Realizability in Cyclic Proof

Extracting Ordering Information for Infinite Descent

Reuben N. S. Rowe ${ }^{1}$ James Brotherston ${ }^{2}$
Kent PLAS Seminar, Monday 23 ${ }^{\text {rd }}$ October 2017
${ }^{1}$ School of Computing, University of Kent, Canterbury, UK
${ }^{2}$ Department of Computer Science, UCL, London, UK

What is Cyclic Proof?

- We are all familiar with proofs as finite trees

What is Cyclic Proof?

- We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?

What is Cyclic Proof?

- We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?
- Cyclic proofs must satisfy a syntactic global trace property

Example: First Order Logic

- Assume signature with zero, successor, and equality
- Allow inductive predicate definitions, e.g.

$$
\overline{\mathrm{NO}} \frac{\mathrm{~N} x}{\mathrm{Nsx}} \quad \overline{\mathrm{E} 0} \frac{\mathrm{Ex}}{\mathrm{O} s x} \frac{\mathrm{O} x}{\mathrm{Esx}}
$$

Example: First Order Logic

- Assume signature with zero, successor, and equality
- Allow inductive predicate definitions, e.g.

$$
\overline{\mathrm{NO}} \frac{\mathrm{~N} x}{\mathrm{Nsx}} \quad \overline{\mathrm{E} 0} \frac{\mathrm{Ex}}{\mathrm{Osx}} \frac{\mathrm{O} x}{\mathrm{Esx}}
$$

- These induce unfolding rules for the sequent calculus, e.g.
$\Gamma, t=0 \vdash \Delta \quad \Gamma, t=s x, N x \vdash \Delta$
(Case N) (where x fresh)
$\Gamma, N t \vdash \Delta$

$$
\overline{\Gamma\llcorner\wedge 0}\left(\mathrm{NR}_{1}\right)
$$

$$
\frac{\Gamma \vdash \Delta, N t}{\Gamma \vdash \Delta, N s t}\left(\mathrm{NR}_{2}\right)
$$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

Nx $+\mathrm{Ex}, \mathrm{Ox}$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

$\frac{x=\mathrm{O} \vdash \mathrm{E} x, \mathrm{Ox}, \mathrm{Ny} \vdash \mathrm{E} x, \mathrm{Ox}}{\mathrm{N} x \vdash \mathrm{E} x, \mathrm{Ox}}($ Case N$)$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

$$
\frac{\frac{\vdash \mathrm{EO}, \mathrm{O} 0}{x=0 \vdash \mathrm{E} x, \mathrm{O} x}(=\mathrm{L})}{\mathrm{N} x \vdash \mathrm{E} x, \mathrm{O} x}
$$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

$N x \vdash E x, O x$
(Case N)

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

A Cyclic Proof of $N x \vdash E x, 0 x$

- Suppose $N x \vdash E x, O x$ is not valid:
$\llbracket x \rrbracket_{m_{1}}$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

- Suppose $N x \vdash E x, O x$ is not valid:
$\llbracket \llbracket \rrbracket_{m_{1}}>\llbracket \llbracket \rrbracket_{m_{2}}$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

- Suppose $N x \vdash E x, O x$ is not valid:

$$
\llbracket \times \rrbracket_{m_{1}}>\llbracket \llbracket \rrbracket_{m_{2}}=\llbracket \llbracket \rrbracket \rrbracket_{m_{3}}
$$

A Cyclic Proof of $N x \vdash E x, 0 x$

- Suppose $N x \vdash E x, O x$ is not valid:

$$
\left.\llbracket \llbracket \rrbracket_{m_{1}}>\llbracket \llbracket \rrbracket_{m_{2}}=\llbracket \llbracket \rrbracket_{m_{3}}=\llbracket \rrbracket\right]_{m_{4}}
$$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

- Suppose $N x \vdash E x, O x$ is not valid:

$$
\llbracket x \rrbracket_{m_{1}}>\llbracket \llbracket \rrbracket_{m_{2}}=\llbracket \check{\rrbracket_{m_{3}}}=\llbracket \check{\rrbracket_{m_{4}}}=\llbracket \llbracket \rrbracket \rrbracket_{m_{5}}
$$

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

- Suppose $N x \vdash E x, O x$ is not valid:

A Cyclic Proof of $N x \vdash E x, 0 x$

- Suppose $N x \vdash E x, O x$ is not valid:

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

- Suppose $N x \vdash E x, O x$ is not valid:

