Realizability in Cyclic Proof

Extracting Ordering Information for Infinite Descent

Reuben N.S.Rowe '  James Brotherston 2
Kent PLAS Seminar, Monday 23 October 2017

1School of Computing, University of Kent, Canterbury, UK

2Department of Computer Science, UCL, London, UK



What is Cyclic Proof?

(Axiom)

°
(Axiom) . (Axiom)
° : °
° . °
(Inference)

°
°

- We are all familiar with proofs as finite trees

1/22



What is Cyclic Proof?

(Axiom)

(Inference)

- We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?

1/22



What is Cyclic Proof?

(Axiom)

(Inference)

- We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?
- Cyclic proofs must satisfy a syntactic global trace property

1/22



Example: First Order Logic

- Assume signature with zero, successor, and equality

- Allow inductive predicate definitions, e.g.

N x Ex Ox

NO Nsx EO Osx Esx

2/22



Example: First Order Logic

- Assume signature with zero, successor, and equality

- Allow inductive predicate definitions, e.g.

N x Ex Ox

NO Nsx EO Osx Esx
- These induce unfolding rules for the sequent calculus, e.g.

[t=0FA Tt=sx,NxFA
(Case N) (where x fresh)

I NtEA

M-ANt
(NRy) — " (NRy)
r=A,NO A, Nst

2/22



A Cyclic Proof of NxF Ex,Ox

NxF Ex,Ox

3/22



A Cyclic Proof of NxF Ex,Ox

x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)

NxF Ex,Ox

3/22



A Cyclic Proof of NxF Ex,Ox

FEO0,00
— (=

x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)

NxF Ex,Ox

3/22



A Cyclic Proof of NxF Ex,Ox

(ERq)
FEO0,00
— (=)
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)

NxF Ex,Ox

3/22



A Cyclic Proof of NxF Ex,Ox

(ERy)
FEOD,00 Ny Esy,Osy
S — - (=L)
x=0FEX,Ox x=sy,NyFEx,Ox

NxF Ex,Ox

3/22



A Cyclic Proof of NxF Ex,Ox

NyF Oy, Osy
(ERy) (ER,)
FEO,00 Ny F Esy,Osy
—(=0) (=L)
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxFEx, Ox

3/22



A Cyclic Proof of NxF Ex,Ox

NyFOQOy Ey
(ORy)

NyF Oy, Osy
(ER1) (ER,)

FEO,00 Ny F Esy,Osy
—(=0) (=L)

x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxFEx, Ox

3/22



A Cyclic Proof of NxF Ex,Ox

NyFEy, Oy
(PR)
NyFOy, Ey
(ORy)
NyFOQOy,0Osy
(ERy) (ERy)
FEOQ0,00 Ny F Esy,Osy
— (=) (=L)
X=0FEx,Ox x=5sy,NyFEx,Ox
(Case N)
Nxk Ex,Ox

3/22



A Cyclic Proof of NxF Ex,Ox

NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOQOy Ey
(ORy)

NyF Oy, Osy
(ER1) (ERy)
FEO,00 Ny F Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox

NxF Ex,Ox

3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOQOy Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny F Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOQOy Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny F Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

e

3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOQOy Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny F Esy,Osy
— (=1 (=1
x=0FEX,Ox x=sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

IIX]]m1 > [[y]]“f‘ )

3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOQOy Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny F Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

IIX]]m1 > IIy my; = HV]]
3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOQOy Ey
(ORy)
NyFOQOy,Osy
(ERy) (ERy)
FEO,00 Ny Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

Xdm, > Wlm, = Wlms = [VIn
3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOy, Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

IIX]]m1 > IIy my; = IIy m3 = |[J/]]m4 = [Vlm
3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOy, Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

IIX]]rm > IIy my; = IIy my = |[y]]m4 = IIy ms = [[V]]
3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex, Ox
(Subst)
NyFEy, Oy
(PR)
NyFOy, Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny Esy,Osy
— (=1 (=1
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

IIX]]rm > IIy my; = IIy my = |[y]]m4 = IIy ms = IIy meg = [[X]]H“
3/22



A Cyclic Proof of NxF Ex,Ox

f N\
NxF Ex,Ox
(Subst)
NyFEy, Oy
(PR)
NyFOy, Ey
(ORy)
NyF Oy, Osy
(ERy) (ERy)
FEO,00 Ny Esy,Osy
— (=1 (=1
x=0FEX,Ox x=sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N b,

