Realizability in Cyclic Proof

Extracting Ordering Information for Infinite Descent

Reuben N. S. Rowe ${ }^{1}$ James Brotherston ${ }^{2}$
TABLEAUX, Brasília, Brazil, Tuesday 26 ${ }^{\text {th }}$ September 2017
${ }^{1}$ School of Computing, University of Kent, Canterbury, UK
${ }^{2}$ Department of Computer Science, UCL, London, UK

Motivation: Program Termination

```
struct ll { int data; ll *next; }
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)
        {
        if ( x != NULL ) {
            ll *y = x -> next;
            rev(y);
            shuffle(y);
        }
}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)
                                    {
        if ( x != NULL ) {
            ll *y = x -> next;
            rev(y);
            shuffle(y);
        }
}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x) {list(x,n)} {
        if ( x != NULL ) {
            ll *y = x -> next;
            rev(y);
            shuffle(y);
        }
} {list(x,n)}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x) {list(x,n)} {
        if ( x != NULL ) {
        {list(x->next,n-1) }
        ll *y = x -> next;
        {y=x->next ^list(y,n-1)}
        rev(y);
        shuffle(y);
        }
} {list(x,n)}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) {list(x,n)} { ...} {list(x,n)}
void shuffle(ll *x) {list(x,n)} {
        if ( x != NULL ) {
        {list(x->next,n-1) }
        ll *y = x -> next;
        {y=x->next ^list(y,n-1)}
        rev(y);
        shuffle(y);
        }
} {list(x,n)}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) {list(x,n)} { ...} {list(x,n)}
void shuffle(ll *x) {list(x,n)} {
        if ( x != NULL ) {
        {list(x->next,n-1) }
        ll *y = x -> next;
        {y=x->next ^list(y,n-1)}
        rev(y);
        shuffle(y);
        }
} {list(x,n)}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) {list(x,n)} { ...} {list(x,n)}
void shuffle(ll *x) {list(x,n)} {
        if ( x != NULL ) {
        {list(x->next,n-1) }
        ll *y = x -> next;
        {y=x->next^list(y,n-1)}
        rev(y);
        {y = x->next ^list(y,n-1)}
        shuffle(y);
        }
} {list(x,n)}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) {list(x,n)} { ...} {list(x,n)}
void shuffle(ll *x) {list(x,n)} {
        if ( x != NULL ) {
            {list(x->next,n-1) }
            ll *y = x -> next;
            {y=x->next^list(y,n-1)}
            rev(y);
            {y = x->next ^list(y,n-1)}
            shuffle(y);
            }
} {list(x,n)}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x,n)\Leftrightarrow(n=0^x=NULL) \vee list(x->next, n-1)
void rev(ll *x) {list(x,n)} { ...} {list(x,n)}
void shuffle(ll *x) {list(x,n)} {
        if ( x != NULL ) {
            {list(x->next,n-1) }
            ll *y = x -> next;
            {y=x->next ^list(y,n-1)}
            rev(y);
            {y = x->next ^list(y,n-1) }
            shuffle(y);
            {y=x->next ^list(y,n-1)}
        }
} {list(x,n)}
```


Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x)}\Leftrightarrow(n=0\wedgex=NULL) \vee list(x->next
void rev(ll *x) {list\alpha}(x)} { ... } {list (x) 
void shuffle(ll *x) { list (x) } {
    if ( x != NULL ) {
        { list 
        ll *y = x -> next;
        {y=x->next ^ list 
        rev(y);
        {y=x->next ^ list 
        shuffle(y);
        {y=x->next ^ list }\mp@subsup{\beta}{\beta}{}(\textrm{y})\wedge\beta<\alpha
        }
} { list\alpha}(x)
```

Automatic Cyclic Termination Proofs for
Recursive Procedures in Separation Logic
Reuben N. S. Rowe James Brotherston

(r rowej brocherston)Sud. ac.uk
 mentaion, tased upon ccclicicon prookes. for certifying the safe. temization of imperative pointer proprame with recusive temiation of impertive pointer prograns with recusive Messurn (aka a "ranking finction") that decresses regulary)
during every precution Then during every yeceution. Then, siake the neasure cannot
decrase antrikly oflen, there can be no iffinite sccrass rafnikly oflch, there can be no infinite aceution of
the program. the program.
For example
. traversing a mull tionsier the forkroing C peocoduro for tryersing
by x

Motivation: Program Termination

Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow
void rev(*x) { list}\mp@subsup{\alpha}{(}{}(x)}{\ldots}{\mp@subsup{\operatorname{list}}{\alpha}{(x)}
void shufff_S (v) {lict (v)} {
        if ( x \llbracket.\rrbracket:Formulas }->\wp(\mathrm{ Models)
        { list
        {y=
        rev(y }\quad\forall\alpha\cdot\llbracketP(\vec{x})\mp@subsup{\rrbracket}{\alpha}{}\subseteq\llbracketQ(\vec{y})\mp@subsup{\rrbracket}{\alpha}{}\quad\equivQ(\vec{y})\leqP(\vec{x}
        {y=
        shuff(ery),
                Abstract
        {y=x->next ^ list ( }\textrm{y})\wedge\beta<\alpha
        }
} { list (x) }
```


