
Realizability in Cyclic Proof
Extracting Ordering Information for Infinite Descent

Reuben N. S. Rowe 1 James Brotherston 2

Birmingham Theory Seminar, Friday 6th October 2017
1School of Computing, University of Kent, Canterbury, UK

2Department of Computer Science, UCL, London, UK

Motivation: Program Termination

struct ll { int data; ll *next; }

list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)

{ list(x,n)}

{
if (x != NULL) {

{ list(x->next,n− 1)}

ll *y = x -> next;

{y = x->next ∧ list(y,n− 1)}

rev(y);

{y = x->next ∧ list(y,n− 1)}

shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
}

{ list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x)

{ list(x,n)}

{
if (x != NULL) {

{ list(x->next,n− 1)}

ll *y = x -> next;

{y = x->next ∧ list(y,n− 1)}

rev(y);

{y = x->next ∧ list(y,n− 1)}

shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
}

{ list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x) { list(x,n)} {

if (x != NULL) {

{ list(x->next,n− 1)}

ll *y = x -> next;

{y = x->next ∧ list(y,n− 1)}

rev(y);

{y = x->next ∧ list(y,n− 1)}

shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
} { list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { /* reverses list */ }
void shuffle(ll *x) { list(x,n)} {

if (x != NULL) {
{ list(x->next,n− 1)}
ll *y = x -> next;
{y = x->next ∧ list(y,n− 1)}
rev(y);

{y = x->next ∧ list(y,n− 1)}

shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
} { list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { list(x,n)} { . . . } { list(x,n)}
void shuffle(ll *x) { list(x,n)} {

if (x != NULL) {
{ list(x->next,n− 1)}
ll *y = x -> next;
{y = x->next ∧ list(y,n− 1)}
rev(y);

{y = x->next ∧ list(y,n− 1)}

shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
} { list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { list(x,n)} { . . . } { list(x,n)}
void shuffle(ll *x) { list(x,n)} {

if (x != NULL) {
{ list(x->next,n− 1)}
ll *y = x -> next;
{y = x->next ∧ list(y,n− 1)}
rev(y);

{y = x->next ∧ list(y,n− 1)}

shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
} { list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { list(x,n)} { . . . } { list(x,n)}
void shuffle(ll *x) { list(x,n)} {

if (x != NULL) {
{ list(x->next,n− 1)}
ll *y = x -> next;
{y = x->next ∧ list(y,n− 1)}
rev(y);
{y = x->next ∧ list(y,n− 1)}
shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
} { list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { list(x,n)} { . . . } { list(x,n)}
void shuffle(ll *x) { list(x,n)} {

if (x != NULL) {
{ list(x->next,n− 1)}
ll *y = x -> next;
{y = x->next ∧ list(y,n− 1)}
rev(y);
{y = x->next ∧ list(y,n− 1)}
shuffle(y);

{y = x->next ∧ list(y,n− 1)}

}
} { list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x,n) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next,n− 1)

void rev(ll *x) { list(x,n)} { . . . } { list(x,n)}
void shuffle(ll *x) { list(x,n)} {

if (x != NULL) {
{ list(x->next,n− 1)}
ll *y = x -> next;
{y = x->next ∧ list(y,n− 1)}
rev(y);
{y = x->next ∧ list(y,n− 1)}
shuffle(y);
{y = x->next ∧ list(y,n− 1)}

}
} { list(x,n)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next)
void rev(ll *x) { listα(x)} { . . . } { listα(x)}
void shuffle(ll *x) { listα(x)} {

if (x != NULL) {
{ listβ(x->next) ∧ β < α}
ll *y = x -> next;
{y = x->next ∧ listβ(y) ∧ β < α}
rev(y);
{y = x->next ∧ listβ(y) ∧ β < α}
shuffle(y);
{y = x->next ∧ listβ(y) ∧ β < α}

