Realizability in Cyclic Proof

Extracting Ordering Information for Infinite Descent

Reuben N. S. Rowe ¹ James Brotherston ²
UCL PPLV Seminar. Thursday 14th December 2017

¹School of Computing, University of Kent, Canterbury, UK

²Department of Computer Science, UCL, London, UK

Outline

Part I: Introduction to cyclic proofs

 Part II: Realizability results — how to extract semantic ordering information from cyclic proofs

Outline

- Part I: Introduction to cyclic proofs
 - · What are they?
 - · Some examples:
 - · first order logic, separation logic, Hoare logic
 - General principles and results
- Part II: Realizability results how to extract semantic ordering information from cyclic proofs

Outline

- Part I: Introduction to cyclic proofs
 - · What are they?
 - · Some examples:
 - · first order logic, separation logic, Hoare logic
 - General principles and results
- Part II: Realizability results how to extract semantic ordering information from cyclic proofs
 - ordering information = inclusion between semantic approximations
 - · structural realizability property for cyclic entailment proofs
 - equivalence with weighted automata inclusion

Part I

Cyclic Proofs

What is Cyclic Proof?

• We are all familiar with proofs as finite trees

What is Cyclic Proof?

- · We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?

What is Cyclic Proof?

- · We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?
- · Cyclic proofs must satisfy a syntactic global trace property

Why Cyclic Proof?

It subsumes standard induction

It can help discover inductive hypotheses

Termination arguments can often be extracted from cyclic proofs

First Order Logic: The Sequent Calculus \mathcal{LK}

$$(\lor L): \frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \qquad (\lor R): \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta}$$

$$(\land L): \frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \qquad (\land R): \frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta}$$

$$(\to L): \frac{\Gamma \vdash A, \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \to B \vdash \Delta} \qquad (\to R): \frac{\Gamma, F \vdash \Delta}{\Gamma \vdash \neg F, \Delta}$$

$$(\neg L): \frac{\Gamma \vdash F, \Delta}{\Gamma, \neg F \vdash \Delta} \qquad (\to R): \frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \to B, \Delta}$$

$$(=L): \frac{\Gamma[u/x, t/y] \vdash \Delta[u/x, t/y]}{\Gamma[t/x, u/y], t = u \vdash \Delta[t/x, u/y]} \qquad (=R): \frac{\Gamma, E \vdash A, E, E, E}{\Gamma, E \vdash E, E}$$

First Order Logic: The Sequent Calculus \mathcal{LK}

(Axiom):
$$\underline{\qquad}$$
 (Subst): $\underline{\frac{\Gamma \vdash \Delta}{\Gamma \theta \vdash \Delta \theta}}$ (Cut): $\underline{\frac{\Gamma \vdash F, \Delta \quad \Sigma, F \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}}$

$$(\text{WL}) : \frac{\Gamma \vdash \Delta}{\Gamma, \digamma \vdash \Delta} \qquad (\text{WR}) : \frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, \digamma} \qquad (\text{PL}) : \frac{\Gamma, A, B, \Sigma \vdash \Delta}{\Gamma, B, A, \Sigma \vdash \Delta}$$

$$(CL): \frac{\Gamma, F, F \vdash \Delta}{\Gamma, F \vdash \Delta} \qquad (CR): \frac{\Gamma \vdash F, F, \Delta}{\Gamma \vdash F, \Delta} \qquad (PR): \frac{\Gamma \vdash \Delta, A, B, \Sigma}{\Gamma \vdash \Delta, B, A, \Sigma}$$

First Order Logic with Inductive Predicate Definitions (FOL_{ID})

- · Assume signature with zero, successor, and equality
- · Allow inductive predicate definitions, e.g.

First Order Logic with Inductive Predicate Definitions (FOL_{ID})

- · Assume signature with zero, successor, and equality
- · Allow inductive predicate definitions, e.g.

• These induce unfolding rules for the sequent calculus, e.g.

$$\frac{\Gamma, t = 0 \vdash \Delta \quad \Gamma, t = sx, Nx \vdash \Delta}{\Gamma, Nt \vdash \Delta}$$
(Case N) (where x fresh)
$$\frac{\Gamma}{\Gamma \vdash \Delta, N0} (NR_1) \qquad \frac{\Gamma \vdash \Delta, Nt}{\Gamma \vdash \Delta, Nst} (NR_2)$$

 $Nx \vdash Ex, Ox$

$$x = 0 \vdash Ex, Ox$$
 $x = sy, Ny \vdash Ex, Ox$ (Case N)

$$\frac{- E 0, O 0}{x = 0 \vdash Ex, O x} (=L)$$

$$\frac{X = sy, N y \vdash Ex, O x}{Nx \vdash Ex, O x} (Case N)$$

$$\frac{-Ny \vdash Oy, Osy}{\vdash E0, O0} (ER_1) \qquad \frac{Ny \vdash Esy, Osy}{\vdash Esy, Osy} (ER_2)$$

$$x = 0 \vdash Ex, Ox \qquad x = sy, Ny \vdash Ex, Ox$$

$$Nx \vdash Ex, Ox \qquad (Case N)$$

$$\frac{Ny \vdash Oy, Ey}{Ny \vdash Oy, Osy} (OR_1)$$

$$\frac{Ny \vdash Oy, Osy}{Ny \vdash Esy, Osy} (ER_2)$$

$$\frac{Ny \vdash Esy, Osy}{X = 0 \vdash Ex, Ox} (=L)$$

$$\frac{Ny \vdash Esy, Osy}{X = Sy, Ny \vdash Ex, Ox} (Case N)$$

$$\frac{Ny \vdash Ey, Oy}{Ny \vdash Oy, Ey} (PR)$$

$$\frac{Ny \vdash Oy, Ey}{Ny \vdash Oy, Osy} (OR_1)$$

$$\frac{Ny \vdash Esy, Osy}{Ny \vdash Esy, Osy} (ER_2)$$

$$\frac{Ny \vdash Esy, Osy}{x = 0 \vdash Ex, Ox} (=L)$$

$$\frac{Ny \vdash Esy, Osy}{x = sy, Ny \vdash Ex, Ox} (Case N)$$

$$\frac{Nx \vdash Ex, Ox}{-Ny \vdash Ey, Oy} (Subst)$$

$$\frac{Ny \vdash Ey, Oy}{-Ny \vdash Oy, Ey} (PR)$$

$$\frac{Ny \vdash Oy, Osy}{-Ny \vdash Oy, Osy} (ER_2)$$

$$\frac{Ny \vdash Esy, Osy}{-Ny \vdash Ex, Ox} (=L)$$

$$\frac{Ny \vdash Esy, Osy}{-Ny \vdash Ex, Ox} (Case N)$$

$$[\![x]\!]_{m_1} > [\![y]\!]_{m_2}$$

$$[\![X]\!]m_1 > [\![Y]\!]m_2 = [\![Y]\!]m_3$$

$$[\![X]\!]_{m_1} > [\![y]\!]_{m_2} = [\![y]\!]_{m_3} = [\![y]\!]_{m_4}$$

$$[\![X]\!]m_1 > [\![Y]\!]m_2 = [\![Y]\!]m_3 = [\![Y]\!]m_4 = [\![Y]\!]m_5$$

$$[\![X]\!]_{m_1} > [\![Y]\!]_{m_2} = [\![Y]\!]_{m_3} = [\![Y]\!]_{m_4} = [\![Y]\!]_{m_5} = [\![Y]\!]_{m_6}$$