A Cyclic Proof of $\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{O} x$

- Suppose $N x \vdash E x, O x$ is not valid:

$$
n_{1}>n_{2}>n_{3}>\ldots
$$

$\left(n_{i} \in \mathbb{N}\right.$ for all $\left.i\right)$

The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\begin{aligned}
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \vec{t}_{j} \Rightarrow P \vec{t} \in \Phi \wedge \forall x \in \operatorname{dom}(\theta): m(x)=\llbracket \theta(x) \rrbracket_{m}\right. \\
\left.\wedge \forall 1 \leq i \leq j: m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right)\right\}
\end{aligned}
$$

The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\begin{aligned}
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi \wedge \forall x \in \operatorname{dom}(\theta): m(x)=\llbracket \theta(x) \rrbracket_{m}\right. \\
\left.\wedge \forall 1 \leq i \leq j: m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right)\right\}
\end{aligned}
$$

$$
\begin{gathered}
\Phi=\left\{\begin{array}{cc}
-\frac{N x}{N 0} \frac{E x}{N s x} & \frac{O x}{E 0} \quad \overline{O s x} \\
E s x
\end{array}\right\} \quad X_{\perp}(P \vec{t})=\emptyset \quad \text { for all } P \vec{t} \\
\\
\varphi_{\Phi}\left(X_{\perp}\right)(N x)=\{[x \mapsto 0]\} \\
\varphi_{\Phi}\left(X_{\perp}\right)(E x)=\{[x \mapsto 0]\} \\
\varphi_{\Phi}\left(X_{\perp}\right)(O x)=\{ \}
\end{gathered}
$$

The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\begin{aligned}
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi \wedge \forall x \in \operatorname{dom}(\theta): m(x)=\llbracket \theta(x) \rrbracket_{m}\right. \\
\left.\wedge \forall 1 \leq i \leq j: m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi=\left\{\begin{aligned}
&-\frac{N x}{N 0} \frac{E x}{\mathrm{NSx}} \quad \overline{\mathrm{EO}} \quad \overline{\mathrm{OSx}} \\
& \mathrm{Esx}
\end{aligned}\right\} \quad X_{\perp}(\mathrm{P} \vec{t})=\emptyset \quad \text { for all } P \vec{t} \\
& \varphi_{\Phi}\left(\varphi_{\Phi}\left(X_{\perp}\right)\right)(\mathrm{N} x)=\{[x \mapsto 0],[x \mapsto s 0]\} \\
& \varphi_{\Phi}\left(\varphi_{\Phi}\left(X_{\perp}\right)\right)(\mathrm{E} x)=\{[x \mapsto 0]\} \\
& \varphi_{\Phi}\left(\varphi_{\Phi}\left(X_{\perp}\right)\right)(\mathrm{O} x)=\{[x \mapsto s 0]\}
\end{aligned}
$$

The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\begin{aligned}
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi \wedge \forall x \in \operatorname{dom}(\theta): m(x)=\llbracket \theta(x) \rrbracket_{m}\right. \\
\left.\wedge \forall 1 \leq i \leq j: m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi=\left\{\begin{array}{lllll}
- & \begin{array}{c}
N x \\
N 0 \\
N s x
\end{array} & \overline{E 0} & \frac{\mathrm{OX}}{\mathrm{Osx}} & \overline{\mathrm{Esx}}
\end{array}\right\} \quad X_{\perp}(P \vec{t})=\emptyset \quad \text { for all } P \vec{t} \\
& \varphi_{\Phi}\left(\varphi_{\Phi}\left(\varphi_{\Phi}\left(X_{\perp}\right)\right)\right)(N x)=\{[x \mapsto 0],[x \mapsto s 0],[x \mapsto s s 0]\} \\
& \varphi_{\Phi}\left(\varphi_{\Phi}\left(\varphi_{\Phi}\left(X_{\perp}\right)\right)\right)(E x)=\{[x \mapsto 0],[x \mapsto \mathrm{Ss} 0]\} \\
& \varphi_{\Phi}\left(\varphi_{\Phi}\left(\varphi_{\Phi}\left(X_{\perp}\right)\right)\right)(0 x)=\{[x \mapsto s 0]\}
\end{aligned}
$$

The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\begin{aligned}
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi \wedge \forall x \in \operatorname{dom}(\theta): m(x)=\llbracket \theta(x) \rrbracket_{m}\right. \\
\left.\wedge \forall 1 \leq i \leq j: m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right)\right\}
\end{aligned}
$$

$$
X_{\perp} \sqsubseteq \varphi_{\Phi}\left(X_{\perp}\right) \sqsubseteq \varphi_{\Phi}\left(\varphi_{\Phi}\left(X_{\perp}\right)\right) \sqsubseteq \ldots \sqsubseteq \varphi_{\Phi}^{\alpha}\left(X_{\perp}\right) \sqsubseteq \ldots \sqsubseteq \mu X . \varphi_{\Phi}(X)
$$