}
} { listα(x)}

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next)
void rev(ll *x) { listα(x)} { . . . } { listα(x)}
void shuffle(ll *x) { listα(x)} {

if (x != NULL) {
{ listβ(x->next) ∧ β < α}
ll *y = x -> next;
{y = x->next ∧ listβ(y) ∧ β < α}
rev(y);
{y = x->next ∧ listβ(y) ∧ β < α}
shuffle(y);
{y = x->next ∧ listβ(y) ∧ β < α}

}
} { listα(x)}

[[·]] : Formulas → ℘(Models)
[[·]]⊥ ⊑ [[·]]1 ⊑ . . . [[·]]α ⊑ [[·]]α+1 ⊑ . . . ⊑ [[·]]

∀α . [[P(⃗x)]]α ⊆ [[Q(⃗y)]]α ≡ Q(⃗y) ≤ P(⃗x)

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next)
void rev(ll *x) { listα(x)} { . . . } { listα(x)}
void shuffle(ll *x) { listα(x)} {

if (x != NULL) {
{ listβ(x->next) ∧ β < α}
ll *y = x -> next;
{y = x->next ∧ listβ(y) ∧ β < α}
rev(y);
{y = x->next ∧ listβ(y) ∧ β < α}
shuffle(y);
{y = x->next ∧ listβ(y) ∧ β < α}

}
} { listα(x)}

[[·]] : Formulas → ℘(Models)
[[·]]⊥ ⊑ [[·]]1 ⊑ . . . [[·]]α ⊑ [[·]]α+1 ⊑ . . . ⊑ [[·]]

∀α . [[P(⃗x)]]α ⊆ [[Q(⃗y)]]α ≡ Q(⃗y) ≤ P(⃗x)

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next)
void rev(ll *x) { listα(x)} { . . . } { listα(x)}
void shuffle(ll *x) { listα(x)} {

if (x != NULL) {
{ listβ(x->next) ∧ β < α}
ll *y = x -> next;
{y = x->next ∧ listβ(y) ∧ β < α}
rev(y);
{y = x->next ∧ listβ(y) ∧ β < α}
shuffle(y);
{y = x->next ∧ listβ(y) ∧ β < α}

}
} { listα(x)}

Intra-procedural analysis produces verification
conditions, in the form of entailments, e.g.

x ̸= NULL ∧ y = x->next ∧ list(y) ⊢ list(x)

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next)
void rev(ll *x) { listα(x)} { . . . } { listα(x)}
void shuffle(ll *x) { listα(x)} {

if (x != NULL) {
{ listβ(x->next) ∧ β < α}
ll *y = x -> next;
{y = x->next ∧ listβ(y) ∧ β < α}
rev(y);
{y = x->next ∧ listβ(y) ∧ β < α}
shuffle(y);
{y = x->next ∧ listβ(y) ∧ β < α}

}
} { listα(x)}

•.
..

..
..

.
(Axiom)

• •
·
·
·
·
• • .

. .
. . •

(Inference)

•
·
·
·

. . . P(⃗x) . . . ⊢ . . .Q(⃗y) . . .

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next)
void rev(ll *x) { listα(x)} { . . . } { listα(x)}
void shuffle(ll *x) { listα(x)} {

if (x != NULL) {
{ listβ(x->next) ∧ β < α}
ll *y = x -> next;
{y = x->next ∧ listβ(y) ∧ β < α}
rev(y);
{y = x->next ∧ listβ(y) ∧ β < α}
shuffle(y);
{y = x->next ∧ listβ(y) ∧ β < α}

}
} { listα(x)}

•.
..

..
..

.
(Axiom)

• •
·
·
·
·
• • .

. .
. . •

(Inference)

•
·
·
·

. . . P(⃗x) . . . ⊢ . . .Q(⃗y) . . .

Q(⃗y) ≤? P(⃗x)

1/20

Motivation: Program Termination

struct ll { int data; ll *next; }
list(x) ⇔ (n = 0 ∧ x = NULL) ∨ list(x->next)
void rev(ll *x) { listα(x)} { . . . } { listα(x)}
void shuffle(ll *x) { listα(x)} {

if (x != NULL) {
{ listβ(x->next) ∧ β < α}
ll *y = x -> next;
{y = x->next ∧ listβ(y) ∧ β < α}
rev(y);
{y = x->next ∧ listβ(y) ∧ β < α}
shuffle(y);
{y = x->next ∧ listβ(y) ∧ β < α}

}
} { listα(x)}

•.
..

