Realizability in Cyclic Proof

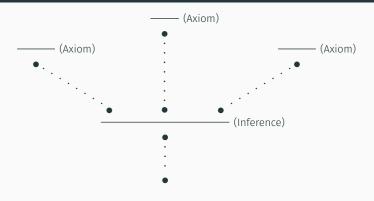
Extracting Ordering Information for Infinite Descent

Reuben N. S. Rowe ¹ James Brotherston ² Kent PLAS Seminar, Monday 23rd October 2017

¹School of Computing, University of Kent, Canterbury, UK

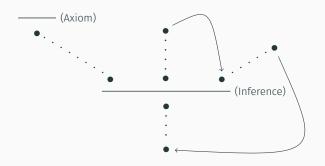
²Department of Computer Science, UCL, London, UK

What is Cyclic Proof?



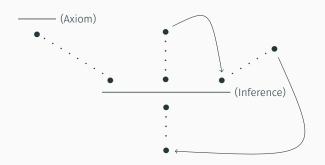
• We are all familiar with proofs as finite trees

What is Cyclic Proof?



- · We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?

What is Cyclic Proof?



- · We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?
- Cyclic proofs must satisfy a syntactic global trace property

Example: First Order Logic

- · Assume signature with zero, successor, and equality
- · Allow inductive predicate definitions, e.g.

Example: First Order Logic

- · Assume signature with zero, successor, and equality
- · Allow inductive predicate definitions, e.g.

• These induce unfolding rules for the sequent calculus, e.g.

$$\frac{\Gamma, t = 0 \vdash \Delta \quad \Gamma, t = sx, Nx \vdash \Delta}{\Gamma, Nt \vdash \Delta}$$
(Case N) (where x fresh)
$$\frac{\Gamma}{\Gamma \vdash \Delta, N0} (NR_1) \qquad \frac{\Gamma \vdash \Delta, Nt}{\Gamma \vdash \Delta, Nst} (NR_2)$$

 $Nx \vdash Ex, Ox$

$$x = 0 \vdash Ex, Ox$$
 $x = sy, Ny \vdash Ex, Ox$ (Case N)

$$\frac{-E 0,00}{x = 0 \vdash Ex,0x} (=L)$$

$$\frac{x = sy, Ny \vdash Ex,0x}{Nx \vdash Ex,0x} (Case N)$$

$$\frac{-}{(ER_1)} = \frac{Ny \vdash Oy, Osy}{Ny \vdash Esy, Osy} (ER_2)$$

$$\frac{-}{x = 0 \vdash Ex, Ox} (=L) = \frac{}{x = sy, Ny \vdash Ex, Ox} (Case N)$$

$$\frac{Ny \vdash Oy, Ey}{Ny \vdash Oy, Osy} (OR_1)$$

$$\frac{Ny \vdash Oy, Osy}{Ny \vdash Esy, Osy} (ER_2)$$

$$\frac{Ny \vdash Esy, Osy}{X = 0 \vdash Ex, Ox} (=L)$$

$$\frac{Ny \vdash Esy, Osy}{X = Sy, Ny \vdash Ex, Ox} (Case N)$$

$$\frac{Ny \vdash Ey, Oy}{Ny \vdash Oy, Ey} (PR)$$

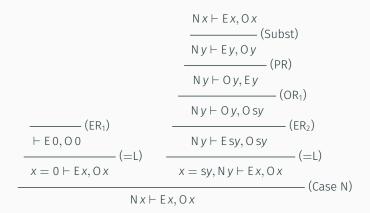
$$\frac{Ny \vdash Oy, Ey}{Ny \vdash Oy, Osy} (OR_1)$$

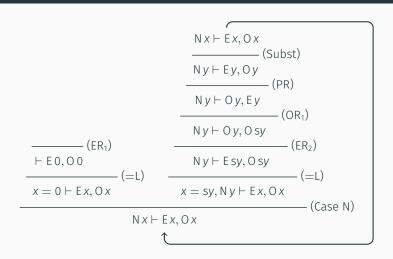
$$\frac{Ny \vdash Ey, Oy}{Ny \vdash Ey, Oy} (ER_2)$$