$$\frac{Nx \vdash Ex, Ox}{Ny \vdash Ey, Oy} (Subst)$$

$$\frac{Ny \vdash Ey, Oy}{Ny \vdash Oy, Ey} (PR)$$

$$\frac{Ny \vdash Oy, Osy}{Ny \vdash Oy, Osy} (ER_2)$$

$$\frac{Ny \vdash Esy, Osy}{x = Sy, Ny \vdash Ex, Ox} (Case N)$$

$$[\![X]\!]m_1 > [\![Y]\!]m_2 = [\![Y]\!]m_3 = [\![Y]\!]m_4 = [\![Y]\!]m_5 = [\![Y]\!]m_6 = [\![X]\!]m_7$$

$$[\![X]\!]_{m_1} > [\![Y]\!]_{m_2} = [\![Y]\!]_{m_3} = [\![Y]\!]_{m_4} = [\![Y]\!]_{m_5} = [\![Y]\!]_{m_6} = [\![X]\!]_{m_7} > [\![Y]\!]_{m_8} \dots$$

$$n_1 > n_2 > n_3 > \dots$$
 $(n_i \in \mathbb{N} \text{ for all } i)$

 Separation Logic incorporates formulas for representing heap memory:

- Separation Logic incorporates formulas for representing heap memory:
 - · emp denotes the empty heap

- Separation Logic incorporates formulas for representing heap memory:
 - · emp denotes the empty heap
 - $x \mapsto \vec{v}$ is the single-cell heap containing values \vec{v} at memory location x

- Separation Logic incorporates formulas for representing heap memory:
 - · emp denotes the empty heap
 - $x \mapsto \vec{v}$ is the single-cell heap containing values \vec{v} at memory location x
 - F * G denotes a heap h that can be split into disjoint sub-heaps h_1 and h_2 which model F and G respectively

Example: Separation Logic

- Separation Logic incorporates formulas for representing heap memory:
 - · emp denotes the empty heap
 - $x \mapsto \vec{v}$ is the single-cell heap containing values \vec{v} at memory location x
 - F * G denotes a heap h that can be split into disjoint sub-heaps h_1 and h_2 which model F and G respectively
- Inductive predicates now represent data-structures, e.g. linked-list segments:

$$\frac{x = y \land \mathsf{emp}}{\mathsf{ls}(x, y)} \qquad \frac{x \mapsto z * \mathsf{ls}(z, y)}{\mathsf{ls}(x, y)}$$

$$ls(x, y) * ls(y, z) \vdash ls(x, z)$$

$$\frac{-\frac{1}{\operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)}}{\operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (\equiv)$$

$$\frac{-\frac{1}{\operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)}}{(x = y \land \operatorname{emp}) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)} (=L)$$

$$\vdots \qquad \qquad (\operatorname{Id})$$

$$\vdots \qquad (\operatorname{Id})$$

$$\vdots \qquad \qquad (\operatorname{Id})$$

$$\vdots \qquad (\operatorname{Id})$$

$$\frac{\operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)}{\operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (\equiv)$$

$$= \operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z) (=L)$$

$$(x = y \land \operatorname{emp}) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)$$

$$\vdots$$

$$\frac{}{x \mapsto v \vdash x \mapsto v} (\operatorname{Id}) \frac{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)}{\operatorname{ls}(y,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(v,z)} (\operatorname{Subst})$$

$$\vdots$$

$$\frac{}{x \mapsto v + \operatorname{ls}(v,y) * \operatorname{ls}(y,z) \vdash x \mapsto v * \operatorname{ls}(v,z)} (\operatorname{lsR}_2)$$

$$\vdots$$

$$\frac{}{x \mapsto v * \operatorname{ls}(v,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)} (\operatorname{Case ls})$$

$$\frac{\operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)}{\operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (\equiv)$$

$$\frac{\operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)}{(x = y \land \operatorname{emp}) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)} (=\operatorname{L})$$

$$\frac{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)}{\operatorname{ls}(y,z) \vdash \operatorname{ls}(y,z) \vdash \operatorname{ls}(y,z)} (\operatorname{Subst})$$

$$\frac{x \mapsto v \vdash x \mapsto v}{\operatorname{ls}(v,y) * \operatorname{ls}(y,z) \vdash x \mapsto v * \operatorname{ls}(v,z)} (=\operatorname{ls}(\operatorname{ls}(x,y)) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)$$

$$\frac{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)}{\operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (\operatorname{Case \, ls}(x,z))$$

$$\frac{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)}{\operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (=\operatorname{ls}(x,z))$$

A Simple Imperative Language

```
(Terms) \quad t := \mbox{nil} \mid x \\ (Boolean Expressions) \quad B := t = t \mid t! = t \\ (Programs) \quad C := \epsilon \qquad (stop) \\ \mid x := t; C \qquad (assignment) \\ \mid x := [y]; C \mid [x] := y; C \qquad (load/store) \\ \mid free(x); C \mid x := \mbox{new}; C \qquad (de/allocate) \\ \mid if(B) then \{C\}; C \qquad (conditional) \\ \mid \mbox{while}(B) \mbox{do}\{C\}; C \qquad (loop) \\ \end{cases}
```

A Simple Imperative Language

```
(Terms) \quad t ::= \mbox{nil} \mid x \\ (Boolean Expressions) \quad B ::= t = t \mid t! = t \\ (Programs) \quad C ::= \epsilon \qquad (stop) \\ \mid x := t; C \qquad (assignment) \\ \mid x := [y]; C \mid [x] := y; C \qquad (load/store) \\ \mid free(x); C \mid x := \mbox{new}; C \qquad (de/allocate) \\ \mid if(B) then \{C\}; C \qquad (conditional) \\ \mid while(B) do \{C\}; C \qquad (loop) \\ \end{cases}
```

• The following program deallocates a linked list

```
while (x!=nil) do \{y:=[x]; free(x); x=y\}
```

Program Verification by Symbolic Execution

• We use Hoare logic for proving triples $\{P\}$ C $\{Q\}$ using Separation Logic as an assertion language

Program Verification by Symbolic Execution

- We use Hoare logic for proving triples $\{P\}$ C $\{Q\}$ using Separation Logic as an assertion language
- Program commands are executed symbolically by the proof rules, e.g.

$$(\text{load}): \frac{\{x = v[x'/x] \land (P * y \mapsto v)[x'/x]\} C \{Q\}}{\{P * y \mapsto v\} x := [y]; C \{Q\}} (x' \text{ fresh})$$

Program Verification by Symbolic Execution

- We use Hoare logic for proving triples $\{P\}$ C $\{Q\}$ using Separation Logic as an assertion language
- Program commands are executed symbolically by the proof rules, e.g.

