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- Part I: Introduction to cyclic proofs

- What are they?
- Some examples:

- first order logic, separation logic, Hoare logic

- General principles and results

- Part Il: Realizability results — how to extract semantic
ordering information from cyclic proofs

- ordering information = inclusion between semantic

approximations
- structural realizability property for cyclic entailment proofs
- equivalence with weighted automata inclusion
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Part |

Cyclic Proofs



What is Cyclic Proof?

(Axiom)

°
(Axiom) . (Axiom)
° : °
° . °
(Inference)

°
°

- We are all familiar with proofs as finite trees
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What is Cyclic Proof?

(Axiom)

(Inference)

- We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?
- Cyclic proofs must satisfy a syntactic global trace property
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Why Cyclic Proof?

- It subsumes standard induction
- It can help discover inductive hypotheses

- Termination arguments can often be extracted from cyclic
proofs
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First Order Logic: The Sequent Calculus LK
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() —m———— (VR) ——8
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(AL); ———— (AR) ——— —————————
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TFAA T,BFA MF-A
(=) (-R): —
rA—BEFA M-—FA
MFFA MAFB,A
(L) ——— (SRY——
r-FFA F-A—B,A

o Tlu/xt/yIE Alu/x t/y)
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First Order Logic: The Sequent Calculus LK

r-A F-FA XFEN
(Axiom): —— (Subst): (Cut) —483 —
FEF (VA WAN) MLEXEA N
M-A M-A FABYFA
(WL): (WR): (PL) —————
FEA r=AF MBAYXEA
MFFEA M-FFA M-AAB,Y
(cL); — — (CR): ———8 (PR} ——————
rFEA TEF A A BAY
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First Order Logic with Inductive Predicate Definitions (FOL,p)

- Assume signature with zero, successor, and equality

- Allow inductive predicate definitions, e.g.

N x Ex Ox

NO Nsx EO Osx Esx
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First Order Logic with Inductive Predicate Definitions (FOL,p)

- Assume signature with zero, successor, and equality

- Allow inductive predicate definitions, e.g.

N x Ex Ox

NO Nsx EO Osx Esx
- These induce unfolding rules for the sequent calculus, e.g.

[t=0FA Tt=sx,NxFA
(Case N) (where x fresh)

I NtEA

M-ANt
(NRy) — " (NRy)
r=A,NO A, Nst
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A Cyclic Proof of NxF Ex,Ox

NxF Ex,Ox
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A Cyclic Proof of NxF Ex,Ox
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A Cyclic Proof of NxF Ex,Ox
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A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOy, Ey
(ORy)
NyF Oy, Osy
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(Case N)
NxF Ex,Ox
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- Suppose Nx = Ex,Ox is not valid:
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A Cyclic Proof of NxF Ex,Ox

4 N\
NxF Ex,Ox
(Subst)
NyFEy,Oy
(PR)
NyFOy,Ey
(OR1)
Ny Oy, Osy
(ERy) (ERy)
FEO,00 Ny Esy,Osy
— (=0 (=L)
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N y
- Suppose Nx = Ex,Ox is not valid:
m>n>n>... (nj € N for all i)
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Example: Separation Logic

- Separation Logic incorporates formulas for representing
heap memory:
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Example: Separation Logic

- Separation Logic incorporates formulas for representing
heap memory:
- emp denotes the empty heap
- X+ Vis the single-cell heap containing values V at
memory location x

- Fx G denotes a heap h that can be split into disjoint
sub-heaps hy and h, which model F and G respectively

- Inductive predicates now represent data-structures, e.g.
linked-list segments:

X=yAemp X+ zx1s(z,y)
s(x,y) s(x, y)
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A Cyclic Proof of List Segment Concatenation

Is(x,y) = s(y,z) - ls(x, 2)
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A Cyclic Proof of List Segment Concatenation