- Suppose Nx = Ex,Ox is not valid:

IIX]]rm > IIy my = IIy m3 = |[y]]m4 = IIy ms = IIy me = IIX]]m7 > [[V]]w‘
3/22



A Cyclic Proof of NxF Ex,Ox

4 N\
NxF Ex,Ox
(Subst)
NyFEy,Oy
(PR)
NyFOy,Ey
(OR1)
Ny Oy, Osy
(ERy) (ERy)
FEO,00 Ny Esy,Osy
— (=0 (=L)
x=0FEX,Ox x=5sy,NyFEx,Ox
(Case N)
NxF Ex,Ox
N y
- Suppose Nx = Ex,Ox is not valid:
m>n>n>... (nj € N for all i)

3/22



The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions Py fi, ..., P& = Po to

Definition (Characteristic Operators)

Inductive definition sets ® induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Po(X)(PTO) = {m | P1fs,..., Pt = PET€ & A Vx € dom(8) : m(x) = [0()]m
AV1<i<j:meX(Ptb)}

422



The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions P, ..., P; tj = Po fo

Definition (Characteristic Operators)

Inductive definition sets & induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Po(X)(PTO) = {m | P1ti,..., Pt = PE€ & A Vx € dom(8) : m(x) = [0(X)]m
AV1<i<j:meX(Pto)}

- _} X (PT)y=0 forallPt

{ N x Ex Ox
NO Nsx EO Osx Esx

po(X1)(NX) = {[x — 0]}
po(X1)(Ex) = {[x+— 0]}
Po(X1)(0x) = {} 4/22



The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions P, ..., P; tj = Po fo

Definition (Characteristic Operators)

Inductive definition sets & induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Po(X)(PTO) = {m | P1ti,..., Pt = PE€ & A Vx € dom(8) : m(x) = [0(X)]m
AV1<i<j:meX(Pto)}

N x Ex Ox
q,_{

S _} XL (Pt)=0 forallPt
NO Nsx EO Osx Esx

po(po(X1))(NX) = {[x = 0], [x = sO]}
po(po(X1))(EX) = {[x— 0]}
po(pa(X1))(0X) = {[x — s0]} 4122



The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions P, ..., P; tj = Po fo

Definition (Characteristic Operators)

Inductive definition sets & induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Po(X)(PTO) = {m | P1ti,..., Pt = PE€ & A Vx € dom(8) : m(x) = [0(X)]m
AV1<i<j:meX(Pto)}

N x Ex Ox
q,_{

S _} XL (Pt)=0 forallPt
NO Nsx EO Osx Esx

po(po((X1)))(NX) = {[x = 0], [x = SO], [x = s50]}
po(o(o(X1)))(EX) = {[x = 0], [x > s50]}
po(po(@(X1)))(0X) = {[x > SO} o



The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions P, ..., P; tj = Po fo

Definition (Characteristic Operators)

Inductive definition sets & induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Po(X)(PTO) = {m | P1ti,..., Pt = PE€ & A Vx € dom(8) : m(x) = [0(X)]m
AV1<i<j:meX(Pto)}

N x Ex Ox ~ -
{_ — = = _} X (Pt)=0 forallPt

NO Nsx EO Osx Esx

X1 Epo(X1) Cwolpo(XL)) C ... Cpe(XL) C ... C pXpo(X)

422



The Semantics of Inductive Predicate Definitions

Definition (Inductive Definition Set)

An inductive definition set contains productions P, ..., P; tj = Po fo

Definition (Characteristic Operators)

Inductive definition sets & induce characteristic operators ¢ on predicate
interpretations X (functions from predicate formulas to sets of models):

Po(X)(PTO) = {m | P1ti,..., Pt = PE€ & A Vx € dom(8) : m(x) = [0(X)]m
AV1<i<j:meX(Pto)}

{ N x Ex Ox

S _} XL (Pt)=0 forallPt
NO Nsx EO Osx Esx

[circryc..crec...1°

422



Models as Realizers

- We say that a model m e [Pt]® realizes Pt (wrt. ®)

- We define a realization function ©:

def

O(Pt,m) = min({a | m € [PTZ})

5/22



Models as Realizers

- We say that a model m e [P£]® realizes Pt (wrt. ®)