..
..

.
(Axiom)

• •
·
·
·
·
• • .

. .
. . •

(Inference)

•
·
·
·

. . . P(⃗x) . . . ⊢ . . .Q(⃗y) . . .

Q(⃗y) <? P(⃗x)

1/20

Overview of Results

We show that:

• Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

• These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

• The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

• Under certain extra structural conditions, this containment
falls within existing decidability results

2/20

Overview of Results

We show that:

• Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

• These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

• The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

• Under certain extra structural conditions, this containment
falls within existing decidability results

2/20

Overview of Results

We show that:

• Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

• These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

• The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

• Under certain extra structural conditions, this containment
falls within existing decidability results

2/20

Overview of Results

We show that:

• Information about semantic inclusions between inductive
predicates can be extracted from cyclic proofs of
entailments

• These inclusions hold when the proof graph satisfies a
structural (realizability) condition that we define

• The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

• Under certain extra structural conditions, this containment
falls within existing decidability results

2/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

Left unfolding rule

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

Left unfolding rule

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

Right unfolding rule

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

Right unfolding rule

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

Right unfolding rule

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

A Cyclic Proof in LK Sequent Calculus with Equality

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy, O y ⊢ N x
(Case E)

E x ⊢ N x

A cyclic proof graph is globally sound
when every infinite path (going from
conclusion to premise) is eventually
followed by a trace of predicate
formulas (on the left-hand side of
sequents) which progresses (through a
case-split) infinitely often

3/20

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)
An inductive definition set contains productions P1 t⃗1, . . . , Pj t⃗j ⇒ P0 t⃗0

Definition (Characteristic Operators)
Inductive definition sets Φ induce characteristic operators φΦ on predicate
interpretations X (functions from predicate formulas to sets of models):

φΦ(X)(P t⃗θ) = {m | P1 t⃗1, . . . , Pj t⃗j ⇒ P t⃗ ∈ Φ, m ∈ X(Pi t⃗iθ) for all 1 ≤ i ≤ j}

The ordered set of predicate interpretations (X ,⊑) is a complete lattice

Characteristic operators φΦ are monotone wrt ⊑

We interpret predicates using the least fixed point, [[·]]Φ
def
= µX.φΦ(X)

4/20

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)
An inductive definition set contains productions P1 t⃗1, . . . , Pj t⃗j ⇒ P0 t⃗0

Definition (Characteristic Operators)
Inductive definition sets Φ induce characteristic operators φΦ on predicate
interpretations X (functions from predicate formulas to sets of models):

φΦ(X)(P t⃗θ) = {m | P1 t⃗1, . . . , Pj t⃗j ⇒ P t⃗ ∈ Φ, m ∈ X(Pi t⃗iθ) for all 1 ≤ i ≤ j}

The ordered set of predicate interpretations (X ,⊑) is a complete lattice

Characteristic operators φΦ are monotone wrt ⊑

We interpret predicates using the least fixed point, [[·]]Φ
def
= µX.φΦ(X)

4/20

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)
An inductive definition set contains productions P1 t⃗1, . . . , Pj t⃗j ⇒ P0 t⃗0

Definition (Characteristic Operators)
Inductive definition sets Φ induce characteristic operators φΦ on predicate
interpretations X (functions from predicate formulas to sets of models):

φΦ(X)(P t⃗θ) = {m | P1 t⃗1, . . . , Pj t⃗j ⇒ P t⃗ ∈ Φ, m ∈ X(Pi t⃗iθ) for all 1 ≤ i ≤ j}

The ordered set of predicate interpretations (X ,⊑) is a complete lattice

Characteristic operators φΦ are monotone wrt ⊑

We interpret predicates using the least fixed point, [[·]]Φ
def
= µX.φΦ(X)

4/20

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)
An inductive definition set contains productions P1 t⃗1, . . . , Pj t⃗j ⇒ P0 t⃗0