(1d)
Is(x,2) F ls(x,2)

emp * ls(x, z) - Is(x,2)
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(IsR,)

X v ls(v,y) « Is(y, 2) F Is(x,2)

(Case ls)
Is(x,y) = s(y,z) - ls(x, 2) /
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A Simple Imperative Language

(Terms) tz=nil | x
(Boolean Expressions) B :u=t=t | t!=t
(Programs) C:=¢ stop)

x:=t;C
x:=[yl;C | [x]:=y;C

(
\ (assignment)
\ (
| free(x);C | x:=new;C (de/allocate)
\ (
| (

load/store)

if(B)then{C};C
while(B)do{C};C

conditional)

loop)
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A Simple Imperative Language

(Terms) tz=nil | x
(Boolean Expressions) B :u=t=t | t!=t
(Programs) C:=¢ stop)

x:=t;C
x:=[yl;C | [x]:=y;C

(
\ (assignment)
\ (
| free(x);C | x:=new;C (de/allocate)
\ (
| (

load/store)

if(B)then{C};C
while(B)do{C};C

conditional)

loop)

- The following program deallocates a linked list

while (x!=nil)do{y:=[x];free(x);x=y}
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Program Verification by Symbolic Execution

- We use Hoare logic for proving triples {P} C{Q} using
Separation Logic as an assertion language
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Program Verification by Symbolic Execution

- We use Hoare logic for proving triples {P} C{Q} using
Separation Logic as an assertion language

- Program commands are executed symbolically by the
proof rules, e.g.

{x=VvIX/X] A (Pxy = v)[X'/x]} C{Q}
(load): (x’ fresh)
{Pxy—vix:=[yl;C{qQ}

{PrC{Q}

{Pxx v} free(x);C{Q}

(free):
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Handling Loops in Cyclic Proofs

- The standard Hoare rule for handling while loops:

{BAP}CG{P} {-BAP}CG{Q}

{P}while (B)do{C };C{Q}
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Handling Loops in Cyclic Proofs

- The standard Hoare rule for handling while loops:

{tZZ/\B/\P}C1{t<Z/\P} {—\B/\P}Cz{o}

{P}while (B)do{C };C{Q}

tis the loop variant

- With cyclic proof, it is enough just to unfold loops

{BAP}G;while(B)do{C };G{Q} {-BAP}C{Q}

{PYwhile (B)do{C };C{Q}
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Example: Deallocating the Linked List

while (x!=nil)do{y:=[x];free(x);x=y}
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Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

{ x 7 nil }y:=[x];free(x);x=y;while(x!=nil)do{y:=[x];free(x);x=y}{emp}

A ls(x, nil) . x =nil ( }
: e {em
A ls(x, nil) .

(while)

{ls(x,nil)} while ... {emp}
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Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

X # nil c=[x]:
{ Als(x,nil)} yirbdie tempd { x =nil

A ls(x, nil)

} ¢ {emp}
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Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

{ x# nit }y:=[x];...{emp} (B)

A ls(x, nil) X = nil
{ A ls(x, nil)} € {eme}

{ls(x,nil)} while ... {emp}

(while)
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Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

X # nil )
Ax=nilp y:=[x]; ... {emp} { o } y:=[x]; ... {emp}
Is(v, nil)

emp
il
{ v ~}y::[x1;.4.{emp} (=
A ls(x, nil) X = nil
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(while)
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12/39



Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

)

x # nil
X 5V
{ X ﬁl}y::[x]; ... {emp} { . }y::[x];“.{emp}
* Is(v, nil)
AlEE (unfold Is)
il
{ x#m' }y::[x];.”{emp} (B
A ls(x, nil) . 52 = AT
) { A ls(x,nil)} € {emp}
(while)

{ls(x,nil)} while ... {emp}

12/39



Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

X =y
{ } free(x); ... {emp}
(1)