Motivation: Program Termination

$$
\begin{aligned}
& \text { struct } l l\{\text { int data; ll *next; \}} \\
& \operatorname{list}(x) \Leftrightarrow(n=0 \wedge x=N U L L) \vee \operatorname{list}(x->\text { next }) \\
& \text { void } \operatorname{rev}(l l * x)\left\{\operatorname{list}_{\alpha}(x)\right\}\{\ldots\}\left\{\operatorname{list}_{\alpha}(x)\right\} \\
& \text { vid_chufflon }
\end{aligned}
$$

Intra-procedural analysis produces verification conditions, in the form of entailments, e.g.

$$
x \neq \operatorname{NULL} \wedge y=x->\operatorname{next} \wedge \operatorname{list}(y) \vdash \operatorname{list}(x)
$$

tomatic Cyclic Termination Proofs for
ursive Procedures in Separation Logic
Reuben N. S. Rowe James Brotherston
Departmeat of Coerputar Soicrce
Tinneraiky Collore London, UK
(r. rowe j brocthestion)\&ud.ac.uk
siaxe Floyd's landmark paper (19 that poving ternination

 the program. For cxample, consider the fooksoing C proosdure for travering a null termivated inited list in memory poined to
by

Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x)}\Leftrightarrow(n=0\wedgex=NULL) \vee list(x->next
void rev(ll *x) { list 
void chufflo(1] +v) { lict (v < {
```

- (Axiom)

$$
\ldots P(\bar{x}) \ldots \vdash \ldots Q(\vec{y}) \ldots
$$

tomatic Cyclic Termination Proofs for
cursive Procedures in Separation Logic
Reuben N. S. Rowe James Brotherston
Departmeat of Coerputar Soicrce
Tinneraiky Colliere London, UK
(r. rowe.j trocthessoon)\&ud.ac.ik
 -proofe. for cerififying the safe - proak forceruityng the safe
 -atiates: we cmploy a

 the program.
 traversing
by
it

Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow(n=0^x=NULL) \vee list(x->next)
void rev(ll *x) { list 
void chufflo(1] +v) { lict (v < {
```


tomatic Cyclic Termination Proofs for ursive Procedures in Separation Logic

Reuben N. S. Rowe James Brotherston
Departmeat of Coerputar Soicrce
Tinneraiky Colliere London, UK
(r. rowe.j trotherston) Bud.ac.uk
siaxe Flogd's Landmakik papor [19y that porving Iernimation sime Floyd's Laudmurk pupe (19) thut proving temmintion
depends on ideatitying a yaithle well- founded terwintion
 during every exceution. Then, simece the measure cannol
decraas affickly decrasa nat
the program.
Fois For examin