Definition (Characteristic Operators)
Inductive definition sets Φ induce characteristic operators φΦ on predicate
interpretations X (functions from predicate formulas to sets of models):

φΦ(X)(P t⃗θ) = {m | P1 t⃗1, . . . , Pj t⃗j ⇒ P t⃗ ∈ Φ, m ∈ X(Pi t⃗iθ) for all 1 ≤ i ≤ j}

The ordered set of predicate interpretations (X ,⊑) is a complete lattice

Characteristic operators φΦ are monotone wrt ⊑

We interpret predicates using the least fixed point, [[·]]Φ
def
= µX.φΦ(X)

X⊥ ⊑ φΦ(X⊥) ⊑ φΦ(φΦ(X⊥)) ⊑ . . . ⊑ φα
Φ(X⊥) ⊑ . . . ⊑ µX.φΦ(X)

4/20

Inductive Predicate Definitions and their Semantics

Definition (Inductive Definition Set)
An inductive definition set contains productions P1 t⃗1, . . . , Pj t⃗j ⇒ P0 t⃗0

Definition (Characteristic Operators)
Inductive definition sets Φ induce characteristic operators φΦ on predicate
interpretations X (functions from predicate formulas to sets of models):

φΦ(X)(P t⃗θ) = {m | P1 t⃗1, . . . , Pj t⃗j ⇒ P t⃗ ∈ Φ, m ∈ X(Pi t⃗iθ) for all 1 ≤ i ≤ j}

The ordered set of predicate interpretations (X ,⊑) is a complete lattice

Characteristic operators φΦ are monotone wrt ⊑

We interpret predicates using the least fixed point, [[·]]Φ
def
= µX.φΦ(X)

[[·]]Φ0 ⊑ [[·]]Φ1 ⊑ [[·]]Φ2 ⊑ . . . ⊑ [[·]]Φα ⊑ . . . [[·]]Φ

4/20

Cyclic Proof Formalises Infinite Descent

• Suppose, for contradiction, that the conclusion of the
proof is not valid

• That is, there is a counter-model of the sequent

• By local soundness of the inference rules, we obtain an
infinite sequence of counter-models for some infinite
path in the proof

• Each model can be mapped to an ever smaller
approximation [[P t⃗]]Φα in which it appears

• These strictly decrease over a case-split

• By global soundness of the proof, this gives an infinitely
descending chain in (X ,⊑)

• But (X ,⊑) is a well-ordered set⇒ contradiction!

5/20

Cyclic Proof Formalises Infinite Descent

• Suppose, for contradiction, that the conclusion of the
proof is not valid

• That is, there is a counter-model of the sequent

• By local soundness of the inference rules, we obtain an
infinite sequence of counter-models for some infinite
path in the proof

• Each model can be mapped to an ever smaller
approximation [[P t⃗]]Φα in which it appears

• These strictly decrease over a case-split

• By global soundness of the proof, this gives an infinitely
descending chain in (X ,⊑)

• But (X ,⊑) is a well-ordered set⇒ contradiction!

5/20

Cyclic Proof Formalises Infinite Descent

• Suppose, for contradiction, that the conclusion of the
proof is not valid

• That is, there is a counter-model of the sequent

• By local soundness of the inference rules, we obtain an
infinite sequence of counter-models for some infinite
path in the proof

• Each model can be mapped to an ever smaller
approximation [[P t⃗]]Φα in which it appears

• These strictly decrease over a case-split

• By global soundness of the proof, this gives an infinitely
descending chain in (X ,⊑)

• But (X ,⊑) is a well-ordered set⇒ contradiction!

5/20

Extracting Semantic Orderings from Cyclic Proofs

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ Nsz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

6/20

Extracting Semantic Orderings from Cyclic Proofs

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ Nsz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

The inductive definitions/semantics give
immediately, e.g.

∀m, α : m ∈ [[Osx]]α ⇒ m ∈ [[E x]]α

and even

∀m, α : m ∈ [[Osx]]α ⇒ ∃β < α.m ∈ [[E x]]β

6/20

Extracting Semantic Orderings from Cyclic Proofs

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ Nsz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

The inductive definitions/semantics give
immediately, e.g.