* Is(v, nil)
X # nil (load)
X >\
{ /\x—nil} y:=[x]; ... {emp} { ) }y::[x];“.{emp}
* Is(v, nil)
2 emp (unfold 1s)
il
{ x#m' }y::[x];.”{emp} (B
A ls(x, nil) . 52 = AT
) { A ls(x,nil)} € {emp}
(while)

{ls(x,nil)} while ... {emp}

12/39



Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

{Is(y, nil)} x=y; ... {emp}

(free)

=Y
7 Booo
(1) { *ls(v,nil)} el {emp}

X # nil (load)
X =V
{ /\x—nil} y:=[x]; ... {emp} { . }y::[x];“.{emp}
* Is(v, nil)
AlEE (unfold Is)
il
{ x#m' }y::[x];.”{emp} (B
A ls(x, nil) . 52 = AT
. { A ls(x,nil)} € femp}

(while)

{ls(x,nil)} while ... {emp}

12/39



Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

{ls(x,nil)} while... {emp} (
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{ . } free(x); ... {emp}
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Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

{ls(x,nil)} while... {emp}

(assign)

{Is(y, nil)} x=y; ... {emp}

(free)

{ * Y } (x) { }
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Example: Deallocating the Linked List

{ls(x,nil)} while(x!=nil)do{y:=[x];free(x);x=y} {emp}

{ls(x,nil)} while... {emp}

(assign)

{Is(y, nil)} x=y; ... {emp}

(free)

{ Xy }f ) (emp}
ree(x); ... {em
(1) * Is(y, nil) .

X # nil (load)
X =V
{ /\x—nil} y:=[x]; ... {emp} { }y::[x];“.{emp}
* Is(v, nil)
AlEE (unfold Is)
il
{ x#m. }y::[x];.”{emp} (B
A ls(x, nil) . 52 = AT
. { A ls(x,nil)} € femp}
(while)
& {ls(x,nil)} while ... {emp}
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Soundness of Cyclic Proof: Elements

- Fix a set of models to interpret proof system judgements

- Fix some values that we can trace along paths in the proof
- In our examples: inductive predicate instances
- ldentify progression points of the proof system for ©, e.g.

x=ynempkF x—vxls(v,y)FF
s(x,y) - F

(Case ls)

- Define a realization function © that maps pairs of models
and trace values into a well-founded set

13/39



Soundness of Cyclic Proof: Descending Counter-models

The realization function must satisfy the following for each rule
j][T’]] 500 jn[Tn]
Tl

if model m }= J then there is a model m’ |~ J; for some i, and:

- O(m', 1) <O(m,T)

- ©(m', 1) < ©(m, ) if there is a progression from 7 to 7;

14/39
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- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Buchi automata
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Soundness of Cyclic Proof: General Principle

- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Buchi automata

- We obtain an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid
- Local soundness = infinite sequence of (counter) models
- Global trace condition = corresponding sequence of trace values

- © maps these to a (non-increasing) chain of ordinals
- The trace is infinitely progressing = chain is infinitely descending

- But the ordinals are well-founded ... contradiction

15/39



FOLp: Semantics of Inductive Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions Py fi, ..., P& = Po to

Definition (Characteristic Operators)

Inductive definition sets ® induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Po(X)(PT) = {m | P:ifi,...,P§ = Pte ® A m(d) = m(t0)
AV1<i<j:meX(Ptb)}
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interpretations X (functions from predicate formulas to sets of models):
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FOLp: Models as Realizers

- We define the realization function © by:

O(PE,m) E min({a | m e [PT2})
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- We define the realization function © by:

O(PE,m) E min({a | m e [PT2})

- Then the logical inference rules have the property that

DRI il I FTRD W o I P

MPtEA

for model m £ (T, Pt - A), there is model m’ & (X; F ;)
(for some i) and if Pt € ¥; then ©(Pt,m’) < ©(Pt, m)
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FOLp: Models as Realizers

- We define the realization function © by:

O(PE,m) E min({a | m e [PT2})

- Then the logical inference rules have the property that

MNt=0FA T t=sx,NxFA
(Case N)

FNtEA

for model m b (I,Nt F A), there is model m’ with either
m pE(Mt=0FAorm' £ (It =sx,Nx F A), and if the
latter then ©(Nx, m’") < ©(Nt, m)

17/39



Cyclic Proofs vs Infinite Proofs

- Cyclic proofs are the (strict) regular subset of the set of
non-well-founded proof trees
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Cyclic Proofs vs Infinite Proofs

- Cyclic proofs are the (strict) regular subset of the set of
non-well-founded proof trees

- For FOLp, the full infinite system is (cut-free) complete
with respect to standard models (Brotherston & Simpson)

- Cutis likely not eliminable in the cyclic sub-system

18/39



Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

N x = F[O] I, F[X] = F[SX],A [, F[t] FA
o (Ind N)
NO N sx LNtEA
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- Explicit induction requires induction hypothesis F up-front

N x = F[O] I, F[X] = F[SX],A [, F[t] FA
o (Ind N)
NO N sx LNtEA

- Cyclic proof enables ‘discovery’ of induction hypotheses

- Complex induction schemes naturally represented by
nested and overlapping cycles

19/39



Cyclic Proof vs Explicit Induction: Results for FOLp

- Every sequent provable using the explict induction rule is
also derivable using cyclic proof (Brotherston & Simpson)
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Cyclic Proof vs Explicit Induction: Results for FOLp

- Every sequent provable using the explict induction rule is
also derivable using cyclic proof (Brotherston & Simpson)

- For some sets of inductive definitions, cyclic proof is
strictly more powerful (Berardi & Tatsuta, FoSSaCS'17)

- When arithmetic is included, cyclic proof and explicit
induction are equivalent (Berardi & Tatsuta, LICS'17)
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Other Cyclic Proof Systems

- p~calculus (Sprenger and Dam, FoSSaCS'03)

- Temporal properties of heap-manipulating code
(Tellez Espinosa and Brotherston, CADE'17)

- Kleene algebra (Das, TABLEAUX'17)

21/39



Part [l

Realizability Results

Using Cyclic Proofs to Compute Semantic Information



Motivation: Cyclic Termination Proofs of Procedural Programs

struct 11 { int data; 11 =*next; }

void rev(ll *x) { /* reverseslist x/ }

void shuffle(1ll #*x) {
if ( x !'= NULL ) {

11 *y = x->next;
rev(y);

shuffle(y);
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list(x) & (x=NULL Aemp) V (x+— (d,[) = list(l))
void rev(ll =x) {listo(x)} { /= reverseslist =/ } {list.(x)}
void shuffle(1ll #x) {lista(x)} {
if ( x !'= NULL ) {
{x s (d, 1) *lists() A B < o }
11 *y = x->next;
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shuffle(y);
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Motivation: Cyclic Termination Proofs of Procedural Programs

struct 11 { int data; 11 =*next; }
list(x) & (x=NULL Aemp) V (x+— (d,[) = list(l))
void rev(ll =x) {lista(x)} { ... } {lista(x)}

void chuffl1ao(17 ) Llict [ 4
e w

Intra-procedural analysis produces verification
conditions, in the form of entailments, e.g.

X # NULL A X — (d,y) = list(y) F list(x)
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Motivation: Cyclic Termination Proofs of Procedural Programs

struct 11 { int data; 11 =*next; }
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(Axiom)

(Inference)
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Overview of Results

- Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

- These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

- The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

- Under certain extra structural conditions, this containment
falls within existing decidability results

23/39



Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of
sequents, which are

- maximally finite

- matched by some left-hand trace along the same path

- We then count the number of times each trace progresses

- the left-hand one must progress at least as often as the
right-hand one

2439



Extracting Semantic Orderings: Example (1)