- We define a realization function ©:

E min({a | me [PTS})

- The logical inference rules have the property that

O(Pt, m)

DRI il I PR WP o I P

MPtFA

for a counter-model m of I', Pt - A, there exists a
counter-model m’ of some ¥; - M; (local soundness) and
if PT e ¥; then ©(Pt,m’) < O(Pt, m)

5/22



Models as Realizers

- We say that a model m e [P{]® realizes PT (wrt. ®)

- We define a realization function ©:
o(Pt,m) € min({e | me [PHSY)

- The logical inference rules have the property that

MNt=0FA T t=sx,NxFA
(Case N)

MNEEA

for a counter-model m of ', Nt = A, there exists a
counter-model m’ of either',t =0+ A or
I t=sx,NxF A and if the latter then ©(Nx,m’) < ©(NL, m)

5/22



Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Blichi automata

6/22



Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Blchi automata

- We obtain an infinite descent proof-by-contradiction:

6/22



Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Blchi automata

- We obtain an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid

6/22



Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Blchi automata

- We obtain an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid

- Local soundness implies an infinite sequence of (counter)
models

6/22



Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Blchi automata

- We obtain an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid

- Local soundness implies an infinite sequence of (counter)
models

- These can be mapped to a non-increasing chain of ordinals
using the realization function

6/22



Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:
- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Blchi automata

- We obtain an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid

- Local soundness implies an infinite sequence of (counter)
models

- These can be mapped to a non-increasing chain of ordinals
using the realization function

- Global trace condition then implies this chain is infinitely
descending

6/22



Soundness of Cyclic Proof

- Impose global trace condition on proof graphs:

- Every infinite path must have an infinitely progressing trace
- This condition is decidable using Blchi automata

- We obtain an infinite descent proof-by-contradiction:

- Assume the conclusion of the proof is invalid

- Local soundness implies an infinite sequence of (counter)
models

- These can be mapped to a non-increasing chain of ordinals
using the realization function

- Global trace condition then implies this chain is infinitely
descending

- But the ordinals are well-founded ... contradiction

6/22



Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

N x = FO] T,Fx]F F[sx],A T,F[t]F A
— (Ind N)
NO N sx MNtEA

7122



Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

N x = FO] T,Fx]F F[sx],A T,F[t]F A
— (Ind N)
NO N sx MNtEA

- Cyclic proof enables ‘discovery’ of induction hypotheses

7122



Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

N x = FO] T,Fx]F F[sx],A T,F[t]F A
— (Ind N)
NO N sx MNtEA

- Cyclic proof enables ‘discovery’ of induction hypotheses

- Complex induction schemes naturally represented by
nested and overlapping cycles

7122



Cyclic Proof vs Explicit Induction

- Explicit induction requires induction hypothesis F up-front

N x = FO] T,Fx]F F[sx],A T,F[t]F A
— (Ind N)
NO N sx MNtEA

- Cyclic proof enables ‘discovery’ of induction hypotheses

- Complex induction schemes naturally represented by
nested and overlapping cycles

- Every sequent provable using the explict induction rule is
also derivable using cyclic proof

7122



Cyclic Proofs of Program Termination

struct 11 { int data; 11 =*next; }

void rev(ll *x) { /* reverseslist x/ }

void shuffle(1ll #*x) {
if ( x !'= NULL ) {

11 *y = x -> next;
rev(y);

shuffle(y);

8/22



Cyclic Proofs of Program Termination

struct 11 { int data; 11 =*next; }
list(x) & (x=NULL Aemp) V (x+— (d,[) = list(l))
void rev(ll =x) {list(x)} { /* reverseslist »/ } {list(x)}
void shuffle(1ll #x) {list(x)} {
if ( x !'= NULL ) {
{x = (d, 1) list(l) }

1l *y = x -> next; >
{x > (d,y) * list(y) } vt et i"\\,\
I‘ev(y); urslvacdlmslbpm Logic &
{x > (d,y) * list(y) }
shuffle(y);
{x > (d,y) * list(y) }
}
b o{list(x)}

8/22



Cyclic Proofs of Program Termination

struct 11 { int data; 11 =*next; }
list(x) & (x=NULL Aemp) V (x+— (d,[) = list(l))
void rev(ll =x) {listo(x)} { /= reverseslist =/ } {list.(x)}
void shuffle(1ll #x) {list.(x)} {
if ( x !'= NULL ) {
{x = (d, ) lists() A B < a }