The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions $P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P_{0} \overrightarrow{t_{0}}$

Definition (Characteristic Operators)

Inductive definition sets Φ induce characteristic operators φ_{Φ} on predicate interpretations X (functions from predicate formulas to sets of models):

$$
\begin{aligned}
\varphi_{\Phi}(X)(P \vec{t} \theta)=\left\{m \mid P_{1} \overrightarrow{t_{1}}, \ldots, P_{j} \overrightarrow{t_{j}} \Rightarrow P \vec{t} \in \Phi \wedge \forall x \in \operatorname{dom}(\theta): m(x)=\llbracket \theta(x) \rrbracket_{m}\right. \\
\left.\wedge \forall 1 \leq i \leq j: m \in X\left(P_{i} \overrightarrow{t_{i}} \theta\right)\right\}
\end{aligned}
$$

$$
\Phi=\left\{\begin{array}{llll}
- & \begin{array}{c}
\mathrm{NX} \\
\mathrm{NO}
\end{array} \overline{\mathrm{NSX}} & \overline{\mathrm{EO} O} & \overline{\mathrm{OSX}} \\
\overline{\mathrm{Esx}}
\end{array}\right\} \quad X_{\perp}(P \vec{t})=\emptyset \quad \text { for all } P \vec{t}
$$

$$
\llbracket \cdot\left\|_{0}^{\phi} \sqsubseteq \llbracket\right\|_{1}^{\phi} \sqsubseteq \llbracket \cdot\left\|_{2}^{\phi} \sqsubseteq \ldots \sqsubseteq \llbracket \cdot\right\|_{\alpha}^{\phi} \sqsubseteq \ldots \llbracket \mathbb{I}^{\phi}
$$

Models as Realizers

- We say that a model $m \in \llbracket P \vec{t} \rrbracket^{\Phi}$ realizes $P \vec{t}$ (wrt. Φ)
- We define a realization function Θ :

$$
\Theta(P \vec{t}, m) \stackrel{\text { def }}{=} \min \left(\left\{\alpha \mid m \in \llbracket \mathbb{P} \vec{\rrbracket} \rrbracket_{\alpha}^{\phi}\right\}\right)
$$

Models as Realizers

- We say that a model $m \in \llbracket P \vec{t} \rrbracket^{\Phi}$ realizes $P \vec{t}$ (wrt. Φ)
- We define a realization function Θ :

$$
\Theta(P \overrightarrow{,}, m) \stackrel{\text { def }}{=} \min \left(\left\{\alpha \mid m \in \llbracket P \vec{P} \rrbracket_{\alpha}^{\Phi}\right\}\right)
$$

- The logical inference rules have the property that

$$
\frac{\Sigma_{1} \vdash \Pi_{1} \quad \ldots \quad \Sigma_{n} \vdash \Pi_{n}}{\Gamma, P \vec{t} \vdash \Delta}
$$

for a counter-model m of $\Gamma, P \vec{t} \vdash \Delta$, there exists a counter-model m^{\prime} of some $\Sigma_{i} \vdash \Pi_{i}$ (local soundness) and if $P \vec{t} \in \Sigma_{i}$ then $\Theta\left(P \vec{t}, m^{\prime}\right) \leq \Theta(P \vec{t}, m)$

Models as Realizers

- We say that a model $m \in \llbracket P \vec{t} \rrbracket^{\Phi}$ realizes $P \vec{t}$ (wrt. Φ)
- We define a realization function Θ :

$$
\Theta(P \vec{t}, m) \stackrel{\text { def }}{=} \min \left(\left\{\alpha \mid m \in \llbracket P \vec{t} \rrbracket_{\alpha}^{\Phi}\right\}\right)
$$

- The logical inference rules have the property that

$$
\frac{\Gamma, t=0 \vdash \Delta \quad \Gamma, t=s x, N x \vdash \Delta}{\Gamma, N t \vdash \Delta}
$$

for a counter-model m of $\Gamma, N t \vdash \Delta$, there exists a counter-model m^{\prime} of either $\Gamma, t=0 \vdash \Delta$ or
$\Gamma, t=s x, N x \vdash \Delta$ and if the latter then $\Theta\left(N x, m^{\prime}\right)<\Theta(N \vec{t}, m)$

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Büchi automata

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
- Assume the conclusion of the proof is invalid

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
- Assume the conclusion of the proof is invalid
- Local soundness implies an infinite sequence of (counter) models