(load):
$$\frac{\{x = v[x'/x] \land (P * y \mapsto v)[x'/x]\} C \{Q\}}{\{P * y \mapsto v\} x := [y]; C \{Q\}} (x' \text{ fresh})$$

(free):
$$\frac{\{P\} C \{Q\}}{\{P * x \mapsto v\} \operatorname{free}(x); C \{Q\}}$$

Handling Loops in Cyclic Proofs

• The standard Hoare rule for handling while loops:

$$\frac{\{B \land P\} C_1 \{P\} \quad \{\neg B \land P\} C_2 \{Q\}\}}{\{P\} \text{ while } (B) \text{ do } \{C_1\}; C_2 \{Q\}\}}$$

Handling Loops in Cyclic Proofs

• The standard Hoare rule for handling while loops:

$$\frac{\{t = z \land B \land P\} C_1 \{t < z \land P\} \quad \{\neg B \land P\} C_2 \{Q\}\}}{\{P\} \text{ while } (B) \text{ do } \{C_1\}; C_2 \{Q\}\}}$$

t is the loop variant

Handling Loops in Cyclic Proofs

• The standard Hoare rule for handling while loops:

$$\frac{\{t = z \land B \land P\} C_1 \{t < z \land P\} \quad \{\neg B \land P\} C_2 \{Q\}\}}{\{P\} \text{ while (B) do } \{C_1\}; C_2 \{Q\}}$$

t is the loop variant

· With cyclic proof, it is enough just to unfold loops

$$\frac{\{B \land P\} C_1; \text{while } (B) \text{ do } \{C_1\}; C_2 \{Q\} \quad \{\neg B \land P\} C_2 \{Q\}\}}{\{P\} \text{ while } (B) \text{ do } \{C_1\}; C_2 \{Q\}\}}$$

```
while(x!=nil)do{y:=[x];free(x);x=y}
```

```
\{ls(x,nil)\} \quad while(x!=nil)do\{y:=[x];free(x);x=y\}
```

```
\{ls(x,nil)\} \quad while\,(x\,!\,=\!nil)\,do\,\{\,y\,:\,=\,[\,x\,]\,;free\,(\,x\,)\,;\,x\,=\!y\,\} \quad \{emp\}
```

```
\{ls(x,nil)\} \quad \text{while} \, (\,x\,!\,=\!nil\,) \, do \, \{\,y\,:\,=\, [\,x\,]\,; \, free(\,x\,)\,; \, x\,=\!y\,\} \quad \{emp\}
```

```
 \left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} y := [x]; \text{free}(x); x = y; \text{while}(x! = \text{nil}) \text{do}\{y := [x]; \text{free}(x); x = y} \text{ {emp}} \\ & \left\{ \begin{array}{l} x = \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \epsilon \text{ {emp}} \\ & \left\{ \text{ls}(x, \text{nil}) \right\} \text{ while} \dots \text{ {emp}} \end{aligned}
```

```
\{ls(x,nil)\} \quad \text{while} \, (\,x\,!\,=\!nil\,) \, do \, \{\,y\,:\,=\, [\,x\,]\,; \, free(\,x\,)\,; \, x\,=\!y\,\} \quad \{emp\}
```

```
 \begin{cases} x \neq \text{nil} \\ \land ls(x, \text{nil}) \end{cases} y := [x]; \dots \{emp\}   \vdots \qquad \begin{cases} x = \text{nil} \\ \land ls(x, \text{nil}) \end{cases} \epsilon \{emp\}   (while in the content of the conte
```

$$\{ls(x,nil)\} \quad \text{while} \, (\,x\,!\,=\!nil\,) \, do \, \{\,y\,:\,=\, [\,x\,]\,; \, free(\,x\,)\,; \, x\,=\!y\,\} \quad \{emp\}$$

$$\begin{cases} x \neq \text{nil} \\ \land \text{ls}(x, \text{nil}) \end{cases} y := [x]; \dots \{\text{emp}\}$$

$$\vdots \qquad \begin{cases} x = \text{nil} \\ \land \text{ls}(x, \text{nil}) \end{cases} \epsilon \{\text{emp}\}$$

$$(\text{while})$$

$$\{ls(x,nil)\} \quad \text{while(x!=nil)do\{y:=[x];free(x);x=y\}} \quad \{emp\}$$

```
 \begin{cases} x \neq \text{nil} \\ \land x = \text{nil} \\ \land \text{emp} \end{cases} y := [x]; \dots \{\text{emp}\} \qquad \begin{cases} x \mapsto v \\ * \text{ls}(v, \text{nil}) \end{cases} y := [x]; \dots \{\text{emp}\} \qquad (\text{unfold ls})   \begin{cases} x \neq \text{nil} \\ \land \text{ls}(x, \text{nil}) \end{cases} y := [x]; \dots \{\text{emp}\} \qquad (\text{pink}) \end{cases}   \begin{cases} x \neq \text{nil} \\ \land \text{ls}(x, \text{nil}) \end{cases} \varepsilon \{\text{emp}\} \qquad (\text{while})
```

$$\{ls(x,nil)\} \quad \text{while} \, (\,x\,!\,=\!nil\,) \, do \, \{\,y\,:\,=\, [\,x\,]\,; \, free(\,x\,)\,; \, x\,=\!y\,\,\} \quad \{emp\}$$

$$\{ls(x,nil)\} \quad while\,(x\,!\,=\!nil\,)\,do\,\{\,y\,:=\,[\,x\,]\,;\,free\,(\,x\,)\,;\,x\,=\!y\,\} \quad \{emp\}$$