$$\frac{Ny \vdash Ey, Oy}{Ny \vdash Ey, Oy} (ER_2)$$

$$\frac{Ny \vdash Ey, Oy}{(ER_2)} (ER_2)$$

$$\frac{(ER_2)}{(ER_2)} (ER_2)$$





$$\frac{Nx \vdash Ex, Ox}{-(Subst)}$$

$$\frac{Ny \vdash Ey, Oy}{-(PR)}$$

$$\frac{Ny \vdash Oy, Ey}{-(OR_1)}$$

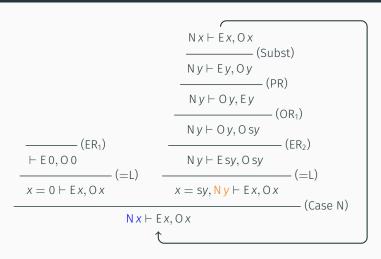
$$\frac{Ny \vdash Oy, Osy}{-(ER_2)}$$

$$\frac{Ny \vdash Esy, Osy}{-(ER_2)}$$

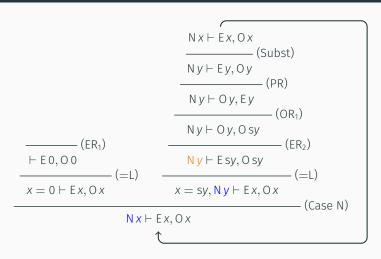
$$\frac{Ny \vdash Esy, Osy}{-(ER_2)}$$

$$\frac{Ny \vdash Esy, Osy}{-(ER_2)}$$

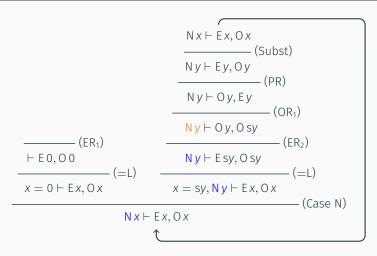
$$\frac{Nx \vdash Ex, Ox}{-(Case N)}$$



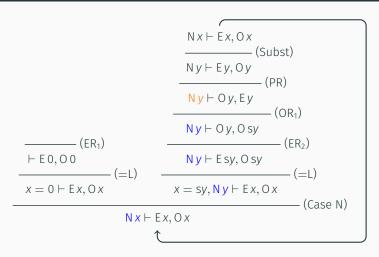
$$[\![X]\!]_{m_1} > [\![Y]\!]_{m_2}$$



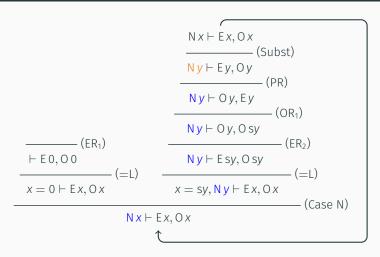
$$[\![X]\!]m_1 > [\![Y]\!]m_2 = [\![Y]\!]m_3$$



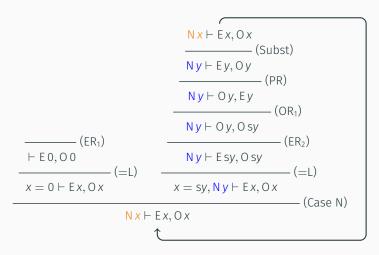
$$[\![X]\!]_{m_1} > [\![y]\!]_{m_2} = [\![y]\!]_{m_3} = [\![y]\!]_{m_4}$$



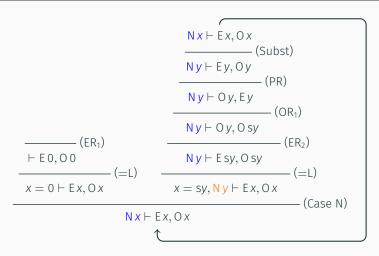
$$[\![X]\!]_{m_1} > [\![Y]\!]_{m_2} = [\![Y]\!]_{m_3} = [\![Y]\!]_{m_4} = [\![Y]\!]_{m_5}$$



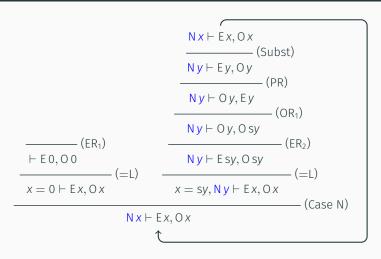
$$[\![X]\!]_{m_1} > [\![Y]\!]_{m_2} = [\![Y]\!]_{m_3} = [\![Y]\!]_{m_4} = [\![Y]\!]_{m_5} = [\![Y]\!]_{m_6}$$



$$[\![x]\!]_{m_1} > [\![y]\!]_{m_2} = [\![y]\!]_{m_3} = [\![y]\!]_{m_4} = [\![y]\!]_{m_5} = [\![y]\!]_{m_6} = [\![x]\!]_{m_7}$$



$$[\![X]\!]_{m_1} > [\![Y]\!]_{m_2} = [\![Y]\!]_{m_3} = [\![Y]\!]_{m_4} = [\![Y]\!]_{m_5} = [\![Y]\!]_{m_6} = [\![X]\!]_{m_7} > [\![Y]\!]_{m_8} \dots$$