= NO
Nx = Nsx ( h
NxFEx, Ox
=E0 — (Subst)
Ox = Esx NyFEy, Oy
Ex= 0Osx (PR)
NyF Oy, Ey
(OR)
NyF Oy, Osy
(ER1) —— (ERy)
= EO,O00 Ny F Esy, Osy
— (=) (=L)
x=0F Ex, Ox x=sy,NyF Ex, Ox
(Case N)
NxF Ex, Ox
N J
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Extracting Semantic Orderings: Example (1)

[ This trace is

- fully maximal: the final predicate is r
introduced by its rule NxHEx,Ox
— (Subst)
- grounded: the final predicate is derived NyFEy,Oy
from a zero premise production (PR)
(N.B.Ym :m € [NO]) Nyt Oy, Ey
\. J (O R)
Nyt Oy, Osy
&—(E Ry) ——  (ERy)
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—(=1)
Xx=0F Ex, Ox

(=L
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(Case N)
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Extracting Semantic Orderings: Example (1)

4 N
NxF Ex,Ox
[ A positive trace ] E(ERW) m(SUbSt)
(=L) — (PR
-EOF NykE Oy, Ey
(ER) ———WR) —————(OR)
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Extracting Semantic Orderings: Example (2)

= NO
ExE Nx
Nx = Nsx (AX) — (Subst)
—EO NssO F NssO EzENz
(NRy) (NR,)
Ox = Esx N'ssO - N sssO EzF Nsz
Ex = Osx (=L) (=L)
NG = @) ses( y =5SS0,NssO+ Ny y=sz,EzE Ny
(Case 0)
OyF Ny
(NRy) (NRy)
FNO Oy Nsy
(=) — (=1
X=0F Nx x=5sy,0yF Nx
(Case E)
ExtH Nx
N b,
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(NRy) (NR,)
Ox = Esx N'ssO - N sssO EzF Nsz
Ex = Osx (=L) (=L)
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(Case 0)
Oyk Ny
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F NO Oyk Nsy
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X=0F Nx x=5sy,0yF Nx
(Case E)
ExF Nx
N )
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Oyt Ny
(NRy) (NR,)
FNO OyF Nsy
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Extracting Semantic Orderings: Example (2)

)
= NO
ExF Nx
Nx = Nsx — (AX) —  (Subst)
= EOQ NssO - NssO Ez-Nz
(NR2) —— (NRy)
Ox= Esx EzF Nsz
Ex= 0Osx (=L) (=1)
N'ssO = 05sss0 5ss0,NssO - Ny y=sz,Ez- Ny
(Case 0)
[This trace is partially maximal: the ﬁnal] Qi 0 (NR,)
. . : i )
predicate is the active formula of an axiom Oyl sy
=0 —— D)
x=0F Nx X=sy,0yF Nx
(Case E)
ExE Nx
t J
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Extracting Semantic Orderings: Example (2)

= NO
ExF Nx
Nx = Nsx (AX) — (Subst)
—EO NssO - NssO EzENz
(NRy) (NR,)
Ox = Esx N'ssO - N sssO EzF Nsz
Ex= 0Osx (=L)

N ssO = 0 sss0

/y: $ss0, N'ssO

(=L)
Ny y=sz,EzE Ny
(Case 0)

The right trace is mirrored by the left:
the length and final predicate formulas
are the same

— (=01
X=0F Nx

OyF Ny
(NR2)
OyF Nsy
— (=0
x=3sy,0yF Nx

ExF Nx

(Case E)
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Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)
For every positive maximal right-hand trace, there must exist
a left-hand trace following the same path such that:

- either the right-hand trace is grounded, or it is partially
maximal and mirrored by the left-hand trace

- right unfoldings < left unfoldings
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Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX - Q satisfying the realizability
condition, then [PX]« C [Q¥]« for all

Proof.
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Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX - Q satisfying the realizability
condition, then [PX]« C [Q¥]« for all

