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Motivation: Program Termination

struct 11 { int data; 11 =*next; }

void rev(ll *x) { /* reverseslist x/ }

void shuffle(1ll #*x) {
if ( x !'= NULL ) {

11 *y = x -> next;
rev(y);

shuffle(y);
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predicates can be extracted from cyclic proofs of
entailments

- These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

- The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

- Under certain extra structural conditions, this containment
falls within existing decidability results

2/15



A Cyclic Proof in LK Sequent Calculus with Equality
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ExF Nx
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3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
ExF Nx
——— (Subst)
EzF Nz
(NRy)
EzF Nsz
— (=1
y=sz,EzF Ny
— (Case0)
OykF Ny
= NO —(NRy) ——(NRy)
FNO OyF Nsy
NXx = Nsx
(=L) (=L)
= EO X=0FNx x=-sy, Oy Nx
Ox= Esx (Case E)
Ex= Osx 2= b
N b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
ExF Nx
——(Subst)
EzF Nz

(NRy)
EzF Nsz
— (=)
y=sz,Ez- Ny

(Case 0)
OykF Ny
= NO —(NRy) ——(NRy)
 NO OyF Nsy
NXx = Nsx
(=L) (=L)
= EO x=0FNx x=-sy, Oy Nx
Ox = Esx (Case E)
Ex= 0Osx Ex NX
N )

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
ExF Nx
——(Subst)
EzF Nz
(NRy)
EzF Nsz
SE—
y=sz,EzF Ny
—— (Case 0)
OykF Ny
= NO (NRy) ——(NRy)
FNO OytE Nsy
NXx = Nsx
(=L) (=L
= EO Xx=0FNx x=sy, Oy Nx
Ox = Esx (Case E)
Ex = Osx ExNx
N b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
ExF Nx
——(Subst)
EzF Nz
(NR2)
EzF Nsz
— (=)
y=sz,EzF Ny
—— (Case 0)
Oy Ny
= NO ——(NRy) —— (NRy)
FNO OyHF Nsy
Nx = Nsx
(=L) (=L
= EO X=0FNX x=sy, Oy Nx
Ox = Esx (Case E)
Ex = Osx ExNx
N b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
(A cyclic proof graph is globally sound h ExE Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzE Nz
followed by a trace of predicate —(NRy)
formulas (on the left-hand side of Ezk Nsz
sequents) which progresses (through a —— (=l
N e y=sz,EzF Ny
_case-split) infinitely often y (Case 0)
OykF Ny
= NO —(NRy) —— (NRy)
FNO OyF Nsy
Nx = Nsx (=1) (=L)
= EO X=0FNx x=-sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx ExNx
T b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
(A cyclic proof graph is globally sound h ExE Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzE Nz
followed by a trace of predicate —(NRy)
formulas (on the left-hand side of Ezk Nsz
sequents) which progresses (through a —— (=l
N e y=sz,EzF Ny
_case-split) infinitely often y (Case 0)
OykF Ny
= NO —(NRy) —— (NRy)
FNO OyF Nsy
Nx = Nsx (=1) (=L)
= EO X=0FNx x=-sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx PN
T b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( A
(A cyclic proof graph is globally sound ) Exk Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzF Nz
followed by a trace of predicate —— (NRy)
~ p EzF Nsz
formulas (on the left-hand side of
sequents) which progresses (through a (=0
i) infinitel bf,\ y=sz,EzF- Ny
\_case-split) infinitely often ) (Case O)
OykF Ny
= NO — (NRy) ——(NRy)
FNO Oy Nsy
Nx = Nsx
(=L) (=L)
= EO x=0F Nx X =sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx AR
T ),

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( A
(A cyclic proof graph is globally sound ) Exk Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzF Nz
followed by a trace of predicate —— (NRy)
~ p EzF Nsz
formulas (on the left-hand side of
sequents) which progresses (through a (=0
i) infinitel bf,\ y=sz,EzF- Ny
\_case-split) infinitely often ) (Case O)
OykF Ny
= NO — (NRy) ——(NRy)
FNO Oyk Nsy
Nx = Nsx
(=0 (=0)
= EO x=0F Nx X =sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx AR
T ),