$$n_1 > n_2 > n_3 > \dots$$
 $(n_i \in \mathbb{N} \text{ for all } i)$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{t}\theta) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land \forall x \in \text{dom}(\theta) : m(x) = \llbracket \theta(x) \rrbracket_m \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{t}\theta) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land \forall x \in \text{dom}(\theta) : m(x) = \llbracket \theta(x) \rrbracket_m \\ \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{ll} \frac{\mathsf{N}\,\mathsf{X}}{\mathsf{N}\,\mathsf{0}} & \frac{\mathsf{E}\,\mathsf{X}}{\mathsf{N}\,\mathsf{S}\mathsf{X}} & \frac{\mathsf{C}\,\mathsf{X}}{\mathsf{E}\,\mathsf{0}} & \frac{\mathsf{D}\,\mathsf{X}}{\mathsf{O}\,\mathsf{S}\mathsf{X}} & \frac{\mathsf{D}\,\mathsf{X}}{\mathsf{E}\,\mathsf{S}\mathsf{X}} \end{array} \right\} \qquad X_\perp(\mathsf{P}\,\vec{t}\,) = \emptyset \quad \text{for all } \mathsf{P}\,\vec{t}$$

$$\varphi_\Phi(X_\perp)(\mathsf{N}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{0}]\}$$

$$\varphi_\Phi(X_\perp)(\mathsf{E}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{0}]\}$$

$$\varphi_\Phi(X_\perp)(\mathsf{O}\,\mathsf{X}) = \{\}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{t}\theta) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land \forall x \in \text{dom}(\theta) : m(x) = \llbracket \theta(x) \rrbracket_m \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{ll} \frac{\mathsf{N}\,x}{\mathsf{N}\,0} & \frac{\mathsf{E}\,x}{\mathsf{N}\,\mathsf{S}x} & \frac{\mathsf{C}\,x}{\mathsf{E}\,0} & \frac{\mathsf{C}\,x}{\mathsf{E}\,\mathsf{S}x} \end{array} \right\} \qquad X_\perp(\mathsf{P}\,\vec{t}\,) = \emptyset \quad \text{for all } \mathsf{P}\,\vec{t}$$

$$\varphi_\Phi(\varphi_\Phi(X_\perp))(\mathsf{N}\,x) = \{[x\mapsto 0], [x\mapsto s0]\}$$

$$\varphi_\Phi(\varphi_\Phi(X_\perp))(\mathsf{E}\,x) = \{[x\mapsto 0]\}$$

$$\varphi_\Phi(\varphi_\Phi(X_\perp))(\mathsf{O}\,x) = \{[x\mapsto s0]\}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{t}\theta) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land \forall x \in \text{dom}(\theta) : m(x) = \llbracket \theta(x) \rrbracket_m \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\begin{split} \Phi = \left\{ \frac{\mathsf{N}\,\mathsf{N}}{\mathsf{N}\,\mathsf{0}} \, \frac{\mathsf{N}\,\mathsf{X}}{\mathsf{N}\,\mathsf{SX}} \, \frac{\mathsf{E}\,\mathsf{X}}{\mathsf{E}\,\mathsf{0}} \, \frac{\mathsf{O}\,\mathsf{X}}{\mathsf{O}\,\mathsf{SX}} \, \frac{\mathsf{N}\,\mathsf{X}}{\mathsf{E}\,\mathsf{SX}} \right\} & \quad \mathsf{X}_\perp(\mathsf{P}\,\vec{t}\,) = \emptyset \quad \text{for all } \mathsf{P}\,\vec{t} \\ \varphi_\Phi(\varphi_\Phi(\varphi_\Phi(\mathsf{X}_\perp)))(\mathsf{N}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{0}], [\mathsf{X} \mapsto \mathsf{S0}], [\mathsf{X} \mapsto \mathsf{SS0}]\} \\ \varphi_\Phi(\varphi_\Phi(\varphi_\Phi(\mathsf{X}_\perp)))(\mathsf{E}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{0}], [\mathsf{X} \mapsto \mathsf{SS0}]\} \\ \varphi_\Phi(\varphi_\Phi(\varphi_\Phi(\mathsf{X}_\perp)))(\mathsf{O}\,\mathsf{X}) = \{[\mathsf{X} \mapsto \mathsf{S0}]\} \end{split}$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{t}\theta) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land \forall x \in \text{dom}(\theta) : m(x) = \llbracket \theta(x) \rrbracket_m \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{cccc} & Nx & & Ex & Ox \\ \hline N & N & Sx & E & Ox \\ \hline \end{array} \right\} \qquad X_{\perp}(P\vec{t}) = \emptyset \quad \text{for all } P\vec{t}$$

$$X_{\perp} \sqsubseteq \varphi_{\Phi}(X_{\perp}) \sqsubseteq \varphi_{\Phi}(\varphi_{\Phi}(X_{\perp})) \sqsubseteq \ldots \sqsubseteq \varphi_{\Phi}^{\alpha}(X_{\perp}) \sqsubseteq \ldots \sqsubseteq \mu X. \varphi_{\Phi}(X)$$