∀m, α : m ∈ [[Osx]]α ⇒ m ∈ [[E x]]α

and even

∀m, α : m ∈ [[Osx]]α ⇒ ∃β < α.m ∈ [[E x]]β

6/20

Extracting Semantic Orderings from Cyclic Proofs

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ Nsz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

The global soundness already gives

∀m : m ∈ [[E x]] ⇒ m ∈ [[N x]]

but we would also like to know whether

∀α∀m : m ∈ [[E x]]α ⇒ m ∈ [[N x]]α

i.e. N x ≤ E x

6/20

Extracting Semantic Orderings from Cyclic Proofs

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ Nsz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

The global soundness already gives

∀m : m ∈ [[E x]] ⇒ m ∈ [[N x]]

but we would also like to know whether

∀α∀m : m ∈ [[E x]]α ⇒ m ∈ [[N x]]α

i.e. N x ≤ E x

6/20

Extracting Semantic Orderings from Cyclic Proofs

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ Nsz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

The global soundness already gives

∀m : m ∈ [[E x]] ⇒ m ∈ [[N x]]

but we would also like to know whether

∀α∀m : m ∈ [[E x]]α ⇒ m ∈ [[N x]]α

i.e. N x ≤ E x

6/20

Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

• We have to consider traces along the right-hand side of
sequents, which are

• maximally finite

• matched by some left-hand trace along the same path

• We then count the number of times each trace progresses

• the left-hand one must progress at least as often as the
right-hand one

7/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

8/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

(Ax)
N ss0 ⊢ Nss0

(NR2)
N ss0 ⊢ Nsss0

(=L)
y = sss0,N ss0 ⊢ N y

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

N ss0⇒ Osss0

8/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

(Ax)
N ss0 ⊢ Nss0

(NR2)
N ss0 ⊢ Nsss0

(=L)
y = sss0,N ss0 ⊢ N y

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

N ss0⇒ Osss0

8/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

(Ax)
N ss0 ⊢ Nss0

(NR2)
N ss0 ⊢ Nsss0

(=L)
y = sss0,N ss0 ⊢ N y

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

N ss0⇒ Osss0

8/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

(Ax)
N ss0 ⊢ Nss0

(NR2)
N ss0 ⊢ Nsss0

(=L)
y = sss0,N ss0 ⊢ N y

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

N ss0⇒ Osss0

This trace is

• fully maximal: the final predicate is
introduced by its rule

• grounded: the final predicate is derived
from a zero premise production
(n.b. ∀m : m ∈ [[N0]]1)

8/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

(Ax)
N ss0 ⊢ Nss0

(NR2)
N ss0 ⊢ Nsss0

(=L)
y = sss0,N ss0 ⊢ N y

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

N ss0⇒ Osss0

This trace is partially maximal: the final
predicate is the active formula of an axiom

8/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

(Ax)
N ss0 ⊢ Nss0

(NR2)
N ss0 ⊢ Nsss0

(=L)
y = sss0,N ss0 ⊢ N y

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

N ss0⇒ Osss0

8/20

Extracting Semantic Orderings: Example I

(N R1)
⊢ N0

(=L)
x = 0 ⊢ N x

(Ax)
N ss0 ⊢ Nss0

(NR2)
N ss0 ⊢ Nsss0

(=L)
y = sss0,N ss0 ⊢ N y

E x ⊢ N x
(Subst)

E z ⊢ N z
(N R2)

E z ⊢ N sz
(=L)

y = sz, E z ⊢ N y
(Case O)

O y ⊢ N y
(N R2)

O y ⊢ N sy
(=L)

x = sy,O y ⊢ N x
(Case E)

E x ⊢ N x

⇒ N0
N x⇒ N sx

⇒ E 0
O x⇒ E sx
E x⇒ Osx

N ss0⇒ Osss0

8/20

Extracting Semantic Orderings: Example II

(E R1)
⊢ E 0,O0

(=L)
x = 0 ⊢ E x, O x

N x ⊢ E x,O x
(Subst)

N y ⊢ E y,O y
(PR)

