right-hand trace is an upper bound on the least approximation $[Q\vec{y}]_{\gamma}$ containing m
- The number of unfoldings in any left-hand trace following the same path is a lower bound on the least approximation $\llbracket P\vec{x} \rrbracket_{\delta}$ containing m
- From the realizability condition, we have that $\delta \geq \gamma$

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_I, F, γ) consisting of a set Q of states containing an initial state $q_I \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

Definition (Weighted Automata)

Let Σ be an alphabet, and (V,\oplus,\otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q,q_l,F,γ) consisting of a set Q of states containing an initial state $q_l\in Q$, a set $F\subseteq Q$ of final states, and a weighted transition function $\gamma:(Q\times \Sigma\times Q)\to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_l, F, γ) consisting of a set Q of states containing an initial state $q_l \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_l, F, γ) consisting of a set Q of states containing an initial state $q_l \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Sum automata are weighted automata over $(\mathbb{N}, +, \max)$

Weighted Automata: Results

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Theorem

Given two quantitative languages (weighted automata) \mathcal{L}_1 and \mathcal{L}_2 , it is undecidable whether $\mathcal{L}_1 \leq \mathcal{L}_2$ (Krob '94, Almagor Et Al. '11)

Weighted Automata: Results

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Theorem

Given two quantitative languages (weighted automata) \mathcal{L}_1 and \mathcal{L}_2 , it is undecidable whether $\mathcal{L}_1 \leq \mathcal{L}_2$ (Krob '94, Almagor Et Al. '11)

Definition

A weighted automaton is called finite-valued if there exists a bound on the number of distinct values of accepting runs on any given word

Theorem

Given two finite-valued weighted automata $\mathscr A$ and $\mathscr B$, it is decidable whether $\mathcal L_\mathscr A \leq \mathcal L_\mathscr B$ (Filiot, Gentilini & Raskin '14)

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof \mathcal{P} , we can construct two kinds of finite-valued sum automata, $\mathscr{A}_{\mathcal{P}}[n]$ $(n \in \mathbb{N})$ and $\mathscr{C}_{\mathcal{P}}$, which count the unfoldings in left- and right-hand traces, respectively:

- · The words accepted are paths in the proof from the root sequent
- The value of a path is the maximum number of unfoldings in the traces along the path
 - \cdot $\mathscr{C}_{\mathcal{P}}$ only counts traces following the full path
 - · the $\mathscr{A}_{\mathcal{P}}[n]$ count traces following any prefix of the path
- Each $\mathcal{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof
 - A complete automaton can be constructed but is not, in general, finite-valued
- · $\mathscr{C}_{\mathcal{P}}$ is grounded when all final states correspond to ground predicate instances

Deciding the Realizability Condition

The construction of the weighted automata allows the following result:

Theorem

Let $\mathcal P$ be a cyclic entailment proof which is dynamic and balanced; then $\mathcal P$ satisfies the realizability condition if and only if $\mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}[N]$ and $\mathscr C_{\mathcal P}$ is grounded (where N is a function of $\mathcal P$)

- The properties of balance and dynamism are additional structural properties of the cycles in $\mathcal P$ which ensure completenss of the bound N
- The bound N is a function of graph-theoretic quantities relating to the cycles in proofs¹

¹More details in the paper and technical report!

Conclusions

- We have shown that information about inclusions between the semantics of inductive predicates can be extracted from cyclic proofs of entailments
- This information can be used to construct ranking functions for programs
- Our results are formulated abstractly, and so hold for any cyclic proof system whose rules satisfy certain properties (e.g. separation logic)
- We use the term realizability because we extract semantic information from the proofs

Future Work

- Implement the decision procedure within the cyclic proof-based verification framework CYCLIST
- Evaluate to what extent entailments found 'in the wild' satisfy the realizability condition
- Extend the results to better handle cuts in proofs
- Investigate further theoretical questions:
 - are there weaker structural properties of proofs that still admit completeness with the approximate automata
 - If the semantic inclusion $\llbracket P \vec{x} \rrbracket_{\alpha} \subseteq \llbracket Q \vec{y} \rrbracket_{\alpha}$ holds, is there a cyclic proof of $P \vec{x} \vdash Q \vec{y}$ satisfying the realizability condition?

Bootstrapping Cyclic Entailment Systems

Suppose we can deduce from a proof of Γ , $P\vec{t} \vdash \Sigma$, $Q\vec{u}$ that $Q\vec{u} \leq P\vec{t}$

Then we can safely form a well-founded trace across the active formula

$$\frac{\Gamma, P \, \vec{t} \vdash \Sigma, Q \, \vec{u} \quad Q \, \vec{u}, \Pi \vdash \Delta}{\Gamma, P \, \vec{t}, \Pi \vdash \Sigma, \Delta}$$

This is explicitly forbidden in existing cyclic proof systems, precisely because there is no way to ensure in general that there is an inclusion between $[P\vec{t}]_{\alpha}$ and $[Q\vec{u}]_{\alpha}$

Thus, our results can be used to bootstrap and enhance cylic entailment systems themselves