Proof.
Pick a model m € [PX] (i.e. ©(PX,m) < a)

- m corresponds to a positive maximal right-hand trace in P

- The number of unfoldings in this right-hand trace is an bound
on ©(Qy, m)

- The number of unfoldings in any left-hand trace following the same
path is a bound on ©(P X, m)

- From the realizability condition, we have that ©(Qy, m) < ©(PX, m)
- Because approximations grow monotonically, also m € [Q¥]a

28/39



The Descending Model Property

The inference rules satify the property that for all valid rule instances

AETH .0 ApETy

rPE + Z[Qa]

If there is a model m =T, then there is a model m’ = A, and either Qi is
terminal or there is a trace to some RV € IM;; moreover if there is a trace:
- from Ptto P'S € A; then ©(P'S,m’) < ©(Pt, m)
(< if the trace progresses)

- from Qi to Q' 7 e M; and ©(Q ¥) defined, then ©(Q'r,m") > ©(Q U, m)
(> if the trace progresses)
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The Descending Model Property

Almost all the inference rules satisfy the descending model property!

Consider the following two rules (for some unsatisfiable F):

rFEA rFFG,A
(-R): —— (»R) ——————
MH=FA [-F—G,A

The conclusions may have models, but the premises may not
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Deciding the Realizability Condition

- We use weighted automata to decide whether the
realizability condition holds

- We construct weighted automata that count the
progression points in left and right-hand traces

- The realizability condition corresponds to an inclusion of
the right-hand trace automaton within the left-hand one

30/39



Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.
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Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.

1. The value of a run of & is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language L. is the function ¥* — V computed by &/

Definition (Weighted Inclusion)
L1 < L, if and only if for every word w such that £:(w) is defined, £;(w) is
also defined and £y(w) < £Lo(w)

automata are weighted automata over (N, max, +)
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Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two sum automata, «p
and ép:

- States represent a particular trace value in a particular node
- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have non-zero (unit) weight
- The value of a path is the maximum number of unfoldings in the traces
along the path
- o/p can stop tracking traces at any point
- %p always tracks traces (i.e. considers only maximal ones)

- ¢p is grounded when all final states correspond to ground predicate
instances
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Weighted Automata from Cyclic Entailment Proofs

(Ax)
NssO = NssO

(NR,)
N ssO - N sssO
(=0)

y =5550,NssO = Ny

(ﬁ
ExF Nx
—— (Subst)
EzENz

(NR2)

EzF Nsz
— (=)
y=sz,EzE Ny
(Case 0)

Oy Ny

x=5sy,0yF Nx

(NRy)

Oy Nsy

(=L)

(Case E)
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Weighted Automata from Cyclic Entailment Proofs

The left-hand automaton for the example proof of Ex = N x

a @M ‘;/y: \ )] /7 \ / \\ (N'ss0),[0] / \
start —| 3 u (3,0y) /,‘?—"{ (5,0y) u u 1 \«—u(wo Nsso)
\_/ \\,,,/ NI \\,:,/
o] B Jowo o]
/ / \ (12),[ / \\ (1),[0] / \ (801 / \\ nl / \\ / \ (10),[0] / \\
[ (.Ex) u<—u EZ) \<—u (1,E2) ‘u<—<\\ (8.E2) \M—{\\ 0y) »—»u (7,N'ss0) »—»u (9, N'ss0) »—»u

w \C _ o

().101

(12),[0]
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Weighted Automata from Cyclic Entailment Proofs

The right-hand automaton for the example proof of Ex = N x

\ /;:L\
(e NO \
\\ [0]
(N'ss0), [O
start —|
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An Equivalence between Realizability and Weighted Inclusion

Theorem
‘P satisfies the realizability condition < 6p < /p and 6p is grounded
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Theorem

‘P satisfies the realizability condition < 6p < /p and 6p is grounded
Theorem (Krob '94, Almagor Et Al. "11)