traversin
by zi

Motivation: Program Termination

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow(n=0^x=NULL) \vee list(x->next)
void rev(ll *x) { list 
void chufflo(1] +v) { lict (v < {
```


tomatic Cyclic Termination Proofs for ursive Procedures in Separation Logic

Reuben N. S. Rowe James Brotherston
Departmeat of Coerputar Soicrce
Tinneraiky Colliere London, UK
(r. rowe.j trotherston) Bud.ac.uk
sisxe Floyd's landmakk papo [191 that moving ternimation

 during every exceution. Then, simece the measure cannol
decraas affickly ofer, there cun be so infinite aceution the program. For carmpl traversing a null terminated tinked list in menory poined to

by x. | traversin |
| :---: |
| by zi |

whe f

 For woo empry liss, intuitively we can
nems. the firs recursice call sci -aces a smiler linked lis aces a smaler linked lial

Overview of Results

We show that:

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments

Overview of Results

We show that:

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
- These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define

Overview of Results

We show that:

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
- These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph

Overview of Results

We show that:

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
- These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph
- Under certain extra structural conditions, this containment falls within existing decidability results

A Cyclic Proof in LK Sequent Calculus with Equality

A Cyclic Proof in LK Sequent Calculus with Equality

A Cyclic Proof in LK Sequent Calculus with Equality

A Cyclic Proof in LK Sequent Calculus with Equality

A Cyclic Proof in LK Sequent Calculus with Equality

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\begin{aligned}
& \Rightarrow \mathrm{N} 0 \\
\mathrm{NX} & \Rightarrow \mathrm{Ns} x \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{OX} & \Rightarrow \mathrm{Esx} \\
\mathrm{Ex} & \Rightarrow \mathrm{Os} x
\end{aligned}
$$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

(NR_{1})
$\vdash \mathrm{NO}$
$\xrightarrow{ }(=\mathrm{L})$
$x=0 \vdash \mathrm{~N} x$

$$
\mathrm{E} x \vdash \mathrm{~N} x
$$

$\mathrm{Ez} \vdash \mathrm{N} z$ ($\mathrm{N} \mathrm{R}_{2}$)
$\xrightarrow{ }(=\mathrm{L})$ $(=\mathrm{L})$

$$
y=s z, E z \vdash N y
$$ (Case O)

$$
\mathrm{Oy} \vdash \mathrm{Ny}
$$

$$
\xrightarrow{ }\left(N_{2}\right)
$$

OyトNsy

$$
(=\mathrm{L})
$$

$$
x=s y, \mathrm{O} y \vdash \mathrm{~N} x
$$

(Case E)
$E x \vdash N x$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
\mathrm{NX} & \Rightarrow \mathrm{NsX} \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{OX} & \Rightarrow \mathrm{Esx} \\
\mathrm{Ex} & \Rightarrow \mathrm{Os} x
\end{aligned}
$$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

$\xrightarrow{ }(=\mathrm{L})$

$$
y=s z, E z \vdash N y
$$

$$
\mathrm{Oy} \vdash \mathrm{Ny}
$$

(NR_{1})
$\vdash \mathrm{NO}$
$\xrightarrow[x=0-\mathrm{L} x]{ }(=$
$x=0 \vdash \mathrm{~N} x$
$\longrightarrow\left(\mathrm{NR}_{2}\right)$
OyトNsy
$\longrightarrow(=L)$
$x=\mathrm{sy}, \mathrm{O} y \vdash \mathrm{~N} x$
(Case O)
(Case E)
$E x \vdash N x$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

$$
\longrightarrow(=\mathrm{L})
$$

$x=0 \vdash \mathrm{~N} x$

$\xrightarrow{ }(=\mathrm{L})$ $(=\mathrm{L})$

$$
y=s z, E z \vdash N y
$$ (Case O)

OyトNy
(NR_{1})

$$
\ldots\left(N R_{2}\right)
$$

OyトNsy

$x=\mathrm{sy}, \mathrm{Oy} \vdash \mathrm{N} x$
(Case E)
$E x \vdash N x$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

OyトNy

OyトNsy
$x=0 \vdash \mathrm{~N} x$

$$
\mathrm{E} x \vdash \mathrm{~N} x
$$

(Subst)
$\mathrm{Ez} \vdash \mathrm{N} z$ ($\mathrm{N} \mathrm{R}_{2}$)

$$
\mathrm{Ez} \vdash \mathrm{Ns} \mathrm{~s}
$$

$$
\begin{equation*}
y=s z, E z \vdash N y \tag{=L}
\end{equation*}
$$

(NR_{1})

$$
\ldots\left(N R_{2}\right)
$$

$x=\mathrm{sy}, \mathrm{Oy} \vdash \mathrm{N} x$
(Case 0)
(Case E)