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_1 \vec{t_1}, \dots, P_j \vec{t_j} \Rightarrow P_0 \vec{t_0}$

Definition (Characteristic Operators)

$$\varphi_{\Phi}(X)(P\vec{t}\theta) = \{m \mid P_1\vec{t_1}, \dots, P_j\vec{t_j} \Rightarrow P\vec{t} \in \Phi \land \forall x \in \text{dom}(\theta) : m(x) = \llbracket \theta(x) \rrbracket_m \land \forall 1 \leq i \leq j : m \in X(P_i\vec{t_i}\theta)\}$$

$$\Phi = \left\{ \begin{array}{ccc} & Nx & & Ex & Ox \\ \hline & NO & NSX & EO & OSX & ESX \end{array} \right\} \qquad X_{\perp}(P\vec{t}) = \emptyset \quad \text{for all } P\vec{t}$$

$$\llbracket \cdot \rrbracket_0^{\Phi} \sqsubseteq \llbracket \cdot \rrbracket_1^{\Phi} \sqsubseteq \llbracket \cdot \rrbracket_2^{\Phi} \sqsubseteq \ldots \sqsubseteq \llbracket \cdot \rrbracket_{\alpha}^{\Phi} \sqsubseteq \ldots \llbracket \cdot \rrbracket^{\Phi}$$

Models as Realizers

- We say that a model $m \in \llbracket P\vec{t} \rrbracket^{\Phi}$ realizes $P\vec{t}$ (wrt. Φ)
- We define a realization function Θ :

$$\Theta(P\vec{t},m) \stackrel{\text{def}}{=} \min(\{\alpha \mid m \in \llbracket P\vec{t} \rrbracket_{\alpha}^{\Phi} \})$$

Models as Realizers

- We say that a model $m \in \llbracket P\vec{t} \rrbracket^{\Phi}$ realizes $P\vec{t}$ (wrt. Φ)
- We define a realization function Θ:

$$\Theta(P\vec{t},m) \stackrel{\text{def}}{=} \min(\{\alpha \mid m \in \llbracket P\vec{t} \rrbracket_{\alpha}^{\Phi} \})$$

The logical inference rules have the property that

$$\frac{\Sigma_1 \vdash \Pi_1 \quad \dots \quad \Sigma_n \vdash \Pi_n}{\Gamma, P\vec{t} \vdash \Delta}$$

for a counter-model m of Γ , $P\vec{t} \vdash \Delta$, there exists a counter-model m' of some $\Sigma_i \vdash \Pi_i$ (local soundness) and if $P\vec{t} \in \Sigma_i$ then $\Theta(P\vec{t}, m') \leq \Theta(P\vec{t}, m)$

Models as Realizers

- We say that a model $m \in \llbracket P\vec{t} \rrbracket^{\Phi}$ realizes $P\vec{t}$ (wrt. Φ)
- We define a realization function Θ:

$$\Theta(P\vec{t},m) \stackrel{\text{def}}{=} \min(\{\alpha \mid m \in \llbracket P\vec{t} \rrbracket_{\alpha}^{\Phi} \})$$

• The logical inference rules have the property that

$$\frac{\Gamma, t = 0 \vdash \Delta \quad \Gamma, t = \mathsf{sx}, \mathsf{Nx} \vdash \Delta}{\Gamma, \mathsf{N}t \vdash \Delta} \text{ (Case N)}$$

for a counter-model m of Γ , $N t \vdash \Delta$, there exists a counter-model m' of either Γ , $t = 0 \vdash \Delta$ or Γ , t = sx, $N x \vdash \Delta$ and if the latter then $\Theta(N x, m') < \Theta(N \vec{t}, m)$

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata

Soundness of Cyclic Proof

- · Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - · This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:

- · Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness implies an infinite sequence of (counter) models

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness implies an infinite sequence of (counter) models
 - These can be mapped to a non-increasing chain of ordinals using the realization function

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - · This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness implies an infinite sequence of (counter) models
 - These can be mapped to a non-increasing chain of ordinals using the realization function
 - Global trace condition then implies this chain is infinitely descending

- Impose global trace condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - · This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness implies an infinite sequence of (counter) models
 - These can be mapped to a non-increasing chain of ordinals using the realization function
 - Global trace condition then implies this chain is infinitely descending
 - But the ordinals are well-founded ... contradiction

• Explicit induction requires induction hypothesis F up-front

$$\frac{N \times N}{N \times N} = \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \times t \vdash \Delta} \text{ (Ind } N)$$