Given two quantitative languages (weighted automata) £, and Ly, it is
undecidable whether £1 < L,
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An Equivalence between Realizability and Weighted Inclusion

Theorem
‘P satisfies the realizability condition < ¢p < @/p and €p Is grounded

Theorem (Krob '94, Almagor Et Al. "11)

Given two quantitative languages (weighted automata) £, and Ly, it is
undecidable whether £1 < L,

Definition

A weighted automaton is called if there exists a bound on the
number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini & Raskin "14)
L. < Ly is decidable for finite-valued weighted automata </ and %

33/39



Left-hand Trace Automata are not Finite-valued

The following configuration results in non-finite-valuedness:
(Weber & Seidel, TCS 1991)
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Left-hand Trace Automata are not Finite-valued

The following configuration results in non-finite-valuedness:
(Weber & Seidel, TCS 1991)

start —

/o

N\ gl
q (1,Ex) u,‘%\ (12,E2) (‘,%\ (1,£2) (\,%
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Approximate Left-hand Trace Automata

We instead construct a sequence of left-hand trace automata «p[n] (n € N):

- we refine the state T into n states T1,,... T% for each node v of P
- we restrict the transitions between them:

- T! transitions to T accepting only node v
- T! transitions to itself accepting any node except v
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Approximate Left-hand Trace Automata

We instead construct a sequence of left-hand trace automata @ [n] (n € N):

- we refine the state T into n states T,,,... T? for each node v of P
- we restrict the transitions between them:

- T! transitions to T'" accepting only node v
- T! transitions to itself accepting any node except v

Theorem

Each approximate left-hand trace automaton is finite-valued’

The price is that «7p[n] only accepts a subset of all the paths in P

'when traces are injective, i.e. do not merge
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A Decidable Restriction for Realizability

Theorem

Let P be a cyclic entailment proof which is and ; then P
satisfies the realizability condition if and only if ép < </p[N] and €p is
grounded (where N is a function of P)
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A Decidable Restriction for Realizability

Theorem

Let P be a cyclic entailment proof which is dynamic and balanced; then P
satisfies the realizability condition if and only if ép < </p[N] and €p is
grounded (where N is a function of P)

The cyclic proof is:

- dynamic when every (reachable) basic trace cycle has a non-zero
number of progression points

- balanced when every (reachable) basic binary trace cycle has equal
numbers of left and right-hand progression points

* a binary cycle is a pair of left and right-hand trace cycles following the
same path

The bound N is a function of other graph-theoretic quantities of P
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Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce [Pt]o C [Q ] from a proof of I, PEF X, Q0

Then we can safely trace across an active cut formula

rPtHX, Q0 QU,MFA
(Cut)

rPLOFE, A
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Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce [Pt]o C [Q ] from a proof of I, PEF X, Q0

Then we can safely trace across an active cut formula

rPtHX, Q0 QU,MFA
(Cut)

rPLOFE, A

This is explicitly forbidden in existing cyclic proof systems, precisely because
there is no way, in general, to ensure an inclusion between [P t]. and [Q 0]«
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Conclusions

- We have shown that information about inclusions
between the semantics of inductive predicates can be
extracted from cyclic proofs of entailments

- This information should be useful for constructing ranking
functions for programs

- Our results are formulated abstractly, and so hold for any
cyclic proof system whose rules satisfy certain properties

- We use the term realizability because we extract semantic
information from the proofs
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Future Work

- Implement the decision procedure within the cyclic
proof-based verification framework CycCLIST

- Evaluate to what extent entailments found ‘in the wild’
satisfy the realizability condition

- Investigate further theoretical questions:

- are there weaker structural properties of proofs that still
admit completeness with the approximate automata

- If the semantic inclusion [PX]. C [Q}]. holds, is there a
cyclic proof of PX - Qy satisfying the realizability
condition?
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