$$\frac{\left\{ \begin{array}{c} x\mapsto y\\ *\lg(y,nil) \end{array} \right\} \; free(x); \ldots \; \{emp\}}{\left\{ \begin{array}{c} x\mapsto y\\ *\lg(y,nil) \end{array} \right\} \; free(x); \ldots \; \{emp\}} \qquad (load) \\ \left\{ \begin{array}{c} x\mapsto v\\ *\lg(y,nil) \end{array} \right\} \; y:=[x]; \ldots \; \{emp\} \end{array} \qquad (unfold \; ls) \\ \left\{ \begin{array}{c} x\neq nil\\ \land \lg(x,nil) \end{array} \right\} \; y:=[x]; \ldots \; \{emp\} \qquad (unfold \; ls) \\ \vdots \qquad \left\{ \begin{array}{c} x=nil\\ \land \lg(x,nil) \end{array} \right\} \; \epsilon \; \{emp\} \end{array} \qquad (while)$$

```
\{ls(x,nil)\} \quad while\,(x\,!\,=\!nil\,)\,do\,\{\,y\,:\,=\,[\,x\,]\,;\,free\,(\,x\,)\,;\,x\,=\!y\,\} \quad \{emp\}
```

```
 \frac{ \left\{ ls(y, nil) \right\} x = y; \dots \left\{ emp \right\} }{ \left\{ \begin{array}{c} x \mapsto y \\ * ls(y, nil) \right\} } \text{ free}(x); \dots \left\{ emp \right\} }{ \left\{ \begin{array}{c} x \mapsto y \\ * ls(y, nil) \right\} } \text{ free}(x); \dots \left\{ emp \right\} } \\  \left\{ \begin{array}{c} x \mapsto v \\ * ls(v, nil) \right\} \end{array} \right\} y := [x]; \dots \left\{ emp \right\} } \\  \left\{ \begin{array}{c} x \mapsto v \\ * ls(v, nil) \right\} \end{array} \right\} y := [x]; \dots \left\{ emp \right\} \\  \left\{ \begin{array}{c} x \neq nil \\ \land ls(x, nil) \right\} \end{array} \right\} y := [x]; \dots \left\{ emp \right\} \\  \left\{ \begin{array}{c} x = nil \\ \land ls(x, nil) \right\} \end{array} \right\} \epsilon \left\{ emp \right\} \\  \left\{ \begin{array}{c} (while) \\ (while) \end{array} \right\} \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\} while \dots \left\{ \left\{ \begin{array}{c} (ls(x, nil)) \\ (ls(x, nil)) \end{array} \right\}
```

```
\{ls(x,nil)\}\ while (x!=nil) do \{y:=[x];free(x);x=y\} \{emp\}
                                                          \{ls(x, nil)\} while . . . \{emp\}
                                                           \{ls(y, nil)\} x=y; \dots \{emp\}
\frac{}{\left\{ \begin{array}{c} x = \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \epsilon \left\{ \text{emp} \right\}}
                  \left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \text{ y:=[x]; ... \{emp\}} 
                                                 {ls(x, nil)} while ... {emp}
```

```
\{ls(x,nil)\}\ while (x!=nil) do \{y:=[x];free(x);x=y\} \{emp\}
                                                                                                        \{ls(x, nil)\}\ while \dots \{emp\}
                                                                                                         \{ls(y, nil)\}\ x=y; \dots \{emp\}
\frac{\left\{ \begin{array}{c} x \mapsto y \\ * \, \mathsf{ls}(\mathsf{y}, \mathsf{nil}) \end{array} \right\} \, \mathsf{free}(\mathsf{x}); \, \ldots \, \{\mathsf{emp}\}}{\left\{ \begin{array}{c} x \mapsto y \\ * \, \mathsf{ls}(\mathsf{y}, \mathsf{nil}) \end{array} \right\} \, \mathsf{y}\!:=\![x]; \, \ldots \, \{\mathsf{emp}\}}
                              \left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \text{ y:=[x]; ... \{emp\}} 
                                                                                                                                             \begin{cases} x = \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{cases} \epsilon \{\text{emp}\}
                                                                                   \rightarrow {ls(x, nil)} while ... {emp}
```

```
\{ls(x,nil)\}\ while (x!=nil) do \{y:=[x];free(x);x=y\} \{emp\}
                                                                                                         \{ls(x, nil)\} while ... \{emp\}
                                                                                                           \{ls(y, nil)\} x=y; \dots \{emp\}
\frac{\left\{\begin{array}{c} x \mapsto y \\ * \mbox{ ls(y, nil)} \end{array}\right\} \mbox{ free(x); } \dots \mbox{ \{emp\}}}{\left\{\begin{array}{c} x \mapsto y \\ * \mbox{ ls(y, nil)} \end{array}\right\} \mbox{ y:=[x]; } \dots \mbox{ \{emp\}}} } \\ \left\{\begin{array}{c} x \mapsto v \\ * \mbox{ ls(v, nil)} \end{array}\right\} \mbox{ y:=[x]; } \dots \mbox{ \{emp\}}}
                                                                                                                    \frac{1}{\left\{ \begin{array}{l} x = nil \\ \wedge ls(x, nil) \end{array} \right\} \epsilon \left\{ emp \right\}}
                              \left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \text{ y:=[x]; ... \{emp\}} 
                                                                                    \rightarrow {ls(x, nil)} while ... {emp}
```

Soundness of Cyclic Proof: Elements

• Fix a set of models to interpret proof system judgements

Soundness of Cyclic Proof: Elements

- Fix a set of models to interpret proof system judgements
- Fix some values that we can trace along paths in the proof
 - In our examples: inductive predicate instances

Soundness of Cyclic Proof: Elements

- Fix a set of models to interpret proof system judgements
- Fix some values that we can trace along paths in the proof
 - · In our examples: inductive predicate instances
- Identify progression points of the proof system for Θ , e.g.

$$\frac{x = y \land \mathsf{emp} \vdash F \quad x \mapsto v * \mathsf{ls}(v, y) \vdash F}{\mathsf{ls}(x, y) \vdash F} \text{ (Case ls)}$$

Soundness of Cyclic Proof: Elements

- Fix a set of models to interpret proof system judgements
- Fix some values that we can trace along paths in the proof
 - · In our examples: inductive predicate instances
- Identify progression points of the proof system for Θ , e.g.

$$\frac{x = y \land \mathsf{emp} \vdash F \quad x \mapsto v * \mathsf{ls}(v, y) \vdash F}{\mathsf{ls}(x, y) \vdash F} \text{ (Case ls)}$$

• Define a realization function Θ that maps pairs of models and trace values into a well-founded set

Soundness of Cyclic Proof: Descending Counter-models

The realization function must satisfy the following for each rule

$$\frac{\mathcal{J}_1[\tau_1] \quad \dots \quad \mathcal{J}_n[\tau_n]}{\mathcal{J}[\tau]}$$

if model $m \not\models \mathcal{J}$ then there is a model $m' \not\models \mathcal{J}_i$ for some i, and:

- $\cdot \Theta(m', \tau_i) \leq \Theta(m, \tau)$
- $\Theta(m', \tau_i) < \Theta(m, \tau)$ if there is a progression from τ to τ_i

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - · This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness ⇒ infinite sequence of (counter) models

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness ⇒ infinite sequence of (counter) models
 - Global trace condition ⇒ corresponding sequence of trace values

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness ⇒ infinite sequence of (counter) models
 - Global trace condition ⇒ corresponding sequence of trace values
 - \cdot Θ maps these to a (non-increasing) chain of ordinals

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness ⇒ infinite sequence of (counter) models
 - Global trace condition ⇒ corresponding sequence of trace values
 - ⊖ maps these to a (non-increasing) chain of ordinals
 - \cdot The trace is infinitely progressing \Rightarrow chain is infinitely descending

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness ⇒ infinite sequence of (counter) models
 - Global trace condition ⇒ corresponding sequence of trace values
 - ⊖ maps these to a (non-increasing) chain of ordinals
 - The trace is infinitely progressing ⇒ chain is infinitely descending
 - But the ordinals are well-founded ... contradiction