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
- Assume the conclusion of the proof is invalid
- Local soundness implies an infinite sequence of (counter) models
- These can be mapped to a non-increasing chain of ordinals using the realization function

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
- Assume the conclusion of the proof is invalid
- Local soundness implies an infinite sequence of (counter) models
- These can be mapped to a non-increasing chain of ordinals using the realization function
- Global trace condition then implies this chain is infinitely descending

Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
- Assume the conclusion of the proof is invalid
- Local soundness implies an infinite sequence of (counter) models
- These can be mapped to a non-increasing chain of ordinals using the realization function
- Global trace condition then implies this chain is infinitely descending
- But the ordinals are well-founded ... contradiction

Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

$$
\overline{N 0} \frac{N x}{N s x} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[s x], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N t \vdash \Delta}(\operatorname{Ind} N)
$$

Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

$$
\overline{N 0} \frac{N x}{N s x} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[s x], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N t \vdash \Delta}(\operatorname{Ind} N)
$$

- Cyclic proof enables 'discovery' of induction hypotheses

Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

$$
\overline{N 0} \frac{N x}{N s x} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[s x], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N t \vdash \Delta}(\text { Ind } N)
$$

- Cyclic proof enables 'discovery' of induction hypotheses
- Complex induction schemes naturally represented by nested and overlapping cycles

Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

$$
\overline{N 0} \frac{N x}{N s x} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[s x], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N t \vdash \Delta}(\operatorname{Ind} N)
$$

- Cyclic proof enables 'discovery' of induction hypotheses
- Complex induction schemes naturally represented by nested and overlapping cycles
- Every sequent provable using the explict induction rule is also derivable using cyclic proof

Cyclic Proofs of Program Termination

```
struct ll { int data; ll *next; }
void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)
    {
        if ( x != NULL ) {
            ll *y = x -> next;
            rev(y);
            shuffle(y);
        }
}
```


Cyclic Proofs of Program Termination

```
struct ll { int data; ll *next; }
void shuffle(ll *x) {list(x)} {
        if ( x != NULL ) {
        {x\mapsto(d,l)* list(l) }
        ll *y = x -> next;
        {x\mapsto(d,y)*list(y)}
        rev(y);
        {x\mapsto(d,y)*list(y)}
        shuffle(y);
        {x\mapsto(d,y)*list(y)}
        }
} {list(x)}
```

list $(x) \Leftrightarrow(x=$ NULL $\wedge e m p) \vee(x \mapsto(d, l) *$ list $(l))$
void $\operatorname{rev}(l l ~ * x) ~\{\operatorname{list}(x)\}\{/ *$ reverses list */ \} $\{\operatorname{list}(x)\}$

Cyclic Proofs of Program Termination

```
struct ll { int data; ll *next; }
list(x)}\Leftrightarrow(x=NULL \wedge emp) \vee (x\mapsto (d,l) * list(l)
void shuffle(ll *x) { list 
    if ( x != NULL ) {
        {x\mapsto(d,l)* list
        ll *y = x -> next;
        {x\mapsto(d,y)* list
        rev(y);
        {x\mapsto(d, y)* list 
        shuffle(y);
        {x\mapsto(d, y)* list 
        }
} { lista}(x)
```

void $\operatorname{rev}\left(l l{ }^{*} x\right)\left\{\operatorname{list}_{\alpha}(x)\right\}\left\{/ *\right.$ reverses list */ \} $\left\{\operatorname{list}_{\alpha}(\mathrm{x})\right\}$

Cyclic Proofs of Program Termination

$$
\begin{aligned}
& \text { struct ll \{ int data; ll *next; \} } \\
& \text { list }(x) \Leftrightarrow(x=\text { NULL } \wedge \text { emp }) \vee(x \mapsto(d, l) * \operatorname{list}(l)) \\
& \text { void } \operatorname{rev}(l l * x)\left\{\operatorname{list}_{\alpha}(x)\right\}\{\ldots\}\left\{\operatorname{list}_{\alpha}(\mathrm{x})\right\} \\
& \text { void chufflo(1] +v) s lict (} L \text { \{ }
\end{aligned}
$$

Intra-procedural analysis produces verification conditions, in the form of entailments, e.g.

$$
x \neq \operatorname{NULL} \wedge x \mapsto(d, y) * \operatorname{list}(y) \vdash \operatorname{list}(x)
$$

tomatic Cyclic Termination Proofs for cursive Procedures in Separation Logic

Reuben N. S. Rowe James Brotherston
Departmeat of Coerputar Soicrce
Tinneraiky Collore London, UK
(r. rowe j brocthestion)\&ud.ac.uk
siax. Floyd's landmark paper [19] that poving ternination

 the program. For example, consider the fooksoing C proosdure for For example, consider the fodkring C ppoosturo for
travering a mull termixaled inked list in memory poined to
by x:

Cyclic Proofs of Program Termination

$$
\begin{aligned}
& \text { struct } l l\{\text { int data; ll *next; \}} \\
& \text { list }(x) \Leftrightarrow(x=\operatorname{NULL} \wedge e m p) \vee(x \mapsto(d, l) * \operatorname{list}(l)) \\
& \text { void } \operatorname{rev}(l l * x)\left\{\operatorname{list}_{\alpha}(x)\right\}\{\ldots\}\left\{\operatorname{list}_{\alpha}(x)\right\}
\end{aligned}
$$

$$
\ldots P(\vec{t}) \ldots \vdash \ldots Q(\vec{u}) \ldots
$$

tomatic Cyclic Termination Proofs for
cursive Procedures in Separation Logic
Reuben N. S. Rowe James Brotherston
Departmeat of Coerputar Soicrce
Tinneraiky Collere London, UK
(r.rome j brocthestson)Sod.ac.uk

Termenet and med -proofe. for cerrifying the safe - proor, tor cenuifyng the safe

simee Floyd's landmakk paper [19] that proving ternination

 during every cecculition. Then, sisce the nesasure cannol the progeram infikly offer, there can be mo infinite exceution of the program.
For exampl

For
travesin
by

whi (Traverachiat (y); TraveraeLiat(y) ; \%

For moompy liss, intuitsely we can
-acees a smelier linked lis
ocere a smiler linkech hiol

Cyclic Proofs of Program Termination

```
struct ll { int data; ll *next; }
list(x) \Leftrightarrow(x=NULL^ emp) \vee (x\mapsto (d,l) * list(l))
void rev(ll *x) {list\alpha}(x)} {\ldots..}{\mp@subsup{\operatorname{list}}{\alpha}{(x)}
void chuffla(7] +v) {lict (v L} {
```

Son framexomk and mol imple -prook, for ceriifying the safe - proots. for centifying the safe
 - -atictess we cepploy a - 5mio

$$
\ldots P(\vec{t}) \ldots \vdash \ldots Q(\vec{u}) \ldots
$$

tomatic Cyclic Termination Proofs for cursive Procedures in Separation Logic

Reuben N. S. Rowe James Brotherston
Department of Coerputar Soierce
Unineraiky College Londoo, UK
(r. rowe.j trotherston) Bud.ac.uk
siaxe Floyd's landmakik paper [19) that proving ternimation
 during every execution. Then simace the newasure cann sccras aftrikly ofece, there can be mo infinite excection of the program. For cxample, consiler the forksing C proosdure for travesing a null termizaled inited list in memory poinned io
by $:$: tryersin
by
mi

Coline (Dote ex) C

the linked listisary (o) TratraLiat $(\mathrm{g}$) ;)

Tagons the first recurine call scig
-aces a smiler linked his
coues ammeler linksid

Overview of Results

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments

Overview of Results

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
- These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define

Overview of Results

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
- These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph

Overview of Results

- Information about semantic inclusions between inductive predicates can be extracted from cyclic proofs of entailments
- These inclusions hold when the proof graph satisfies a structural (realizability) condition that we define
- The realizability condition is equivalent to a containment between two weighted automata that can be constructed from the proof graph
- Under certain extra structural conditions, this containment falls within existing decidability results

Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of sequents, which are
- maximally finite
- matched by some left-hand trace along the same path
- We then count the number of times each trace progresses
- the left-hand one must progress at least as often as the right-hand one

Extracting Semantic Orderings: Example (1)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
\mathrm{~N} x & \Rightarrow \mathrm{Nsx} \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{O} x & \Rightarrow \mathrm{Esx} \\
\mathrm{E} x & \Rightarrow \mathrm{Os} x
\end{aligned}
$$

Extracting Semantic Orderings: Example (1)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
\mathrm{~N} x & \Rightarrow \mathrm{NSx} \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{O} x & \Rightarrow \mathrm{Esx} \\
\mathrm{E} x & \Rightarrow \mathrm{Osx}
\end{aligned}
$$

Extracting Semantic Orderings: Example (1)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
\mathrm{~N} x & \Rightarrow \mathrm{Nsx} \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{O} x & \Rightarrow \mathrm{Esx} \\
\mathrm{E} x & \Rightarrow \mathrm{Os} x
\end{aligned}
$$

Extracting Semantic Orderings: Example (1)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
\mathrm{~N} x & \Rightarrow \mathrm{NSx} \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{O} x & \Rightarrow \mathrm{Esx} \\
\mathrm{E} x & \Rightarrow \mathrm{Osx}
\end{aligned}
$$