1l *y = x -> next; N
{X > (d,y) #lista(y) A 6 < a} I f%\
oy eorine Proceures I Separaton Loge b
{xw—(d,y)*lists(y)AB < a'}
shuffle(y);
{xw—(d,y)*lists(y)AB < '}
}
b o{lista(x)}

8/22



Cyclic Proofs of Program Termination

struct 11 { int data; 11 =*next; }
list(x) & (x=NULL Aemp) V (x+— (d,[) = list(l))
void rev(ll =x) {lista(x)} { ... } {lista(x)}

void chuffl1ao(17 ) Llict [ 4
e w

1/

. L f&
Intra-procedural analysis produces verification ..,.m.iccmmim.i.mpm.»sfwv

ursive Procedures in Separation Logic &

conditions, in the form of entailments, e.g.

X # NULL A X — (d,y) = list(y) F list(x)




Cyclic Proofs of Program Termination

struct 11 { int data; 11 =*next; }
list(x) & (x=NULL Aemp) V (x+— (d,[) = list(l))
void rev(ll =x) {lista(x)} { ... } {lista(x)}

void chuffl1ao(17 ) Llict [ 4
e w

(Axiom)

tomatic Cyclic Termination Proofs for ~
ursive Procedures in Separation Logic &

Reuben

(Inference)




Cyclic Proofs of Program Termination

struct 11 { int data; 11 =*next; }
list(x) & (x=NULL Aemp) V (x+— (d,[) = list(l))
void rev(ll =x) {lista(x)} { ... } {lista(x)}

void chuffl1ao(17 ) Llict [ 4
e w

(Axiom)




Overview of Results

- Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

9/22



Overview of Results

- Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

- These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

9/22



Overview of Results

- Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

- These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

- The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

9/22



Overview of Results

- Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

- These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

- The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

- Under certain extra structural conditions, this containment
falls within existing decidability results

9/22



Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of
sequents, which are

- maximally finite

- matched by some left-hand trace along the same path

- We then count the number of times each trace progresses

- the left-hand one must progress at least as often as the
right-hand one

10/22



Extracting Semantic Orderings: Example (1)

= NO
Nx = Nsx ( h
NxFEx, Ox
=E0 — (Subst)
Ox = Esx NyFEy, Oy
Ex= 0Osx (PR)
NyF Oy, Ey
(OR)
NyF Oy, Osy
(ER1) —— (ERy)
= EO,O00 Ny F Esy, Osy
— (=) (=L)
x=0F Ex, Ox x=sy,NyF Ex, Ox
(Case N)
NxF Ex, Ox
N J

1/22



Extracting Semantic Orderings: Example (1)

= NO
Nx = Nsx ( h
NxFEx, Ox
=E0 — (Subst)
Ox = Esx NyFEy, Oy
Ex= 0Osx (PR)
NyF Oy, Ey
(OR)
NyF Oy, Osy
(ER1) —— (ERy)
FEO,O0 Nyt Esy, Osy
— (=) (=L)
Xx=0F Ex, Ox x=sy,NyF Ex, Ox
(Case N)
NxF Ex, Ox
N J

1/22



Extracting Semantic Orderings: Example (1)

= NO
Nx = Nsx r h
NxFEx,Ox
=E0 — (Subst)
Ox = Esx NyFEy,Oy
Ex= 0Osx (PR)
Ny Oy, Ey
(OR)
NyF Oy, Osy
(ER1) —— (ERy)
= EO0,O00 NyF Esy, Osy
— (=) (=L)
x=0F Ex, Ox x=5sy,NyF Ex, Ox
(Case N)
NxF Ex, Ox
N J

1/22



Extracting Semantic Orderings: Example (1)

= NO
Nx = Nsx ( h
NxFEx, Ox
=E0 — (Subst)
Ox = Esx NyFEy, Oy
Ex= 0Osx (PR)
NyF Oy, Ey
(OR)
NyF Oy, Osy
(ER1) —— (ERy)
FEO,O0 Ny F Esy, Osy
— (=) (=L)
x=0F Ex, Ox x=sy,NyF Ex, Ox
(Case N)
NxF Ex, Ox
N J

1/22



Extracting Semantic Orderings: Example (1)