$E x \vdash N x$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$\vdash \mathrm{NO}$

$$
\Rightarrow \mathrm{E} 0
$$

$\longrightarrow(=\mathrm{L})$
$x=0 \vdash \mathrm{~N} x$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

$\mathrm{E} x \vdash \mathrm{~N} x$ (Subst)
$\mathrm{Ez} \vdash \mathrm{N} z$ ($\mathrm{N} \mathrm{R}_{2}$)
EzトNsz

$$
y=s z, E z \vdash N y
$$

OyトNy
(NR_{1})

$$
\ldots
$$

$$
x=\mathrm{sy}, \mathrm{O} y \vdash \mathrm{~N} x
$$

(Case E)
$E x \vdash N x$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path (going from conclusion to premise) is eventually followed by a trace of predicate formulas (on the left-hand side of sequents) which progresses (through a case-split) infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path（going from conclusion to premise）is eventually followed by a trace of predicate formulas（on the left－hand side of sequents）which progresses（through a case－split）infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

$E x \vdash N X$ （Subst）
$\mathrm{Ez} \vdash \mathrm{Nz}$ （ NR_{2} ）
EzトNsz
$\longrightarrow(=\mathrm{L})$

$$
y=s z, E z \vdash N y
$$

OyトNy
$\longrightarrow\left(\mathrm{NR}_{2}\right)$
OyトNsy
$\overline{\vdash \mathrm{NO}}(=\mathrm{LR})$
$x=0 \vdash \mathrm{~N} x$
$\left(N R_{1}\right)$
$\longrightarrow(=\mathrm{L})$
$x=\mathrm{sy}, \mathrm{O} y \vdash \mathrm{~N} x$
（Case O）
（Case E）
$E x \vdash N x$

A Cyclic Proof in LK Sequent Calculus with Equality

A cyclic proof graph is globally sound when every infinite path（going from conclusion to premise）is eventually followed by a trace of predicate formulas（on the left－hand side of sequents）which progresses（through a case－split）infinitely often

$$
\Rightarrow \mathrm{No}
$$

$$
N x \Rightarrow N s x
$$

$\longrightarrow(=\mathrm{L})$

$$
\Rightarrow \mathrm{E} 0
$$

$x=0 \vdash \mathrm{~N} x$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

$E x \vdash N X$ （Subst）
$\mathrm{Ez} \vdash \mathrm{Nz}$ （ NR_{2} ）
EzトNsz

$$
y=s z, E z \vdash N y
$$

OyトNy

$$
\cdots\left(N R_{2}\right)
$$

OyトNsy
$x=\mathrm{sy}, \mathrm{Oy} \vdash \mathrm{Nx}$
（Case E）
$E x \vdash N x$

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi, m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right) \text { for all } 1 \leq i \leq j\right\}
$$

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi, m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right) \text { for all } 1 \leq i \leq j\right\}
$$

The ordered set of predicate interpretations $(\mathcal{X}, \sqsubseteq)$ is a complete lattice

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi, m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right) \text { for all } 1 \leq i \leq j\right\}
$$

The ordered set of predicate interpretations $(\mathcal{X}, \sqsubseteq)$ is a complete lattice
Characteristic operators φ_{Φ} are monotone wrt \sqsubseteq

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{ϕ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \vec{t}_{1}, \ldots, P_{j} \vec{t}_{j} \Rightarrow P \vec{t} \in \Phi, m \in X\left(P_{i} \vec{t}_{i} \theta\right) \text { for all } 1 \leq i \leq j\right\}
$$

The ordered set of predicate interpretations (\mathcal{X}, \sqsubseteq) is a complete lattice Characteristic operators φ_{Φ} are monotone wrt \sqsubseteq
We interpret predicates using the least fixed point, $\llbracket \cdot \rrbracket_{\Phi} \stackrel{\text { def }}{=} \mu X \cdot \varphi_{\phi}(X)$

$$
X_{\perp} \sqsubseteq \varphi_{\phi}\left(X_{\perp}\right) \sqsubseteq \varphi_{\phi}\left(\varphi_{\phi}\left(X_{\perp}\right)\right) \sqsubseteq \ldots \sqsubseteq \varphi_{\phi}^{\alpha}\left(X_{\perp}\right) \sqsubseteq \ldots \sqsubseteq \mu X \cdot \varphi_{\phi}(X)
$$

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \vec{t}_{j} \Rightarrow P \vec{t} \in \Phi, m \in X\left(P_{i} \vec{t}_{i} \theta\right) \text { for all } 1 \leq i \leq j\right\}
$$

The ordered set of predicate interpretations (\mathcal{X}, \sqsubseteq) is a complete lattice Characteristic operators φ_{Φ} are monotone wrt \sqsubseteq