• Explicit induction requires induction hypothesis F up-front

· Cyclic proof enables 'discovery' of induction hypotheses

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

- · Cyclic proof enables 'discovery' of induction hypotheses
- Complex induction schemes naturally represented by nested and overlapping cycles

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

- · Cyclic proof enables 'discovery' of induction hypotheses
- Complex induction schemes naturally represented by nested and overlapping cycles
- Every sequent provable using the explict induction rule is also derivable using cyclic proof

```
struct ll { int data; ll *next; }
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)
  if ( x != NULL ) {
    ll *y = x -> next;
    rev(y);
    shuffle(y);
```

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
void rev(ll *x) { list(x) } { /* reverses list */ } { list(x) }
void shuffle(ll *x) { list(x) } {
    if ( x != NULL ) {
      \{x \mapsto (d, l) * list(l)\}
      ll *v = x -> next;
      \{x \mapsto (d, v) * list(v)\}
      rev(v):
      \{x \mapsto (d, y) * list(y)\}
      shuffle(v);
      \{x \mapsto (d, v) * list(v)\}
} { list(x) }
```



```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l))
void rev(ll *x) { list<sub>\alpha</sub>(x) } { /* reverses list */ } { list<sub>\alpha</sub>(x) }
void shuffle(ll *x) { list_{\alpha}(x) } {
     if ( x != NULL ) {
        \{ \mathbf{x} \mapsto (d, l) * \operatorname{list}_{\beta}(l) \land \beta < \alpha \}
        ll *v = x -> next;
        \{x \mapsto (d, v) * list_{\beta}(v) \land \beta < \alpha\}
        rev(v):
        \{x \mapsto (d, y) * list_{\beta}(y) \land \beta < \alpha\}
        shuffle(v);
        \{x \mapsto (d, v) * list_{\beta}(v) \land \beta < \alpha\}
\{ list_{\alpha}(x) \}
```

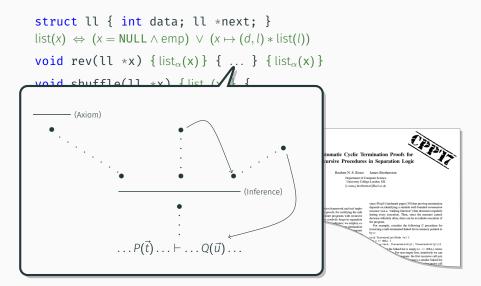


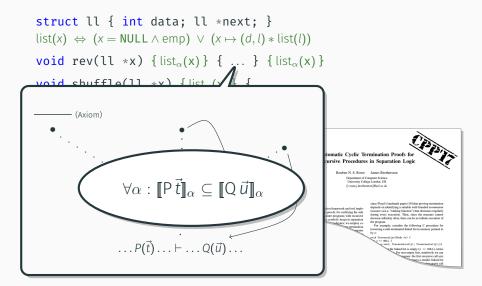
```
struct ll { int data; ll *next; } list(x) \Leftrightarrow (x = NULL \land emp) \lor (x \mapsto (d, l) * list(l)) void rev(ll *x) { list_{\alpha}(x) } { ... } { list_{\alpha}(x) }
```

Intra-procedural analysis produces verification conditions, in the form of *entailments*, e.g.

$$x \neq \mathsf{NULL} \land x \mapsto (d, y) * \mathsf{list}(y) \vdash \mathsf{list}(x)$$

renges a smaller linked list





 Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define

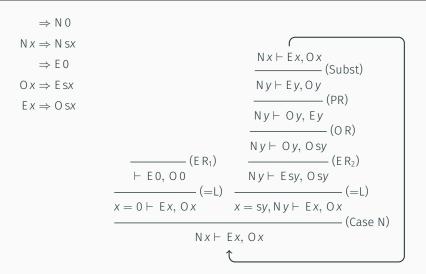
- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph

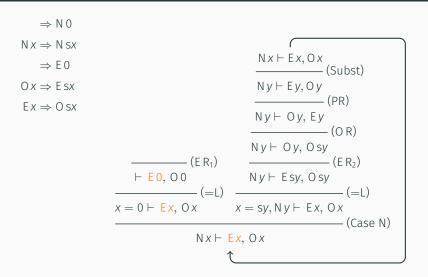
- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
 - These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph
 - Under certain extra structural conditions, this containment falls within existing decidability results

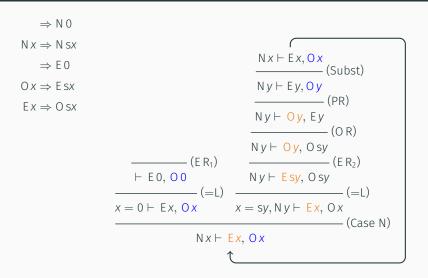
Extracting Semantic Orderings: Basic Ideas

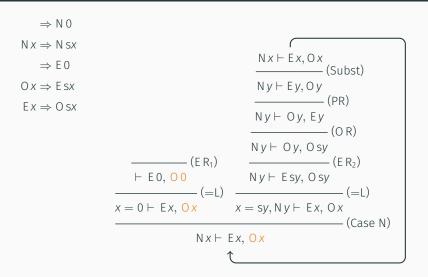
To extract these semantic relationships from cyclic proofs:

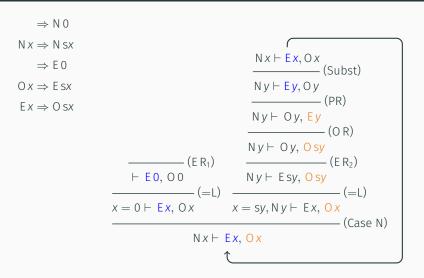
- We have to consider traces along the right-hand side of sequents, which are
 - maximally finite
 - matched by some left-hand trace along the same path