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{u}) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land m(\vec{u}) = m(\vec{t}\theta)$$

$$\land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce *characteristic operators* φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$\varphi_{\Phi}(X)(P\vec{u}) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land m(\vec{u}) = m(\vec{t}\theta)$$

$$\land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{ll} \frac{\mathsf{N}\,\mathsf{X}}{\mathsf{N}\,\mathsf{0}} & \frac{\mathsf{E}\,\mathsf{X}}{\mathsf{E}\,\mathsf{0}} & \frac{\mathsf{C}\,\mathsf{X}}{\mathsf{O}\,\mathsf{S}\mathsf{X}} & \frac{\mathsf{D}\,\mathsf{X}}{\mathsf{E}\,\mathsf{S}\mathsf{X}} \right\} & X_\perp(\mathsf{P}\,\vec{t}\,) = \emptyset \quad \text{for all } \mathsf{P}\,\vec{t} \\ \\ \varphi_\Phi(X_\perp)(\mathsf{N}\,\mathsf{X}) &= \{[\mathsf{X} \mapsto \mathsf{0}]\} \\ \\ \varphi_\Phi(X_\perp)(\mathsf{E}\,\mathsf{X}) &= \{[\mathsf{X} \mapsto \mathsf{0}]\} \\ \\ \varphi_\Phi(X_\perp)(\mathsf{O}\,\mathsf{X}) &= \{\} \end{array}$$

16/39

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{u}) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land m(\vec{u}) = m(\vec{t}\theta)$$

$$\land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{ll} \frac{\mathsf{N}\,x}{\mathsf{N}\,0} & \frac{\mathsf{E}\,x}{\mathsf{N}\,\mathsf{S}x} & \frac{\mathsf{E}\,x}{\mathsf{E}\,0} & \frac{\mathsf{O}\,x}{\mathsf{E}\,\mathsf{S}x} \end{array} \right\} \qquad X_\perp(\mathsf{P}\,\vec{t}\,) = \emptyset \quad \text{for all } \mathsf{P}\,\vec{t}$$

$$\varphi_\Phi(\varphi_\Phi(X_\perp))(\mathsf{N}\,x) = \{[x\mapsto 0], [x\mapsto s0]\}$$

$$\varphi_\Phi(\varphi_\Phi(X_\perp))(\mathsf{E}\,x) = \{[x\mapsto 0]\}$$

$$\varphi_\Phi(\varphi_\Phi(X_\perp))(\mathsf{O}\,x) = \{[x\mapsto s0]\}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{u}) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land m(\vec{u}) = m(\vec{t}\theta) \\ \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\begin{split} \Phi = \left\{ \frac{\mathsf{N}\,\mathsf{N}}{\mathsf{N}\,\mathsf{0}} \, \frac{\mathsf{N}\,\mathsf{X}}{\mathsf{N}\,\mathsf{SX}} \, \frac{\mathsf{E}\,\mathsf{X}}{\mathsf{E}\,\mathsf{0}} \, \frac{\mathsf{O}\,\mathsf{X}}{\mathsf{O}\,\mathsf{SX}} \, \frac{\mathsf{N}\,\mathsf{X}}{\mathsf{E}\,\mathsf{SX}} \right\} & \quad \mathsf{X}_\perp(\mathsf{P}\,\vec{t}\,) = \emptyset \quad \text{for all } \mathsf{P}\,\vec{t} \\ \varphi_\Phi(\varphi_\Phi(\varphi_\Phi(\mathsf{X}_\perp)))(\mathsf{N}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{0}], [\mathsf{X} \mapsto \mathsf{S0}], [\mathsf{X} \mapsto \mathsf{SS0}]\} \\ \varphi_\Phi(\varphi_\Phi(\varphi_\Phi(\mathsf{X}_\perp)))(\mathsf{E}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{0}], [\mathsf{X} \mapsto \mathsf{SS0}]\} \\ \varphi_\Phi(\varphi_\Phi(\varphi_\Phi(\mathsf{X}_\perp)))(\mathsf{O}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{S0}]\} \end{split}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{u}) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land m(\vec{u}) = m(\vec{t}\theta) \\ \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{ccc} & Nx & & Ex & Ox \\ \hline & NO & Nsx & EO & Osx & Esx \end{array} \right\} \qquad X_{\perp}(P\vec{t}) = \emptyset \quad \text{for all } P\vec{t}$$

$$X_{\perp} \sqsubseteq \varphi_{\Phi}(X_{\perp}) \sqsubseteq \varphi_{\Phi}(\varphi_{\Phi}(X_{\perp})) \sqsubseteq \ldots \sqsubseteq \varphi_{\Phi}^{\alpha}(X_{\perp}) \sqsubseteq \ldots \sqsubseteq \mu X. \varphi_{\Phi}(X)$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{u}) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land m(\vec{u}) = m(\vec{t}\theta) \\ \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{ccc} & Nx & & Ex & Ox \\ \hline & NO & Nsx & EO & Osx & Esx \end{array} \right\} \qquad X_{\perp}(P\vec{t}) = \emptyset \quad \text{for all } P\vec{t}$$

$$\llbracket \cdot \rrbracket_0^{\Phi} \sqsubseteq \llbracket \cdot \rrbracket_1^{\Phi} \sqsubseteq \llbracket \cdot \rrbracket_2^{\Phi} \sqsubseteq \ldots \sqsubseteq \llbracket \cdot \rrbracket_{\alpha}^{\Phi} \sqsubseteq \ldots \llbracket \cdot \rrbracket^{\Phi}$$

FOLID: Models as Realizers

• We define the realization function Θ by:

$$\Theta(P\vec{t},m) \stackrel{\text{def}}{=} \min(\{\alpha \mid m \in \llbracket P\vec{t} \rrbracket_{\alpha}^{\Phi} \})$$

FOLID: Models as Realizers

• We define the realization function Θ by:

$$\Theta(P\vec{t},m) \stackrel{\text{def}}{=} \min(\{\alpha \mid m \in \llbracket P\vec{t} \rrbracket_{\alpha}^{\Phi} \})$$

Then the logical inference rules have the property that

$$\frac{\Sigma_1 \vdash \Pi_1 \quad \dots \quad \Sigma_n \vdash \Pi_n}{\Gamma, \, P \, \vec{t} \vdash \Delta}$$

for model $m \not\models \langle \Gamma, P\vec{t} \vdash \Delta \rangle$, there is model $m' \not\models \langle \Sigma_i \vdash \Pi_i \rangle$ (for some i) and if $P\vec{t} \in \Sigma_i$ then $\Theta(P\vec{t}, m') \leq \Theta(P\vec{t}, m)$

FOLID: Models as Realizers

• We define the realization function Θ by:

$$\Theta(P\vec{t},m) \stackrel{\text{def}}{=} \min(\{\alpha \mid m \in \llbracket P\vec{t} \rrbracket_{\alpha}^{\Phi} \})$$

Then the logical inference rules have the property that

$$\frac{\Gamma, t = 0 \vdash \Delta \quad \Gamma, t = \mathsf{sx}, \mathsf{Nx} \vdash \Delta}{\Gamma, \mathsf{N}t \vdash \Delta} \text{ (Case N)}$$

for model $m \not\models \langle \Gamma, N\vec{t} \vdash \Delta \rangle$, there is model m' with either $m' \not\models \langle \Gamma, t = 0 \vdash \Delta \text{ or } m' \not\models \langle \Gamma, t = sx, Nx \vdash \Delta \rangle$, and if the latter then $\Theta(Nx, m') < \Theta(Nt, m)$