Extracting Semantic Orderings: Example (1)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
\mathrm{~N} x & \Rightarrow \mathrm{NSx} \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{O} x & \Rightarrow \mathrm{Esx} \\
\mathrm{E} x & \Rightarrow \mathrm{Os} x
\end{aligned}
$$

Extracting Semantic Orderings: Example (1)

This trace is

- fully maximal: the final predicate is introduced by its rule
- grounded: the final predicate is derived from a zero premise production ($\mathrm{N} . \mathrm{B} . \forall m: m \in \llbracket \mathrm{~N} 0 \rrbracket_{1}$)

$$
\underline{\frac{\mathrm{Nx} \vdash \mathrm{E} x, O x}{\mathrm{Ny} \mathrm{O} y, \mathrm{Oy}} \text { (Subst) }}
$$

NyトOy, Ey
(O R)

Extracting Semantic Orderings：Example（1）

$\Rightarrow \mathrm{NO}$

$$
\begin{aligned}
\mathrm{Nx} & \Rightarrow \mathrm{Ns} x \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{O} x & \Rightarrow \mathrm{Esx} \\
\mathrm{E} x & \Rightarrow \mathrm{Osx}
\end{aligned}
$$

$$
\underline{\frac{\mathrm{Nx} \vdash \mathrm{Ex}, \mathrm{Ox}}{\mathrm{Ny} \vdash \mathrm{Ey}, \mathrm{Oy}}} \text { (Subst) }
$$

NyトOy, Ey

$$
(O R)
$$

NyトOy, O sy

$$
\overline{\mathrm{E} 0, \mathrm{OO}}^{\left(\mathrm{ER} \mathrm{R}_{1}\right)} \mathrm{E}_{\mathrm{E}, \mathrm{Ox}}(=\mathrm{L})
$$

$$
\left(E R_{2}\right)
$$

NyトEsy, Osy

$$
x=\mathrm{Sy}, \mathrm{~N} y \vdash \mathrm{E} x, \mathrm{Ox}
$$

$$
\mathrm{N} x \vdash \mathrm{Ex}, \mathrm{Ox}
$$

Extracting Semantic Orderings: Example (1)

Extracting Semantic Orderings: Example (1)

Extracting Semantic Orderings: Example (1)

Extracting Semantic Orderings: Example (2)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& N x \Rightarrow N s x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{O} x \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \\
& \mathrm{Nss0} \Rightarrow \mathrm{O} \mathrm{sss} 0
\end{aligned}
$$

Extracting Semantic Orderings: Example (2)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& N x \Rightarrow N s x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{O} x \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \\
& \mathrm{NssO} \Rightarrow \mathrm{Osss} 0
\end{aligned}
$$

Extracting Semantic Orderings: Example (2)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& N x \Rightarrow N s x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{O} x \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \\
& \mathrm{NssO} \Rightarrow \mathrm{Osss} 0
\end{aligned}
$$

Extracting Semantic Orderings: Example (2)

$$
\begin{aligned}
& \Rightarrow \mathrm{N} 0 \\
\mathrm{Nx} & \Rightarrow \mathrm{~N} \mathrm{Sx} \\
& \Rightarrow \mathrm{E} 0 \\
\mathrm{O} x & \Rightarrow \mathrm{Es} x \\
\mathrm{E} x & \Rightarrow \mathrm{Os} x \\
\mathrm{NssO} & \Rightarrow \mathrm{O} s s s 0
\end{aligned}
$$

This trace is partially maximal: the final predicate is the active formula of an axiom

$$
x=0 \vdash \mathrm{~N} x
$$

$$
\overline{x=s y, \mathrm{O} y \vdash N x}(=\mathrm{L})
$$

(Case E)
$E x \vdash N x$

Extracting Semantic Orderings: Example (2)

$$
\begin{aligned}
& \Rightarrow \mathrm{NO} \\
& N x \Rightarrow N s x \\
& \Rightarrow \mathrm{E} 0 \\
& \mathrm{O} x \Rightarrow \mathrm{Es} x \\
& \mathrm{Ex} \Rightarrow \mathrm{Os} x \\
& \mathrm{NssO} \Rightarrow \mathrm{Osss} 0
\end{aligned}
$$

Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)

For every positive maximal right-hand trace, there must exist a left-hand trace following the same path such that:

- either the right-hand trace is grounded, or it is partially maximal with the left-hand trace matching in the length and final predicate
- right unfoldings \leq left unfoldings

Soundness of the Realizability Condition

Theorem
Suppose \mathcal{P} is a cyclic proof of $\overrightarrow{\mathrm{x}} \stackrel{\vec{y}}{ }$ 部atisfying the realizability
condition, then $\llbracket \mathbb{P} \overrightarrow{\mathrm{P}} \rrbracket_{\alpha} \subseteq \llbracket Q \vec{\rrbracket} \|_{\alpha}$ for all α
Proof.