We interpret predicates using the least fixed point, $\llbracket \cdot \rrbracket_{\Phi} \stackrel{\text { def }}{=} \mu X \cdot \varphi_{\phi}(X)$

$$
\llbracket \cdot \rrbracket_{0}^{\infty} \sqsubseteq \llbracket \cdot \rrbracket_{1}^{\phi} \sqsubseteq \llbracket \cdot \rrbracket_{2}^{\infty} \sqsubseteq \ldots \sqsubseteq \llbracket \cdot \rrbracket_{\alpha}^{\infty} \sqsubseteq \ldots \llbracket \cdot \rrbracket^{\infty}
$$

Cyclic Proof Formalises Infinite Descent

- Suppose, for contradiction, that the conclusion of the proof is not valid
- That is, there is a counter-model of the sequent

Cyclic Proof Formalises Infinite Descent

- Suppose, for contradiction, that the conclusion of the proof is not valid
- That is, there is a counter-model of the sequent
- By local soundness of the inference rules, we obtain an infinite sequence of counter-models for some infinite path in the proof
- Each model can be mapped to an ever smaller approximation $\llbracket \mathrm{P} \vec{t} \rrbracket_{\alpha}^{\Phi}$ in which it appears
- These strictly decrease over a case-split

Cyclic Proof Formalises Infinite Descent

- Suppose, for contradiction, that the conclusion of the proof is not valid
- That is, there is a counter-model of the sequent
- By local soundness of the inference rules, we obtain an infinite sequence of counter-models for some infinite path in the proof
- Each model can be mapped to an ever smaller approximation $\llbracket \mathrm{P} \vec{t} \rrbracket_{\alpha}^{\Phi}$ in which it appears
- These strictly decrease over a case-split
- By global soundness of the proof, this gives an infinitely descending chain in $(\mathcal{X}, \sqsubseteq)$
- But $(\mathcal{X}, \sqsubseteq)$ is a well-ordered set \Rightarrow contradiction!

Extracting Semantic Orderings from Cyclic Proofs

Extracting Semantic Orderings from Cyclic Proofs

Extracting Semantic Orderings from Cyclic Proofs

Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of sequents, which are
- maximally finite
- matched by some left-hand trace along the same path
- We then count the number of times each trace progresses
- the left-hand one must progress at least as often as the right-hand one

Extracting Semantic Orderings: Example

$$
\Rightarrow \mathrm{N} 0
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{Ex} \Rightarrow \mathrm{Os} x
$$

Extracting Semantic Orderings: Example

$$
\begin{align*}
& \begin{aligned}
& \Rightarrow \mathrm{NO} \\
& \mathrm{~N} x \Rightarrow \mathrm{Nsx}
\end{aligned} \\
& \begin{aligned}
& \Rightarrow \mathrm{NO} \\
& \mathrm{~N} x \Rightarrow \mathrm{Nsx}
\end{aligned} \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{OX} \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \tag{0}\\
& \mathrm{Nss0} \Rightarrow \mathrm{Osss} 0 \\
& \vdash \mathrm{NO} \\
& E x \vdash N x
\end{align*}
$$

Extracting Semantic Orderings: Example

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& \mathrm{~N} x \Rightarrow \mathrm{Ns} x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{O} x \Rightarrow \mathrm{Es} x \\
& \mathrm{E} x \Rightarrow \mathrm{O} x \\
& \mathrm{NssO} \Rightarrow \mathrm{Osss} 0
\end{aligned}
$$

Extracting Semantic Orderings: Example

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& N x \Rightarrow N S x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{OX} \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \\
& \mathrm{NssO} \Rightarrow \mathrm{Osss} 0 \\
& \frac{\square}{\qquad=0 \vdash N_{0}}\left(\mathrm{NR}_{1}\right)
\end{aligned}
$$

Extracting Semantic Orderings: Example

Extracting Semantic Orderings: Example

$$
\Rightarrow \mathrm{N} 0
$$

$$
N x \Rightarrow N s x
$$

$$
\Rightarrow \mathrm{E} 0
$$

$$
\mathrm{O} x \Rightarrow \mathrm{Esx}
$$

$$
\mathrm{E} x \Rightarrow \mathrm{O} x
$$

$$
\mathrm{Nss0} \Rightarrow \mathrm{O} \mathrm{sss} 0
$$

(Ax)
($N R_{2}$)
(=L)
sss0, Nss0 $\vdash \mathrm{Ny}$

$$
E x \vdash N x
$$

(Subst)

$$
\mathrm{E} z \vdash \mathrm{~N} z
$$

$$
=\left(\mathrm{NR}_{2}\right)
$$

$\mathrm{Ez} \vdash \mathrm{Nsz}$ $(=\mathrm{L})$