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( A
(A cyclic proof graph is globally sound ) Exk Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzF Nz
followed by a trace of predicate —— (NRy)
~ p EzF Nsz
formulas (on the left-hand side of
sequents) which progresses (through a (=0
i) infinitel bf,\ y=sz,EzF- Ny
\_case-split) infinitely often ) (Case O)
OykF Ny
= NO — (NRy) ——(NRy)
FNO Oyk Nsy
Nx = Nsx
(=L) (=L)
= EO x=0F Nx X =sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx AR
T ),

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( A
(A cyclic proof graph is globally sound ) Exk Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzF Nz
followed by a trace of predicate —— (NRy)
~ p EzF Nsz
formulas (on the left-hand side of
sequents) which progresses (through a (=0
i) infinitel bf,\ y=s5z EzF Ny
\_case-split) infinitely often ) (Case O)
OykF Ny
= NO — (NRy) ——(NRy)
FNO Oyk Nsy
Nx = Nsx
(=L) (=L)
= EO x=0F Nx X =sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx AR
T ),

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
(A cyclic proof graph is globally sound h ExE Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzE Nz
followed by a trace of predicate —(NRy)
formulas (on the left-hand side of Ezk Nsz
sequents) which progresses (through a —— (=l
N e y=sz,EzF Ny
_case-split) infinitely often y (Case 0)
OykF Ny
= NO — (NRy) ——(NRy)
FNO OyF Nsy
Nx = Nsx (=1) (=L)
= EO x=0FNx x=-sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx PN
T b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
(A cyclic proof graph is globally sound h ExE Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzE Nz
followed by a trace of predicate —(NRy)
formulas (on the left-hand side of Ezk Nsz
sequents) which progresses (through a —— (=l
N e y=sz,EzF Ny
_case-split) infinitely often y (Case 0)
OykF Ny
= NO — (NRy) ——(NRy)
FNO OyF Nsy
Nx = Nsx (=1) (=L)
= EO x=0FNx x=-sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx PN
T b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
(A cyclic proof graph is globally sound h FxE Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzE Nz
followed by a trace of predicate —(NRy)
formulas (on the left-hand side of Ezk Nsz
sequents) which progresses (through a —— (=l
N e y=sz,EzF Ny
_case-split) infinitely often y (Case 0)
OykF Ny
= NO — (NRy) ——(NRy)
FNO OyF Nsy
Nx = Nsx (=1) (=L)
= EO x=0FNx x=-sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx PN
T b,

3/15



A Cyclic Proof in LK Sequent Calculus with Equality

( N\
(A cyclic proof graph is globally sound h FxE Nx
when every infinite path (going from —— (Subst)
conclusion to premise) is eventually EzE Nz
followed by a trace of predicate —(NRy)
formulas (on the left-hand side of Ezk Nsz
sequents) which progresses (through a —— (=l
N e y=sz,EzF Ny
_case-split) infinitely often y (Case 0)
OykF Ny
= NO — (NRy) ——(NRy)
FNO OyF Nsy
Nx = Nsx (=1) (=L)
= EO x=0FNx x=-sy, Oy Nx
Ox = Esx (Case E)
Ex= Osx PN
T b,

3/15



Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)

An inductive definition set contains productions Py, ..., P; tj = Po fo

Definition (Characteristic Operators)

Inductive definition sets ® induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Yo(X)(PTO) = {m | Pit,...,Pj{i = PTe & meX(P;tig) forall1 <i<j}
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- By local soundness of the inference rules, we obtain an
infinite sequence of counter-models for some infinite
path in the proof

- Each model can be mapped to an ever smaller
approximation [Pt]® in which it appears
- These strictly decrease over a case-split

- By global soundness of the proof, this gives an infinitely
descending chain in (X,C)

- But (X,C) is a well-ordered set = contradiction!
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Extracting Semantic Orderings from Cyclic Proofs

= NO
NXx = Nsx
=E0
Ox = Esx

Ex = Osx

e
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EzFNz
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— (Case0)
Oy Ny
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ExtH Nx
T
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Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of
sequents, which are

- maximally finite

- matched by some left-hand trace along the same path

- We then count the number of times each trace progresses

- the left-hand one must progress at least as often as the
right-hand one
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Extracting Semantic Orderings: Example
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Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)

For every maximal right-hand trace, there must exist a
left-hand trace following some prefix of the same path such
that:

- either the right-hand trace is grounded, or it is partially
maximal with the left-hand trace matching in the length
and final predicate