- We then count the number of times each trace progresses
 - the left-hand one must progress at least as often as the right-hand one

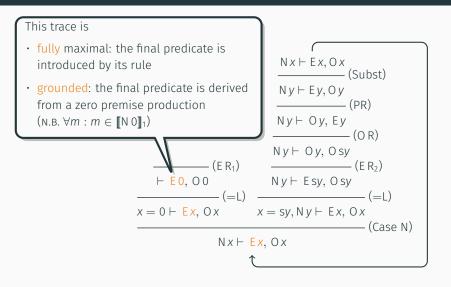


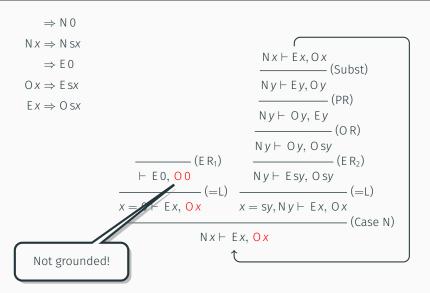


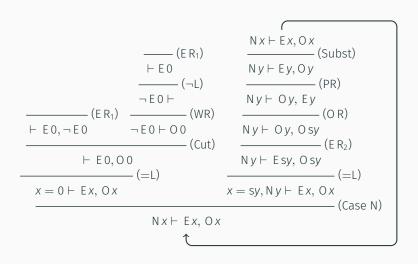


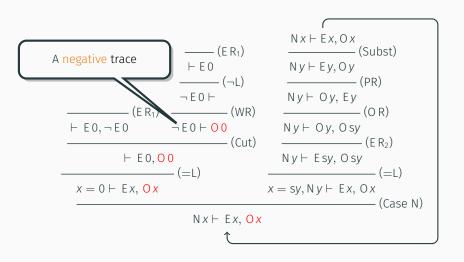


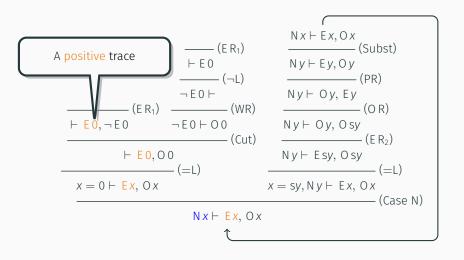


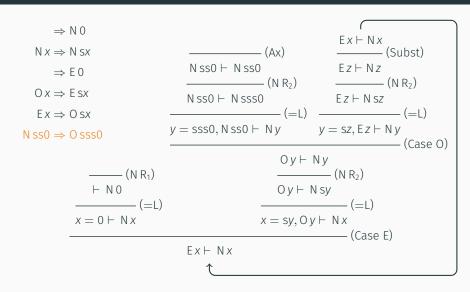


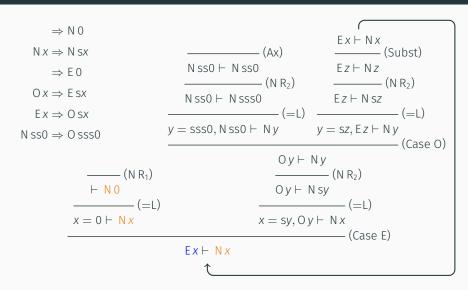


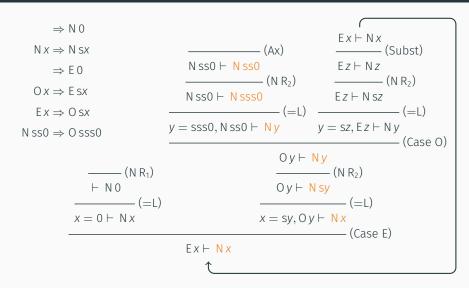


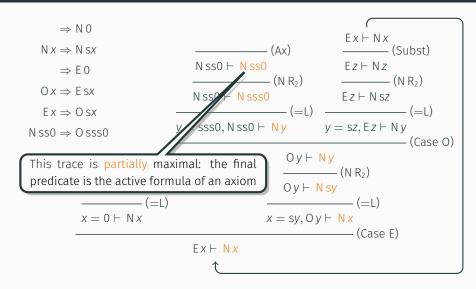


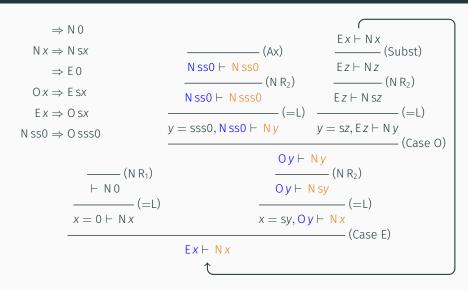












Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)

For every positive maximal right-hand trace, there must exist a left-hand trace following the same path such that:

- either the right-hand trace is grounded, or it is partially maximal with the left-hand trace matching in the length and final predicate
- right unfoldings ≤ left unfoldings

Soundness of the Realizability Condition

Theorem

Suppose $\mathcal P$ is a cyclic proof of $\mathbf P\vec{\mathbf x} \vdash \mathbf Q\vec{\mathbf y}$ satisfying the realizability condition, then $[\![\mathbf P\vec{\mathbf x}]\!]_{\alpha} \subseteq [\![\mathbf Q\vec{\mathbf y}]\!]_{\alpha}$ for all α

Proof.

Soundness of the Realizability Condition

Theorem

Suppose \mathcal{P} is a cyclic proof of $P\vec{x} \vdash Q\vec{y}$ satisfying the realizability condition, then $[\![P\vec{x}]\!]_{\alpha} \subseteq [\![Q\vec{y}]\!]_{\alpha}$ for all α

Proof.

Pick a model $m \in \llbracket P\vec{x} \rrbracket_{\alpha}$ (i.e. $\Theta(P\vec{x}, m) \leq \alpha$)

- \cdot *m* corresponds to a positive maximal right-hand trace in ${\cal P}$
- The number of unfoldings in this right-hand trace is an upper bound on $\Theta(Q\vec{y}, m)$
- The number of unfoldings in any left-hand trace following the same path is a lower bound on $\Theta(P\vec{x}, m)$
- From the realizability condition, we have that $\Theta(Q\vec{y}, m) \leq \Theta(P\vec{x}, m)$
- Because approximations grow monotonically, also $m \in \llbracket \mathsf{Q} \, \vec{y} \rrbracket_{\alpha}$

Deciding the Realizability Condition

 We use weighted automata to decide whether the realizability condition holds

 We construct weighted automata that count the progression points in left and right-hand traces

 The realizability condition corresponds to an inclusion of the right-hand trace automaton within the left-hand one

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_I, F, γ) consisting of a set Q of states containing an initial state $q_I \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

Definition (Weighted Automata)

Let Σ be an alphabet, and (V,\oplus,\otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q,q_l,F,γ) consisting of a set Q of states containing an initial state $q_l\in Q$, a set $F\subseteq Q$ of final states, and a weighted transition function $\gamma:(Q\times \Sigma\times Q)\to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_l, F, γ) consisting of a set Q of states containing an initial state $q_l \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton $\mathscr A$ is a tuple (Q, q_l, F, γ) consisting of a set Q of states containing an initial state $q_l \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma: (Q \times \Sigma \times Q) \to V$.