Cyclic Proofs vs Infinite Proofs

 Cyclic proofs are the (strict) regular subset of the set of non-well-founded proof trees

Cyclic Proofs vs Infinite Proofs

 Cyclic proofs are the (strict) regular subset of the set of non-well-founded proof trees

 For FOL_{ID}, the full infinite system is (cut-free) complete with respect to standard models (Brotherston & Simpson)

Cyclic Proofs vs Infinite Proofs

 Cyclic proofs are the (strict) regular subset of the set of non-well-founded proof trees

 For FOL_{ID}, the full infinite system is (cut-free) complete with respect to standard models (Brotherston & Simpson)

· Cut is likely not eliminable in the cyclic sub-system

Cyclic Proof vs Explicit Induction

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

Cyclic Proof vs Explicit Induction

• Explicit induction requires induction hypothesis F up-front

$$\frac{N \times N}{N \times N} = \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \times \Gamma \vdash \Delta} \text{ (Ind } N)$$

· Cyclic proof enables 'discovery' of induction hypotheses

Cyclic Proof vs Explicit Induction

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

- · Cyclic proof enables 'discovery' of induction hypotheses
- Complex induction schemes naturally represented by nested and overlapping cycles

Cyclic Proof vs Explicit Induction: Results for FOLID

• Every sequent provable using the explict induction rule is also derivable using cyclic proof (Brotherston & Simpson)

Cyclic Proof vs Explicit Induction: Results for FOLID

- Every sequent provable using the explict induction rule is also derivable using cyclic proof (Brotherston & Simpson)
- For some sets of inductive definitions, cyclic proof is strictly more powerful (Berardi & Tatsuta, FoSSaCS'17)

Cyclic Proof vs Explicit Induction: Results for FOLID

- Every sequent provable using the explict induction rule is also derivable using cyclic proof (Brotherston & Simpson)
- For some sets of inductive definitions, cyclic proof is strictly more powerful (Berardi & Tatsuta, FoSSaCS'17)
- When arithmetic is included, cyclic proof and explicit induction are equivalent (Berardi & Tatsuta, LICS'17)

Other Cyclic Proof Systems

- μ -calculus (Sprenger and Dam, FoSSaCS'03)

 Temporal properties of heap-manipulating code (Tellez Espinosa and Brotherston, CADE'17)

• Kleene algebra (Das, TABLEAUX'17)

Part II

Realizability Results

Using Cyclic Proofs to Compute Semantic Information

```
struct ll { int data; ll *next; }
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)
  if ( x != NULL ) {
    ll *y = x->next;
    rev(y);
    shuffle(y);
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
void rev(ll *x) { list(x) } { /* reverses list */ } { list(x) }
void shuffle(ll *x) { list(x) } {
   if ( x != NULL ) {
      \{x \mapsto (d, l) * list(l)\}
      ll *v = x->next;
      \{x \mapsto (d, v) * list(v)\}
      rev(y);
      \{x \mapsto (d, y) * list(y)\}
      shuffle(v);
      \{x \mapsto (d, y) * list(y)\}
} { list(x) }
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
                     {list(y)} rev(y); {list(y)}
                                                        - (frame)
          \{x \mapsto (d, y) * list(y)\} rev(y); \{x \mapsto (d, y) * list(y)\}
                                                                 \{x \mapsto (d, y) * list(y)\}  shuffle\{y\}; \dots \{list(x)\}\}
                                 \{x \mapsto (d, y) * list(y)\} rev(y); shuffle(y); ... \{list(x)\}
         rev(y);
         \{x \mapsto (d, y) * list(y)\}
         shuffle(v):
         \{x \mapsto (d, v) * list(v)\}
} { list(x) }
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
                     {list(y)} rev(y); {list(y)}
                                                        - (frame)
          \{x \mapsto (d, y) * list(y)\} rev(y); \{x \mapsto (d, y) * list(y)\}
                                                                 \{x \mapsto (d, y) * list(y)\}  shuffle\{y\}; \dots \{list(x)\}\}
                                 \{x \mapsto (d, y) * list(y)\} rev(y); shuffle(y); ... \{list(x)\}
         rev(y);
         \{x \mapsto (d, y) * list(y)\}
         shuffle(v):
         \{x \mapsto (d, v) * list(v)\}
} { list(x) }
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
                      {list<sub>\beta</sub>(y)} rev(y); {list<sub>\beta</sub>(y)}
                                                                 - (frame)
          \{x \mapsto (d, v) * list_{\beta}(v)\} rev(v); \{x \mapsto (d, v) * list_{\beta}(v)\}
                                                                            \{x \mapsto (d, y) * list_{\beta}(y)\}  shuffle\{y\}; \dots \{list_{\alpha}(x)\}\}
                                     \{x \mapsto (d,y) * list_{\beta}(y)\} rev(y); shuffle(y); ... \{list_{\alpha}(x)\}
          rev(y);
          \{x \mapsto (d, y) * list(y)\}
          shuffle(v):
          \{x \mapsto (d, v) * list(v)\}
} { list(x) }
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
                      {list<sub>\beta</sub>(y)} rev(y); {list<sub>\beta</sub>(y)}
                                                                 - (frame)
          \{x \mapsto (d, v) * list_{\beta}(v)\} rev(v); \{x \mapsto (d, v) * list_{\beta}(v)\}
                                                                            \{x \mapsto (d, y) * list_{\alpha}(y)\}  shuffle\{y\}; \dots \{list_{\alpha}(x)\}\}
                                      \{x \mapsto (d,y) * list_{\beta}(y)\} rev(y); shuffle(y); ... \{list_{\alpha}(x)\}
          rev(y);
          \{x \mapsto (d, y) * list(y)\}
          shuffle(v):
          \{x \mapsto (d, v) * list(v)\}
} { list(x) }
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
                             {list<sub>\beta</sub>(y)} rev(y); {list<sub>\beta</sub>(y)}
                                                                                    - (frame)
            \{x \mapsto (d, v) * list_{\beta}(v)\} rev(v); \{x \mapsto (d, v) * list_{\beta}(v)\}
                                                                                                  \{x \mapsto (d, y) * list_{\beta}(y)\}  shuffle\{y\}; \dots \{list_{\alpha}(x)\}\}
                                                 \{x \mapsto (d,y) * list_{\beta}(y)\} rev(y); shuffle(y); ... \{list_{\alpha}(x)\}
             rev(y);
             \{x \mapsto (d, y) * list(y)\}
             shuffle(
                                          \{ \mathsf{X} = \mathsf{NULL} \land \mathsf{emp} \} \ \mathsf{C} \ \{ \psi \} \quad \{ \mathsf{X} \mapsto (\mathsf{d}, \mathsf{l}) \ast \mathsf{list}_{\beta}(\mathsf{l}) \land \beta < \alpha \} \ \mathsf{C} \ \{ \psi \}
                                                                                    \{\operatorname{list}_{\alpha}(x)\} \subset \{\psi\}
} { list(x) }
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
void rev(ll *x) { list<sub>o</sub>(x) } { /* reverses list */ } { list<sub>o</sub>(x) }
void shuffle(ll *x) { list<sub>\alpha</sub>(x) } {
    if ( x != NULL ) {
       \{x \mapsto (d,l) * list_{\beta}(l) \land \beta < \alpha\}
       ll *y = x->next;
        \{x \mapsto (d, y) * list_{\beta}(y) \land \beta < \alpha\}
       rev(y);
        \{x \mapsto (d, y) * list_{\beta}(y) \land \beta < \alpha\}
        shuffle(v);
        \{x \mapsto (d, v) * list_{\beta}(v) \land \beta < \alpha\}
\{ list_{\alpha}(x) \}
```

```
struct ll { int data; ll *next; } list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l)) void rev(ll *x) { list_{\alpha}(x) } { ... } { list_{\alpha}(x) }
```