= NO
Nx = Nsx r h
NxFEx, Ox
=E0 — (Subst)
Ox = Esx NyFEy, Oy
Ex= 0Osx (PR)
NykF Oy, Ey
(OR)
NyF Oy, Osy
(ER1) —— (ERy)
= EO,O00 Ny F Esy, Osy
— (=) (=L)
x=0F Ex, Ox x=5sy,NyF Ex, Ox
(Case N)
NxF Ex, Ox
N J

1/22



Extracting Semantic Orderings: Example (1)

[ This trace is

- fully maximal: the final predicate is r
introduced by its rule NxHEx,Ox
— (Subst)
- grounded: the final predicate is derived NyFEy,Oy
from a zero premise production (PR)
(N.B.Ym :m € [NO]) Nyt Oy, Ey
\. J (O R)
Nyt Oy, Osy
&—(E Ry) ——  (ERy)
FEO,O0 Nyt Esy, Osy

—(=1)
Xx=0F Ex, Ox

(=L

x=sy,NyF Ex, Ox

(Case N)

NxF Ex, Ox

(N




Extracting Semantic Orderings: Example (1)

= NO
Nx = Nsx ( h
NxFEx, Ox
=E0 — (Subst)
Ox = Esx NyFEy, Oy
Ex= 0Osx (PR)
NyF Oy, Ey
(OR)
NyF Oy, Osy
(ER1) —— (ERy)
FEO,00 Ny F Esy, Osy
(=L) (=L)
x=sy,NyF Ex, Ox
(Case N)
NxF Ex, Ox
N J

Not grounded!

1/22



Extracting Semantic Orderings: Example (1)

( 1\
NxFEx,Ox
— (ERy) —  (Subst)
FEO NyFEy Oy
(=L) ——  (PR)
-EOF NyF Oy, Ey
(ER;) ——— (WR) ——(0OR)
FEO,—EO -EOFOO0 Ny Oy, Osy
(Cu) ————(ERy)
FEO0,00 Ny Esy, Osy
(=L) (=L)
x=0F Ex, Ox x=5sy,NyF Ex, Ox
(Case N)
Nxk Ex, Ox
N y

1/22



Extracting Semantic Orderings: Example (1)

( 1\
. NXI—EX,OX( -
L — (ERy —— (Subst
[ A negative trace ] L ED Ny - Ey,0y
(=L) —(PR)
-EOF NykE Oy, Ey
ERIN—WR)  ——(OR)
FEO,—EO —“EOFOO0 Ny Oy, Osy
(Cut) ———(ER)
FEO0,00 Ny Esy, Osy
(=L) (=0
X=0F Ex, Ox x=sy,NyF Ex, Ox
(Case N)
NxkF Ex, Ox
N )

1/22



Extracting Semantic Orderings: Example (1)

4 N
NxF Ex,Ox
[ A positive trace ] E(ERW) Nyl——Ey,Oy(SUbSt)
(=L) — (PR
-EOF NykE Oy, Ey
(ER) ———WR) —————(OR)
FEO./ﬁEO -EO0OFOO0 Ny}— Oy,OSj/
(i) —————(ERy)
FE0,00 NyF Esy, Osy
=0 (=1)
x=0F Ex, Ox x=sy,NyF Ex, Ox
(Case N)
NXxF Ex, Ox
t J

1/22



Extracting Semantic Orderings: Example (2)

= NO
ExE Nx
Nx = Nsx (AX) — (Subst)
—EO NssO F NssO EzENz
(NRy) (NR,)
Ox = Esx N'ssO - N sssO EzF Nsz
Ex = Osx (=L) (=L)
NG = @) ses( y =5SS0,NssO+ Ny y=sz,EzE Ny
(Case 0)
OyF Ny
(NRy) (NRy)
FNO Oy Nsy
(=) — (=1
X=0F Nx x=5sy,0yF Nx
(Case E)
ExtH Nx
N b,

12/22



Extracting Semantic Orderings: Example (2)

= NO
ExE Nx
Nx = Nsx (AX) — (Subst)
—EO NssO F NssO EzENz
(NRy) (NR,)
Ox = Esx N'ssO - N sssO EzF Nsz
Ex = Osx (=L) (=L)
N'ssO = O 5550 y =5SS0,NssO+ Ny y=sz,EzE Ny
(Case 0)
Oyk Ny
(NRy) (NRy)
F NO Oyk Nsy
(=L) — (=)
X=0F Nx x=5sy,0yF Nx
(Case E)
ExF Nx
N )