N y ⊢ O y, E y
(O R)

N y ⊢ O y,Osy
(E R2)

N y ⊢ E sy,Osy
(=L)

x = sy,N y ⊢ E x,O x
(Case N)

N x ⊢ E x, O x

9/20

Extracting Semantic Orderings: Example II

(E R1)
⊢ E 0,O0

(=L)
x = 0 ⊢ E x, O x

N x ⊢ E x,O x
(Subst)

N y ⊢ E y,O y
(PR)

N y ⊢ O y, E y
(O R)

N y ⊢ O y,Osy
(E R2)

N y ⊢ E sy,Osy
(=L)

x = sy,N y ⊢ E x,O x
(Case N)

N x ⊢ E x, O x

9/20

Extracting Semantic Orderings: Example II

(E R1)
⊢ E 0,O0

(=L)
x = 0 ⊢ E x, O x

N x ⊢ E x,O x
(Subst)

N y ⊢ E y,O y
(PR)

N y ⊢ O y, E y
(O R)

N y ⊢ O y,Osy
(E R2)

N y ⊢ E sy,Osy
(=L)

x = sy,N y ⊢ E x,O x
(Case N)

N x ⊢ E x, O x

9/20

Extracting Semantic Orderings: Example II

(E R1)
⊢ E 0,O0

(=L)
x = 0 ⊢ E x, O x

N x ⊢ E x,O x
(Subst)

N y ⊢ E y,O y
(PR)

N y ⊢ O y, E y
(O R)

N y ⊢ O y,Osy
(E R2)

N y ⊢ E sy,Osy
(=L)

x = sy,N y ⊢ E x,O x
(Case N)

N x ⊢ E x, O x

Not ground!

9/20

Extracting Semantic Orderings: Example II

(E R1)
⊢ E 0,¬ E 0

(E R1)
⊢ E 0

(¬L)
¬ E 0 ⊢

(WR)
¬ E 0 ⊢ O0

(Cut)
⊢ E 0, O0

(=L)
x = 0 ⊢ E x, O x

N x ⊢ E x,O x
(Subst)

N y ⊢ E y,O y
(PR)

N y ⊢ O y, E y
(O R)

N y ⊢ O y,Osy
(E R2)

N y ⊢ E sy,Osy
(=L)

x = sy,N y ⊢ E x,O x
(Case N)

N x ⊢ E x, O x

9/20

Extracting Semantic Orderings: Example II

(E R1)
⊢ E 0,¬ E 0

(E R1)
⊢ E 0

(¬L)
¬ E 0 ⊢

(WR)
¬ E 0 ⊢ O0

(Cut)
⊢ E 0, O0

(=L)
x = 0 ⊢ E x, O x

N x ⊢ E x,O x
(Subst)

N y ⊢ E y,O y
(PR)

N y ⊢ O y, E y
(O R)

N y ⊢ O y,Osy
(E R2)

N y ⊢ E sy,Osy
(=L)

x = sy,N y ⊢ E x,O x
(Case N)

N x ⊢ E x, O x

A negative trace

9/20

Extracting Semantic Orderings: Example II

(E R1)
⊢ E 0,¬ E 0

(E R1)
⊢ E 0

(¬L)
¬ E 0 ⊢

(WR)
¬ E 0 ⊢ O0

(Cut)
⊢ E 0, O0

(=L)
x = 0 ⊢ E x, O x

N x ⊢ E x,O x
(Subst)

N y ⊢ E y,O y
(PR)

N y ⊢ O y, E y
(O R)

N y ⊢ O y,Osy
(E R2)

N y ⊢ E sy,Osy
(=L)

x = sy,N y ⊢ E x,O x
(Case N)

N x ⊢ E x, O x

A positive trace

9/20

Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)
For every positive maximal right-hand trace, there must exist
a left-hand trace following some prefix of the same path such
that:

• either the right-hand trace is grounded, or it is partially
maximal with the left-hand trace matching in the length
and final predicate

• right unfoldings ≤ left unfoldings

10/20

Soundness of the Realizability Condition

Theorem
Suppose P is a cyclic proof of P x⃗ ⊢ Q y⃗ satisfying the realizability
condition, then [[P x⃗]]α ⊆ [[Q y⃗]]α, for all α (i.e. Q y⃗ ≤ P x⃗)

Proof.