Intra-procedural analysis produces verification conditions, in the form of *entailments*, e.g.

$$x \neq \mathsf{NULL} \land x \mapsto (d, y) * \mathsf{list}(y) \vdash \mathsf{list}(x)$$


```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
void rev(ll *x) { list<sub>\alpha</sub>(x) } { ... } { list<sub>\alpha</sub>(x) }
void shufflo(11 +v) { list (
            (Axiom)
                      \forall \alpha : \llbracket \mathsf{P} \, \vec{t} \rrbracket_{\alpha} \subseteq \llbracket \mathsf{Q} \, \vec{u} \rrbracket_{\alpha}
                          \dots P(\vec{t}) \dots \vdash \dots Q(\vec{u}) \dots
```

 Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph
 - Under certain extra structural conditions, this containment falls within existing decidability results

Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of sequents, which are
 - maximally finite
 - matched by some left-hand trace along the same path
- We then count the number of times each trace progresses
 - the left-hand one must progress at least as often as the right-hand one

Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)

For every positive maximal right-hand trace, there must exist a left-hand trace following the same path such that:

- either the right-hand trace is grounded, or it is partially maximal and mirrored by the left-hand trace
- right unfoldings ≤ left unfoldings

Soundness of the Realizability Condition

Theorem

Suppose $\mathcal P$ is a cyclic proof of $\mathbf P\vec{\mathbf x} \vdash \mathbf Q\vec{\mathbf y}$ satisfying the realizability condition, then $[\![\mathbf P\vec{\mathbf x}]\!]_{\alpha} \subseteq [\![\mathbf Q\vec{\mathbf y}]\!]_{\alpha}$ for all α

Proof.

Soundness of the Realizability Condition

Theorem

Suppose \mathcal{P} is a cyclic proof of $P\vec{x} \vdash Q\vec{y}$ satisfying the realizability condition, then $[\![P\vec{x}]\!]_{\alpha} \subseteq [\![Q\vec{y}]\!]_{\alpha}$ for all α

Proof.

Pick a model $m \in \llbracket P\vec{x} \rrbracket_{\alpha}$ (i.e. $\Theta(P\vec{x}, m) \leq \alpha$)

- \cdot *m* corresponds to a positive maximal right-hand trace in ${\cal P}$
- The number of unfoldings in this right-hand trace is an upper bound on $\Theta(Q\vec{y}, m)$
- The number of unfoldings in any left-hand trace following the same path is a lower bound on $\Theta(P\vec{x}, m)$
- From the realizability condition, we have that $\Theta(Q\vec{y}, m) \leq \Theta(P\vec{x}, m)$
- Because approximations grow monotonically, also $m \in \llbracket \mathsf{Q} \, \vec{y} \rrbracket_{\alpha}$

The Descending Model Property

The inference rules satify the property that for all valid rule instances

$$\frac{\Delta_1 \vdash \Pi_1 \quad \dots \quad \Delta_n \vdash \Pi_n}{\Gamma[P \ \vec{t}] \vdash \Sigma[Q \ \vec{u}]}$$

If there is a model $m \models \Gamma$, then there is a model $m' \models \Delta_i$, and either $Q \vec{u}$ is terminal or there is a trace to some $R \vec{v} \in \Pi_i$; moreover if there is a trace:

- from $P\vec{t}$ to $P'\vec{s} \in \Delta_i$ then $\Theta(P'\vec{s}, m') \le \Theta(P\vec{t}, m)$ (< if the trace progresses)
- from Q \vec{u} to Q' $\vec{r} \in \Pi_i$ and $\Theta(Q \vec{u})$ defined, then $\Theta(Q' \vec{r}, m') \ge \Theta(Q \vec{u}, m)$ (> if the trace progresses)

The Descending Model Property

Almost all the inference rules satisfy the descending model property!

Consider the following two rules (for some unsatisfiable F):

$$(\neg R): \frac{\Gamma, F \vdash \Delta}{\Gamma \vdash \neg F, \Delta} \qquad (\rightarrow R): \frac{\Gamma, F \vdash G, \Delta}{\Gamma \vdash F \rightarrow G, \Delta}$$

The conclusions may have models, but the premises may not

Deciding the Realizability Condition

 We use weighted automata to decide whether the realizability condition holds

 We construct weighted automata that count the progression points in left and right-hand traces

 The realizability condition corresponds to an inclusion of the right-hand trace automaton within the left-hand one

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_I, F, γ) consisting of a set Q of states containing an initial state $q_I \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

Definition (Weighted Automata)

Let Σ be an alphabet, and (V,\oplus,\otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q,q_l,F,γ) consisting of a set Q of states containing an initial state $q_l\in Q$, a set $F\subseteq Q$ of final states, and a weighted transition function $\gamma:(Q\times \Sigma\times Q)\to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_l, F, γ) consisting of a set Q of states containing an initial state $q_l \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_l, F, γ) consisting of a set Q of states containing an initial state $q_l \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Sum automata are weighted automata over $(\mathbb{N}, \max, +)$

Given a cyclic entailment proof \mathcal{P} , we can construct two sum automata, $\mathscr{A}_{\mathcal{P}}$ and $\mathscr{C}_{\mathcal{P}}$:

- · States represent a particular trace value in a particular node
- · The words accepted are paths in the proof from the root sequent
- · Transitions corresponding to a case split have non-zero (unit) weight
 - The value of a path is the maximum number of unfoldings in the traces along the path
- \cdot $\mathscr{A}_{\mathcal{P}}$ can stop tracking traces at any point
- \cdot $\mathscr{C}_{\mathcal{P}}$ always tracks traces (i.e. considers only maximal ones)
- \cdot $\mathscr{C}_{\mathcal{P}}$ is grounded when all final states correspond to ground predicate instances

The left-hand automaton for the example proof of $Ex \vdash Nx$

The right-hand automaton for the example proof of $Ex \vdash Nx$

An Equivalence between Realizability and Weighted Inclusion

Theorem

 $\mathcal P$ satisfies the realizability condition $\Leftrightarrow \mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}$ and $\mathscr C_{\mathcal P}$ is grounded

An Equivalence between Realizability and Weighted Inclusion

Theorem

 $\mathcal P$ satisfies the realizability condition $\Leftrightarrow \mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}$ and $\mathscr C_{\mathcal P}$ is grounded