- 1. The value of a run of $\mathscr A$ is the semiring product of all its transitions
- 2. The value of a word is the semiring sum of all runs accepting that word
- 3. The quantitative language $\mathcal{L}_\mathscr{A}$ is the function $\Sigma^* \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Sum automata are weighted automata over $(\mathbb{N}, \max, +)$

Weighted Automata: Existing Results

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Theorem (Krob '94, Almagor Et Al. '11)

Given two quantitative languages (weighted automata) \mathcal{L}_1 and \mathcal{L}_2 , it is undecidable whether $\mathcal{L}_1 \leq \mathcal{L}_2$

Weighted Automata: Existing Results

Definition (Weighted Inclusion)

 $\mathcal{L}_1 \leq \mathcal{L}_2$ if and only if for every word w such that $\mathcal{L}_1(w)$ is defined, $\mathcal{L}_2(w)$ is also defined and $\mathcal{L}_1(w) \leq \mathcal{L}_2(w)$

Theorem (Krob '94, Almagor Et Al. '11)

Given two quantitative languages (weighted automata) \mathcal{L}_1 and \mathcal{L}_2 , it is undecidable whether $\mathcal{L}_1 \leq \mathcal{L}_2$

Definition

A weighted automaton is called <u>finite-valued</u> if there exists a bound on the number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini & Raskin '14)

Given two finite-valued weighted automata $\mathscr A$ and $\mathscr B$, it is decidable whether $\mathcal L_\mathscr A \leq \mathcal L_\mathscr B$

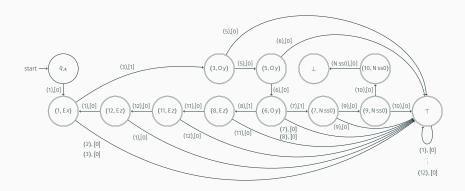
- The words accepted are paths in the proof from the root sequent
- · Transitions corresponding to a case split have unit weight
 - The value of a path is the maximum number of unfoldings in the traces along the path

- The words accepted are paths in the proof from the root sequent
- · Transitions corresponding to a case split have unit weight
 - The value of a path is the maximum number of unfoldings in the traces along the path
- Each $\mathscr{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof

- The words accepted are paths in the proof from the root sequent
- · Transitions corresponding to a case split have unit weight
 - The value of a path is the maximum number of unfoldings in the traces along the path
- Each $\mathcal{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof
 - · The complete automaton is not, in general, finite-valued

- · The words accepted are paths in the proof from the root sequent
- · Transitions corresponding to a case split have unit weight
 - The value of a path is the maximum number of unfoldings in the traces along the path
- Each $\mathcal{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof
 - · The complete automaton is not, in general, finite-valued
- · $\mathscr{C}_{\mathcal{P}}$ is grounded when all final states correspond to ground predicate instances

The full left-hand automaton for the example proof of $Ex \vdash Nx$