12/22



Extracting Semantic Orderings: Example (2)

= NO )
ExF Nx
NXx = Nsx (AX) —  (Subst)
= EOQ NssO - NssO Ez-Nz
(NR2) (NR,)
Ox= Esx NssO F NsssO Ez- Nsz
Ex= 0Osx (=L) (=1)
N'ssO = 05sss0 y =55s0,NssO+ Ny y=sz,Ez- Ny
(Case 0)
Oyt Ny
(NRy) (NR,)
FNO OyF Nsy
(=L) —_—(=L)
x=0F Nx X=sy,0yF Nx
(Case E)
ExF Nx
t J

12/22



Extracting Semantic Orderings: Example (2)

)
= NO
ExF Nx
Nx = Nsx — (") —— (Subst)
= EO0 NssO F NssO EzFNz
(NR) ——(NRy)
O0x= Esx EzF Nsz
Ex= 0Osx (=L) (=L)
N'ssO = 0sss0 S50, N'ssO = N y=sz,EzENy
(Case 0)
[This trace is partially maximal: the ﬁnal] Qi 0 (NR,)
. . : ) .
predicate is the active formula of an axiom Ol Ny
(=L) — (=)
XxX=0F Nx x=2sy,0yF Nx
(Case E)
ExF Nx
t J

12/22



Extracting Semantic Orderings: Example (2)

= NO )
ExF Nx
NXx = Nsx (AX) —  (Subst)
=FE0 NssO - NssO EzFNz
(NR2) (NR,)
Ox= Esx NssO - NsssO Ez- Nsz
Ex= 0Osx (=L) (=1)
N'ssO = 05sss0 y =55s0,NssO = Ny y=sz,Ez- Ny
(Case 0)
Oyt Ny
(NRy) (NR,)
FNO OyF Nsy
(=L) —_—(=L)
x=0F Nx X=sy,0yF Nx
(Case E)
ExF Nx
t J

12/22



Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)

For every positive maximal right-hand trace, there must exist
a left-hand trace following the same path such that:

- either the right-hand trace is grounded, or it is partially
maximal with the left-hand trace matching in the length
and final predicate

- right unfoldings < left unfoldings

13/22



Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX - Q satisfying the realizability
condition, then [PX]« C [Q¥]« for all

Proof.

14/22



Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX - Q satisfying the realizability
condition, then [PX]« C [Q¥]« for all

Proof.
Pick a model m € [PX] (i.e. ©(PX,m) < a)

- m corresponds to a positive maximal right-hand trace in P

- The number of unfoldings in this right-hand trace is an bound
on ©(Qy, m)

- The number of unfoldings in any left-hand trace following the same
path is a bound on ©(P X, m)

- From the realizability condition, we have that ©(Qy, m) < ©(PX, m)
- Because approximations grow monotonically, also m € [Q¥]a

14/22



Deciding the Realizability Condition

- We use weighted automata to decide whether the
realizability condition holds

- We construct weighted automata that count the
progression points in left and right-hand traces

- The realizability condition corresponds to an inclusion of
the right-hand trace automaton within the left-hand one

15/22



Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.

16/22



Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.

1. The value of a run of & is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language L. is the function ¥* — V computed by &/

16/22



Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.

1. The value of a run of & is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language L. is the function ¥* — V computed by &/

Definition (Weighted Inclusion)
L1 < L, if and only if for every word w such that £:(w) is defined, £;(w) is
also defined and £y(w) < £Lo(w)

16/22



Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.

1. The value of a run of & is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language L. is the function ¥* — V computed by &/

Definition (Weighted Inclusion)
L1 < L, if and only if for every word w such that £:(w) is defined, £;(w) is
also defined and £y(w) < £Lo(w)

automata are weighted automata over (N, max, +)

16/22



Weighted Automata: Existing Results

Definition (Weighted Inclusion)

L1 < L, if and only if for every word w such that £,(w) is defined, £;(w) is
also defined and £y(w) < Ly(w)

Theorem (Krob '94, Almagor Et AL "11)

Given two quantitative languages (weighted automata) £, and L, it is
undecidable whether £, < L,

17/22



Weighted Automata: Existing Results

Definition (Weighted Inclusion)