- right unfoldings < left unfoldings
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Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX = Q¥ satisfying the realizability
condition, then [PX]a € [QV]a, for all o (i.e. QY < PX)

Proof.
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Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX = Q¥ satisfying the realizability
condition, then [PX]a € [QV]a, for all o (i.e. QY < PX)

Proof.
Pick a model m € [PX] (i.e. 38 < a:m € [PX]s)

- m corresponds to a maximal right-hand trace in P

- Since P is a proof PX+ QVy is valid, in particular m € [Q¥]

- The number of unfoldings in this right-hand trace is an bound
on the least approximation [Q¥]- containing m

- The number of unfoldings in any left-hand trace following the same
path is a bound on the least approximation [PX]s containing m

- From the realizability condition, we have that 6 > ~
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Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.
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1. The value of a run of & is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language L. is the function ¥* — V computed by &/

Definition (Weighted Inclusion)
L1 < L, if and only if for every word w such that £:(w) is defined, £;(w) is
also defined and £y(w) < £Lo(w)

automata are weighted automata over (N, +, max)
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Weighted Automata: Results

Definition (Weighted Inclusion)

L1 < L, if and only if for every word w such that £,(w) is defined, £;(w) is
also defined and £y(w) < Ly(w)

Theorem

Given two quantitative languages (weighted automata) £, and L, it is
undecidable whether £ < £, (Krob ‘94, Almagor Et Al. '11)
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Definition (Weighted Inclusion)

L1 < L, if and only if for every word w such that £,(w) is defined, £;(w) is
also defined and £y(w) < Ly(w)

Theorem
Given two quantitative languages (weighted automata) £, and L, it is

undecidable whether £ < £, (Krob ‘94, Almagor Et Al. '11)

Definition

A weighted automaton is called if there exists a bound on the
number of distinct values of accepting runs on any given word

Theorem

Given two finite-valued weighted automata .« and 4, it is decidable
whether L., < L (Filiot, Gentilini & RasRin "14)
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Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two kinds of
finite-valued sum automata, <7 [n] (n € N) and %», which count the
unfoldings in left- and right-hand traces, respectively:

- The words accepted are paths in the proof from the root sequent

- The value of a path is the maximum number of unfoldings in the traces
along the path

- &p only counts traces following the full path
- the #/p[n] count traces following any prefix of the path

- Each @#p[n] considers only a subset of the paths in the proof

- A complete automaton can be constructed but is not, in general,
finite-valued

- ¢p is grounded when all final states correspond to ground predicate
instances
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Deciding the Realizability Condition

The construction of the weighted automata allows the following result:

Theorem

Let P be a cyclic entailment proof which is dynamic and balanced; then P
satisfies the realizability condition if and only if €» < «/p[N] and €p is
grounded (where N is a function of P)

- The properties of balance and dynamism are additional structural
properties of the cycles in P which ensure completenss of the bound N

- The bound N is a function of graph-theoretic quantities relating to the
cycles in proofs'

"More details in the paper and technical report!
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Conclusions

- We have shown that information about inclusions between the
semantics of inductive predicates can be extracted from cyclic proofs
of entailments

- This information can be used to construct ranking functions for
programs

- Our results are formulated abstractly, and so hold for any cyclic proof
system whose rules satisfy certain properties (e.g. separation logic)

- We use the term realizability because we extract semantic information
from the proofs
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Future Work

- Implement the decision procedure within the cyclic proof-based
verification framework CycLIST

- Evaluate to what extent entailments found ‘in the wild’ satisfy the
realizability condition

- Extend the results to better handle cuts in proofs

- Investigate further theoretical questions:

- are there weaker structural properties of proofs that still admit
completeness with the approximate automata

- If the semantic inclusion [PX]o C [Q¥]« holds, is there a cyclic proof of
PX I QY satisfying the realizability condition?
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Bootstrapping Cyclic Entailment Systems

Suppose we can deduce from a proof of I,Pt+ ¥,Q{ that

Qi <Pt

Then we can safely form a well-founded trace across the active
formula

LPEFY,Qd QU,MkFA

rLPLOFIA

This is explicitly forbidden in existing cyclic proof systems,
precisely because there is no way to ensure in general that
there is an inclusion between [P ], and [Q 7]«

Thus, our results can be used to bootstrap and enhance cylic
entailment systems themselves
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