Theorem (Krob '94, Almagor Et Al. '11)

Given two quantitative languages (weighted automata) \mathcal{L}_1 and \mathcal{L}_2 , it is undecidable whether $\mathcal{L}_1 \leq \mathcal{L}_2$

An Equivalence between Realizability and Weighted Inclusion

Theorem

 $\mathcal P$ satisfies the realizability condition $\Leftrightarrow \mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}$ and $\mathscr C_{\mathcal P}$ is grounded

Theorem (Krob '94, Almagor Et Al. '11)

Given two quantitative languages (weighted automata) \mathcal{L}_1 and \mathcal{L}_2 , it is undecidable whether $\mathcal{L}_1 \leq \mathcal{L}_2$

Definition

A weighted automaton is called <u>finite-valued</u> if there exists a bound on the number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini & Raskin '14)

 $\mathcal{L}_{\mathscr{A}} \leq \mathcal{L}_{\mathscr{B}}$ is decidable for finite-valued weighted automata \mathscr{A} and \mathscr{B}

Left-hand Trace Automata are not Finite-valued

The following configuration results in non-finite-valuedness: (Weber & Seidel, TCS 1991)

Left-hand Trace Automata are not Finite-valued

The following configuration results in non-finite-valuedness: (Weber & Seidel, TCS 1991)

Consider our left-hand trace automaton:

We instead construct a sequence of left-hand trace automata $\mathcal{A}_{\mathcal{P}}[n]$ $(n \in \mathbb{N})$:

- we refine the state \top into n states $\top_{\nu}^{1}, \dots \top_{\nu}^{n}$ for each node ν of \mathcal{P}
- · we restrict the transitions between them:
 - \top^i_{ν} transitions to \top^{i+1}_{ν} accepting only node ν
 - + $\top^i_{
 u}$ transitions to itself accepting any node except u

We instead construct a sequence of left-hand trace automata $\mathscr{A}_{\mathcal{P}}[n]$ $(n \in \mathbb{N})$:

- we refine the state \top into n states $\top_{\nu}^{1}, \dots \top_{\nu}^{n}$ for each node ν of \mathcal{P}
- · we restrict the transitions between them:
 - \top^i_{ν} transitions to \top^{i+1}_{ν} accepting only node ν
 - + $\top^i_
 u$ transitions to itself accepting any node except u

Theorem

Each approximate left-hand trace automaton is finite-valued

We instead construct a sequence of left-hand trace automata $\mathscr{A}_{\mathcal{P}}[n]$ $(n \in \mathbb{N})$:

- we refine the state \top into n states $\top^1_{\nu}, \dots \top^n_{\nu}$ for each node ν of \mathcal{P}
- · we restrict the transitions between them:
 - \top^i_{ν} transitions to \top^{i+1}_{ν} accepting only node ν
 - $\cdot \;\; \top_{
 u}^{i}$ transitions to itself accepting any node except u

Theorem

Each approximate left-hand trace automaton is finite-valued¹

¹when traces are injective, i.e. do not merge

We instead construct a sequence of left-hand trace automata $\mathscr{A}_{\mathcal{P}}[n]$ $(n \in \mathbb{N})$:

- we refine the state \top into n states $\top_{\nu}^{1}, \ldots \top_{\nu}^{n}$ for each node ν of \mathcal{P}
- · we restrict the transitions between them:
 - $\cdot \ \top_{\nu}^{i}$ transitions to \top_{ν}^{i+1} accepting only node ν
 - + $\top^i_
 u$ transitions to itself accepting any node except u

Theorem

Each approximate left-hand trace automaton is finite-valued¹

The price is that $\mathscr{A}_{\mathcal{P}}[n]$ only accepts a subset of all the paths in \mathcal{P}

¹when traces are injective, i.e. do not merge

A Decidable Restriction for Realizability

Theorem

Let $\mathcal P$ be a cyclic entailment proof which is dynamic and balanced; then $\mathcal P$ satisfies the realizability condition if and only if $\mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}[N]$ and $\mathscr C_{\mathcal P}$ is grounded (where N is a function of $\mathcal P$)

A Decidable Restriction for Realizability

Theorem

Let $\mathcal P$ be a cyclic entailment proof which is dynamic and balanced; then $\mathcal P$ satisfies the realizability condition if and only if $\mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}[N]$ and $\mathscr C_{\mathcal P}$ is grounded (where N is a function of $\mathcal P$)

The cyclic proof is:

- dynamic when every (reachable) basic trace cycle has a non-zero number of progression points
- balanced when every (reachable) basic binary trace cycle has equal numbers of left and right-hand progression points
 - a binary cycle is a pair of left and right-hand trace cycles following the same path

The bound N is a function of other graph-theoretic quantities of \mathcal{P}

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce $\llbracket \mathsf{P}\, \vec{t} \rrbracket_{\alpha} \subseteq \llbracket \mathsf{Q}\, \vec{u} \rrbracket_{\alpha}$ from a proof of $\Gamma, \mathsf{P}\, \vec{t} \vdash \Sigma, \mathsf{Q}\, \vec{u}$

Then we can safely trace across an active cut formula

$$\frac{\Gamma, P\vec{t} \vdash \Sigma, Q\vec{u} \quad Q\vec{u}, \Pi \vdash \Delta}{\Gamma, P\vec{t}, \Pi \vdash \Sigma, \Delta}$$
(Cut)

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce $\llbracket \mathsf{P}\, \vec{t} \rrbracket_{\alpha} \subseteq \llbracket \mathsf{Q}\, \vec{u} \rrbracket_{\alpha}$ from a proof of $\Gamma, \mathsf{P}\, \vec{t} \vdash \Sigma, \mathsf{Q}\, \vec{u}$

Then we can safely trace across an active cut formula

$$\frac{\Gamma, P\vec{t} \vdash \Sigma, Q\vec{u} \quad Q\vec{u}, \Pi \vdash \Delta}{\Gamma, P\vec{t}, \Pi \vdash \Sigma, \Delta}$$
(Cut)

This is explicitly forbidden in existing cyclic proof systems, precisely because there is no way, in general, to ensure an inclusion between $[P\vec{t}]_{\alpha}$ and $[Q\vec{u}]_{\alpha}$

Conclusions

- We have shown that information about inclusions between the semantics of inductive predicates can be extracted from cyclic proofs of entailments
- This information should be useful for constructing ranking functions for programs
- Our results are formulated abstractly, and so hold for any cyclic proof system whose rules satisfy certain properties
- We use the term realizability because we extract semantic information from the proofs

Future Work

- Implement the decision procedure within the cyclic proof-based verification framework CYCLIST
- Evaluate to what extent entailments found 'in the wild' satisfy the realizability condition
- Investigate further theoretical questions:
 - are there weaker structural properties of proofs that still admit completeness with the approximate automata
 - If the semantic inclusion $\llbracket P\vec{x} \rrbracket_{\alpha} \subseteq \llbracket Q\vec{y} \rrbracket_{\alpha}$ holds, is there a cyclic proof of $P\vec{x} \vdash Q\vec{y}$ satisfying the realizability condition?