L1 < L, if and only if for every word w such that £,(w) is defined, £;(w) is
also defined and £y(w) < Ly(w)

Theorem (Krob '94, Almagor Et AL "11)
Given two quantitative languages (weighted automata) £, and L, it is
undecidable whether £, < L,

Definition

A weighted automaton is called if there exists a bound on the
number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini & Raskin "14)

Given two finite-valued weighted automata .« and 4, it is decidable
whether Loy < Lo

17/22



Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two kinds of
finite-valued sum automata, «7p[n] (n € N) and »:

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight

- The value of a path is the maximum number of unfoldings in the traces
along the path

18/22



Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two kinds of
finite-valued sum automata, «7p[n] (n € N) and »:

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight

- The value of a path is the maximum number of unfoldings in the traces
along the path

- Each @#p[n] considers only a subset of the paths in the proof

18/22



Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two kinds of
finite-valued sum automata, «7p[n] (n € N) and »:

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight

- The value of a path is the maximum number of unfoldings in the traces
along the path

- Each @#p[n] considers only a subset of the paths in the proof

- The complete automaton is not, in general, finite-valued

18/22



Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two kinds of
finite-valued sum automata, «7p[n] (n € N) and »:

- The words accepted are paths in the proof from the root sequent
- Transitions corresponding to a case split have unit weight

- The value of a path is the maximum number of unfoldings in the traces
along the path

- Each @#p[n] considers only a subset of the paths in the proof

- The complete automaton is not, in general, finite-valued

- ¢p is grounded when all final states correspond to ground predicate
instances

18/22



Weighted Automata from Cyclic Entailment Proofs

The full left-hand automaton for the example proof of Ex = N x

a @M ‘;/y: \ )] /7 \ / \\ (N'ss0),[0] / \
start —| 3 u (3,0y) /,‘?—"{ (5,0y) u u 1 \«—u(wo Nsso)
\_/ \\,,,/ NI \\,:,/
o] B Jowo o]
/ / \ (12),[ / \\ (1),[0] / \ (801 / \\ nl / \\ / \ (10),[0] / \\
[ (.Ex) u<—u EZ) \<—u (1,E2) ‘u<—<\\ (8.E2) \M—{\\ 0y) »—»u (7,N'ss0) »—»u (9, N'ss0) »—»u

w \C _ o

().101

(12),[0]

18/22



An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let P be a cyclic entailment proof which is and ; then P
satisfies the realizability condition if and only if €» < @/p[N] and €p is
grounded (where N is a function of P)

19/22



An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let P be a cyclic entailment proof which is dynamic and balanced; then P
satisfies the realizability condition if and only if €» < @/p[N] and €p is
grounded (where N is a function of P)

The cyclic proof is:
- dynamic when every (reachable) basic trace cycle has a non-zero
number of progression points

- balanced when every (reachable) basic binary trace cycle has equal
numbers of left and right-hand progression points

* a binary cycle is a pair of left and right-hand trace cycles following the
same path

The bound N is a function of other graph-theoretic quantities of P

19/22



Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce [Pt], C [Q ], from a proof of
rPtHY, Qi

Then we can safely trace across an active cut formula

PEFY, Q0 QU,NFA

= (Cut)
MPLMELZ A

20/22



Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce [Pt], C [Q ], from a proof of
rPtHY, Qi
Then we can safely trace across an active cut formula

PEFY, Q0 QU,NFA
(Cut)

rLPLOFIA

This is explicitly forbidden in existing cyclic proof systems,
precisely because there is no way to ensure in general that
there is an inclusion between [Pt], and [Q 0]«

20/22



Conclusions

- We have shown that information about inclusions
between the semantics of inductive predicates can be
extracted from cyclic proofs of entailments

- This information can be used to construct ranking
functions for programs

- Our results are formulated abstractly, and so hold for any
cyclic proof system whose rules satisfy certain properties

- We use the term realizability because we extract semantic
information from the proofs

21/22



Future Work

- Implement the decision procedure within the cyclic
proof-based verification framework CycCLIST

- Evaluate to what extent entailments found ‘in the wild’
satisfy the realizability condition

- Investigate further theoretical questions:

- are there weaker structural properties of proofs that still
admit completeness with the approximate automata

- If the semantic inclusion [PX]. C [Q}]. holds, is there a
cyclic proof of PX - Qy satisfying the realizability
condition?

22/22