$y=s z, E z \vdash N y$ (Case O)
This trace is partially maximal: the final predicate is the active formula of an axiom
OyトNy (NR_{2})
OyトNsy

(Case E)
$E x \vdash N x$

Extracting Semantic Orderings: Example

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& N x \Rightarrow N S x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{OX} \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \\
& \mathrm{NssO} \Rightarrow \mathrm{Osss} 0
\end{aligned}
$$

Extracting Semantic Orderings: Example

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& N x \Rightarrow N S x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{OX} \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \\
& \mathrm{NssO} \Rightarrow \mathrm{Osss} 0 \\
& \frac{\square}{\qquad=0 \vdash N N_{1}}(=\mathrm{L})
\end{aligned}
$$

Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)

For every maximal right-hand trace, there must exist a left-hand trace following some prefix of the same path such that:

- either the right-hand trace is grounded, or it is partially maximal with the left-hand trace matching in the length and final predicate
- right unfoldings \leq left unfoldings

Soundness of the Realizability Condition

Theorem
Suppose \mathcal{P} is a cyclic proof of $\mathrm{P} \vec{x} \vdash \mathrm{Q} \vec{y}$ satisfying the realizability condition, then $\llbracket \mathrm{P} \vec{x} \rrbracket_{\alpha} \subseteq \llbracket \mathrm{Q} \vec{y} \rrbracket_{\alpha}$, for all α (i.e. $\mathrm{Q} \vec{y} \leq \mathrm{P} \vec{x}$)

Proof.

Soundness of the Realizability Condition

Theorem

Suppose \mathcal{P} is a cyclic proof of $\mathrm{P} \vec{x} \vdash \mathrm{Q} \vec{y}$ satisfying the realizability condition, then $\llbracket \mathrm{P} \vec{x} \rrbracket_{\alpha} \subseteq \llbracket \mathrm{Q} \vec{y} \rrbracket_{\alpha}$, for all α (i.e. $\mathrm{Q} \vec{y} \leq \mathrm{P} \vec{x}$)

Proof.

Pick a model $m \in \llbracket \mathbb{P} \vec{\rrbracket} \rrbracket_{\alpha}$ (i.e. $\exists \beta \leq \alpha: m \in \llbracket \mathbb{P} \vec{x} \rrbracket_{\beta}$)

- m corresponds to a maximal right-hand trace in \mathcal{P}
- Since \mathcal{P} is a proof $P \vec{x} \vdash Q \vec{y}$ is valid, in particular $m \in \llbracket Q \vec{y} \rrbracket$
- The number of unfoldings in this right-hand trace is an upper bound on the least approximation $\llbracket \mathrm{Q} \vec{y} \rrbracket_{\gamma}$ containing m
- The number of unfoldings in any left-hand trace following the same path is a lower bound on the least approximation $\llbracket \mathrm{P} \vec{x} \rrbracket_{\delta}$ containing m
- From the realizability condition, we have that $\delta \geq \gamma$

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{l} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{\prime} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

1. The value of a run of \mathscr{A} is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language $\mathcal{L}_{\mathscr{A}}$ is the function $\Sigma^{*} \rightharpoonup V$ computed by \mathscr{A}

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{l} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

1. The value of a run of \mathscr{A} is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language $\mathcal{L}_{\mathscr{A}}$ is the function $\Sigma^{*} \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{l} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

1. The value of a run of \mathscr{A} is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language $\mathcal{L}_{\mathscr{A}}$ is the function $\Sigma^{*} \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Sum automata are weighted automata over $(\mathbb{N},+, \max)$

Weighted Automata: Results

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Theorem

Given two quantitative languages (weighted automata) \mathcal{L}_{1} and \mathcal{L}_{2}, it is undecidable whether $\mathcal{L}_{1} \leq \mathcal{L}_{2}$ (Krob '94, Almagor Et Al. '11)

Weighted Automata: Results