An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let $\mathcal P$ be a cyclic entailment proof which is dynamic and balanced; then $\mathcal P$ satisfies the realizability condition if and only if $\mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}[N]$ and $\mathscr C_{\mathcal P}$ is grounded (where N is a function of $\mathcal P$)

An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let $\mathcal P$ be a cyclic entailment proof which is dynamic and balanced; then $\mathcal P$ satisfies the realizability condition if and only if $\mathscr C_{\mathcal P} \leq \mathscr A_{\mathcal P}[N]$ and $\mathscr C_{\mathcal P}$ is grounded (where N is a function of $\mathcal P$)

The cyclic proof is:

- dynamic when every (reachable) basic trace cycle has a non-zero number of progression points
- balanced when every (reachable) basic binary trace cycle has equal numbers of left and right-hand progression points
 - a binary cycle is a pair of left and right-hand trace cycles following the same path

The bound N is a function of other graph-theoretic quantities of ${\cal P}$

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce $[\![P\vec{t}]\!]_{\alpha} \subseteq [\![Q\vec{u}]\!]_{\alpha}$ from a proof of $\Gamma, P\vec{t} \vdash \Sigma, Q\vec{u}$

Then we can safely trace across an active cut formula

$$\frac{\Gamma, P\vec{t} \vdash \Sigma, Q\vec{u} \quad Q\vec{u}, \Pi \vdash \Delta}{\Gamma, P\vec{t}, \Pi \vdash \Sigma, \Delta}$$
(Cut)

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce $[\![P\vec{t}]\!]_{\alpha} \subseteq [\![Q\vec{u}]\!]_{\alpha}$ from a proof of $\Gamma, P\vec{t} \vdash \Sigma, Q\vec{u}$

Then we can safely trace across an active cut formula

$$\frac{\Gamma, P \, \vec{t} \vdash \Sigma, Q \, \vec{u} \quad Q \, \vec{u}, \Pi \vdash \Delta}{\Gamma, P \, \vec{t}, \Pi \vdash \Sigma, \Delta} \, (Cut)$$

This is explicitly forbidden in existing cyclic proof systems, precisely because there is no way to ensure in general that there is an inclusion between $[P\vec{t}]_{\alpha}$ and $[Q\vec{u}]_{\alpha}$

Conclusions

- We have shown that information about inclusions between the semantics of inductive predicates can be extracted from cyclic proofs of entailments
- This information can be used to construct ranking functions for programs
- Our results are formulated abstractly, and so hold for any cyclic proof system whose rules satisfy certain properties
- We use the term realizability because we extract semantic information from the proofs

Future Work

- Implement the decision procedure within the cyclic proof-based verification framework CYCLIST
- Evaluate to what extent entailments found 'in the wild' satisfy the realizability condition
- Investigate further theoretical questions:
 - are there weaker structural properties of proofs that still admit completeness with the approximate automata
 - If the semantic inclusion $\llbracket P\vec{x} \rrbracket_{\alpha} \subseteq \llbracket Q\vec{y} \rrbracket_{\alpha}$ holds, is there a cyclic proof of $P\vec{x} \vdash Q\vec{y}$ satisfying the realizability condition?