Soundness of the Realizability Condition

Theorem

Suppose \mathcal{P} is a cyclic proof of $\mathrm{P} \vec{x} \vdash \mathrm{Q} \vec{y}$ satisfying the realizability condition, then $\llbracket \mathrm{P} \vec{x} \rrbracket_{\alpha} \subseteq \llbracket Q \vec{y} \rrbracket_{\alpha}$ for all α

Proof.

Pick a model $m \in \llbracket P \vec{x} \rrbracket_{\alpha}($ i.e. $\Theta(P \vec{x}, m) \leq \alpha)$

- m corresponds to a positive maximal right-hand trace in \mathcal{P}
- The number of unfoldings in this right-hand trace is an upper bound on $\Theta(Q \vec{y}, m)$
- The number of unfoldings in any left-hand trace following the same path is a lower bound on $\Theta(P \vec{x}, m)$
- From the realizability condition, we have that $\Theta(Q \vec{y}, m) \leq \Theta(P \vec{x}, m)$
- Because approximations grow monotonically, also $m \in \llbracket \mathbb{Q} \vec{y} \rrbracket_{\alpha}$

Deciding the Realizability Condition

- We use weighted automata to decide whether the realizability condition holds
- We construct weighted automata that count the progression points in left and right-hand traces
- The realizability condition corresponds to an inclusion of the right-hand trace automaton within the left-hand one

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{l} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{\prime} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

1. The value of a run of \mathscr{A} is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language $\mathcal{L}_{\mathscr{A}}$ is the function $\Sigma^{*} \rightharpoonup V$ computed by \mathscr{A}

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{l} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

1. The value of a run of \mathscr{A} is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language $\mathcal{L}_{\mathscr{A}}$ is the function $\Sigma^{*} \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Weighted Automata

Definition (Weighted Automata)

Let Σ be an alphabet, and (V, \oplus, \otimes) a semiring of weights. A weighted automaton \mathscr{A} is a tuple $\left(Q, q_{1}, F, \gamma\right)$ consisting of a set Q of states containing an initial state $q_{l} \in Q$, a set $F \subseteq Q$ of final states, and a weighted transition function $\gamma:(Q \times \Sigma \times Q) \rightarrow V$.

1. The value of a run of \mathscr{A} is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language $\mathcal{L}_{\mathscr{A}}$ is the function $\Sigma^{*} \rightharpoonup V$ computed by \mathscr{A}

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Sum automata are weighted automata over ($\mathbb{N}, \max ,+$)

Weighted Automata: Existing Results

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Theorem (Krob '94, Almagor Et Al. '11)

Given two quantitative languages (weighted automata) \mathcal{L}_{1} and \mathcal{L}_{2}, it is undecidable whether $\mathcal{L}_{1} \leq \mathcal{L}_{2}$

Weighted Automata: Existing Results

Definition (Weighted Inclusion)

$\mathcal{L}_{1} \leq \mathcal{L}_{2}$ if and only if for every word w such that $\mathcal{L}_{1}(w)$ is defined, $\mathcal{L}_{2}(w)$ is also defined and $\mathcal{L}_{1}(w) \leq \mathcal{L}_{2}(w)$

Theorem (Krob '94, Almagor Et Al. '11)

Given two quantitative languages (weighted automata) \mathcal{L}_{1} and \mathcal{L}_{2}, it is undecidable whether $\mathcal{L}_{1} \leq \mathcal{L}_{2}$

Definition

A weighted automaton is called finite-valued if there exists a bound on the number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini \& Raskin '14)

Given two finite-valued weighted automata \mathscr{A} and \mathscr{B}, it is decidable whether $\mathcal{L}_{\mathscr{A}} \leq \mathcal{L}_{\mathscr{B}}$

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof \mathcal{P}, we can construct two kinds of finite-valued sum automata, $\mathscr{A}_{\mathcal{P}}[n](n \in \mathbb{N})$ and $\mathscr{C}_{\mathcal{P}}$:

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight
- The value of a path is the maximum number of unfoldings in the traces along the path

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof \mathcal{P}, we can construct two kinds of finite-valued sum automata, $\mathscr{A}_{\mathcal{P}}[n](n \in \mathbb{N})$ and $\mathscr{C}_{\mathcal{P}}$:

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight
- The value of a path is the maximum number of unfoldings in the traces along the path
- Each $\mathscr{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof \mathcal{P}, we can construct two kinds of finite-valued sum automata, $\mathscr{A}_{\mathcal{P}}[n](n \in \mathbb{N})$ and $\mathscr{C}_{\mathcal{P}}$:

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight
- The value of a path is the maximum number of unfoldings in the traces along the path
- Each $\mathscr{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof
- The complete automaton is not, in general, finite-valued

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof \mathcal{P}, we can construct two kinds of finite-valued sum automata, $\mathscr{A}_{\mathcal{P}}[n](n \in \mathbb{N})$ and \mathscr{C}_{p} :

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight
- The value of a path is the maximum number of unfoldings in the traces along the path
- Each $\mathscr{A}_{\mathcal{P}}[n]$ considers only a subset of the paths in the proof
- The complete automaton is not, in general, finite-valued
- $\mathscr{C}_{\boldsymbol{p}}$ is grounded when all final states correspond to ground predicate instances

Weighted Automata from Cyclic Entailment Proofs

The full left-hand automaton for the example proof of $\mathrm{Ex} \vdash \mathrm{N} x$

An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let \mathcal{P} be a cyclic entailment proof which is dynamic and balanced; then \mathcal{P} satisfies the realizability condition if and only if $\mathscr{C}_{\mathcal{P}} \leq \mathscr{A}_{\mathcal{P}}[N]$ and $\mathscr{C}_{\mathcal{P}}$ is grounded (where N is a function of \mathcal{P})

An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let \mathcal{P} be a cyclic entailment proof which is dynamic and balanced; then \mathcal{P} satisfies the realizability condition if and only if $\mathscr{C}_{\mathcal{P}} \leq \mathscr{A}_{\mathcal{P}}[N]$ and $\mathscr{C}_{\mathcal{P}}$ is grounded (where N is a function of \mathcal{P})

The cyclic proof is:

- dynamic when every (reachable) basic trace cycle has a non-zero number of progression points
- balanced when every (reachable) basic binary trace cycle has equal numbers of left and right-hand progression points
- a binary cycle is a pair of left and right-hand trace cycles following the same path

The bound N is a function of other graph-theoretic quantities of \mathcal{P}

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce $\llbracket P \vec{T} \rrbracket_{\alpha} \subseteq \llbracket Q \vec{u} \rrbracket_{\alpha}$ from a proof of $\Gamma, P \vec{t} \vdash \Sigma, Q \vec{u}$

Then we can safely trace across an active cut formula

$$
\frac{\Gamma, P \vec{t} \vdash \Sigma, Q \vec{u} \quad Q \vec{u}, \Pi \vdash \Delta}{\Gamma, P \vec{t}, \Pi \vdash \Sigma, \Delta}
$$

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce $\llbracket P \vec{P} \rrbracket_{\alpha} \subseteq \llbracket \mathbb{Q} \vec{u} \rrbracket_{\alpha}$ from a proof of
$\Gamma, P \vec{t} \vdash \Sigma, Q \vec{u}$

Then we can safely trace across an active cut formula

$$
\frac{\Gamma, \mathrm{P} \vec{t} \vdash \Sigma, \mathrm{Q} \vec{u} \quad \mathrm{Q} \vec{u}, \Pi \vdash \Delta}{\Gamma, \mathrm{P} \vec{t}, \Pi \vdash \Sigma, \Delta}
$$

This is explicitly forbidden in existing cyclic proof systems, precisely because there is no way to ensure in general that there is an inclusion between $\llbracket P \vec{p} \rrbracket_{\alpha}$ and $\llbracket \mathbb{Q} \vec{u} \rrbracket_{\alpha}$

Conclusions

- We have shown that information about inclusions between the semantics of inductive predicates can be extracted from cyclic proofs of entailments
- This information can be used to construct ranking functions for programs
- Our results are formulated abstractly, and so hold for any cyclic proof system whose rules satisfy certain properties
- We use the term realizability because we extract semantic information from the proofs

Future Work

- Implement the decision procedure within the cyclic proof-based verification framework CYCLIST
- Evaluate to what extent entailments found 'in the wild' satisfy the realizability condition
- Investigate further theoretical questions:
- are there weaker structural properties of proofs that still admit completeness with the approximate automata
- If the semantic inclusion $\llbracket \mathrm{P} \vec{x} \rrbracket_{\alpha} \subseteq \llbracket \mathrm{Q} \vec{y} \rrbracket_{\alpha}$ holds, is there a cyclic proof of $\mathrm{P} \vec{x} \vdash \mathrm{Q} \vec{y}$ satisfying the realizability condition?