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Theorem

Given two quantitative languages (weighted automata) \mathcal{L}_{1} and \mathcal{L}_{2}, it is undecidable whether $\mathcal{L}_{1} \leq \mathcal{L}_{2}$ (Krob '94, Almagor Et Al. '11)

Definition

A weighted automaton is called finite-valued if there exists a bound on the number of distinct values of accepting runs on any given word

Theorem

Given two finite-valued weighted automata \mathscr{A} and \mathscr{B}, it is decidable whether $\mathcal{L}_{\mathscr{A}} \leq \mathcal{L}_{\mathscr{B}}$ (Filiot, Gentilini \& Raskin '14)

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof \mathcal{P}, we can construct two kinds of finite-valued sum automata, $\mathscr{A}_{\mathcal{P}}[n](n \in \mathbb{N})$ and $\mathscr{C}_{\mathcal{P}}$, which count the unfoldings in left- and right-hand traces, respectively:

- The words accepted are paths in the proof from the root sequent
- The value of a path is the maximum number of unfoldings in the traces along the path
- $\mathscr{C}_{\mathcal{P}}$ only counts traces following the full path
- the $\mathscr{A}_{\mathcal{P}}[n]$ count traces following any prefix of the path
- Each $\mathscr{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof
- A complete automaton can be constructed but is not, in general, finite-valued
- $\mathscr{C}_{\mathcal{P}}$ is grounded when all final states correspond to ground predicate instances

Deciding the Realizability Condition

The construction of the weighted automata allows the following result:

Theorem

Let \mathcal{P} be a cyclic entailment proof which is dynamic and balanced; then \mathcal{P} satisfies the realizability condition if and only if $\mathscr{C}_{\mathcal{P}} \leq \mathscr{A}_{\mathcal{P}}[N]$ and $\mathscr{C}_{\mathcal{P}}$ is grounded (where N is a function of \mathcal{P})

- The properties of balance and dynamism are additional structural properties of the cycles in \mathcal{P} which ensure completenss of the bound N
- The bound N is a function of graph-theoretic quantities relating to the cycles in proofs ${ }^{1}$

[^0]
Conclusions

- We have shown that information about inclusions between the semantics of inductive predicates can be extracted from cyclic proofs of entailments
- This information can be used to construct ranking functions for programs
- Our results are formulated abstractly, and so hold for any cyclic proof system whose rules satisfy certain properties (e.g. separation logic)
- We use the term realizability because we extract semantic information from the proofs

Future Work

- Implement the decision procedure within the cyclic proof-based verification framework CYCLIST
- Evaluate to what extent entailments found 'in the wild' satisfy the realizability condition
- Extend the results to better handle cuts in proofs
- Investigate further theoretical questions:
- are there weaker structural properties of proofs that still admit completeness with the approximate automata
- If the semantic inclusion $\llbracket \mathrm{P} \vec{x} \rrbracket_{\alpha} \subseteq \llbracket \mathbb{Q} \vec{y} \rrbracket_{\alpha}$ holds, is there a cyclic proof of $P \vec{x} \vdash \mathrm{Q} \vec{y}$ satisfying the realizability condition?

Bootstrapping Cyclic Entailment Systems

Suppose we can deduce from a proof of $\Gamma, P \vec{t} \vdash \Sigma, Q \vec{u}$ that $\mathrm{Q} \vec{u} \leq \mathrm{P} \vec{t}$

Then we can safely form a well-founded trace across the active formula

$$
\frac{\Gamma, P \vec{t} \vdash \Sigma, Q \vec{u} \quad Q \vec{u}, \Pi \vdash \Delta}{\Gamma, P \vec{t}, \Pi \vdash \Sigma, \Delta}
$$

This is explicitly forbidden in existing cyclic proof systems, precisely because there is no way to ensure in general that there is an inclusion between $\llbracket \mathrm{P} \vec{t} \rrbracket_{\alpha}$ and $\llbracket \mathrm{Q} \vec{u} \rrbracket_{\alpha}$

Thus, our results can be used to bootstrap and enhance cylic entailment systems themselves

[^0]: ${ }^{1}$ More details in the paper and technical report!