Pick a model m ∈ [[P x⃗]]α (i.e. ∃β ≤ α : m ∈ [[P x⃗]]β)

• m corresponds to a positive maximal right-hand trace in P
• Since P is a proof P x⃗ ⊢ Q y⃗ is valid, in particular m ∈ [[Q y⃗]]
• The number of unfoldings in this right-hand trace is an upper bound
on the least approximation [[Q y⃗]]γ containing m

• The number of unfoldings in any left-hand trace following the same
path is a lower bound on the least approximation [[P x⃗]]δ containing m

• From the realizability condition, we have that δ ≥ γ

11/20

Soundness of the Realizability Condition

Theorem
Suppose P is a cyclic proof of P x⃗ ⊢ Q y⃗ satisfying the realizability
condition, then [[P x⃗]]α ⊆ [[Q y⃗]]α, for all α (i.e. Q y⃗ ≤ P x⃗)

Proof.
Pick a model m ∈ [[P x⃗]]α (i.e. ∃β ≤ α : m ∈ [[P x⃗]]β)

• m corresponds to a positive maximal right-hand trace in P
• Since P is a proof P x⃗ ⊢ Q y⃗ is valid, in particular m ∈ [[Q y⃗]]
• The number of unfoldings in this right-hand trace is an upper bound
on the least approximation [[Q y⃗]]γ containing m

• The number of unfoldings in any left-hand trace following the same
path is a lower bound on the least approximation [[P x⃗]]δ containing m

• From the realizability condition, we have that δ ≥ γ

11/20

Deciding the Realizability Condition

• We use weighted automata to decide whether the
realizability condition holds

• We construct weighted automata that count the
progression points in left and right-hand traces

• The realizability condition corresponds to an inclusion of
the right-hand trace automaton within the left-hand one

12/20

Weighted Automata

Definition (Weighted Automata)
Let Σ be an alphabet, and (V,⊕,⊗) a semiring of weights. A weighted
automaton A is a tuple (Q, qI, F, γ) consisting of a set Q of states
containing an initial state qI ∈ Q, a set F ⊆ Q of final states, and a
weighted transition function γ : (Q× Σ× Q) → V.

1. The value of a run of A is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language LA is the function Σ∗ ⇀ V computed by A

Definition (Weighted Inclusion)
L1 ≤ L2 if and only if for every word w such that L1(w) is defined, L2(w) is
also defined and L1(w) ≤ L2(w)

Sum automata are weighted automata over (N,+,max)

13/20

Weighted Automata

Definition (Weighted Automata)
Let Σ be an alphabet, and (V,⊕,⊗) a semiring of weights. A weighted
automaton A is a tuple (Q, qI, F, γ) consisting of a set Q of states
containing an initial state qI ∈ Q, a set F ⊆ Q of final states, and a
weighted transition function γ : (Q× Σ× Q) → V.

1. The value of a run of A is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language LA is the function Σ∗ ⇀ V computed by A

Definition (Weighted Inclusion)
L1 ≤ L2 if and only if for every word w such that L1(w) is defined, L2(w) is
also defined and L1(w) ≤ L2(w)

Sum automata are weighted automata over (N,+,max)

13/20

Weighted Automata

Definition (Weighted Automata)
Let Σ be an alphabet, and (V,⊕,⊗) a semiring of weights. A weighted
automaton A is a tuple (Q, qI, F, γ) consisting of a set Q of states
containing an initial state qI ∈ Q, a set F ⊆ Q of final states, and a
weighted transition function γ : (Q× Σ× Q) → V.

1. The value of a run of A is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language LA is the function Σ∗ ⇀ V computed by A

Definition (Weighted Inclusion)
L1 ≤ L2 if and only if for every word w such that L1(w) is defined, L2(w) is
also defined and L1(w) ≤ L2(w)

Sum automata are weighted automata over (N,+,max)

13/20

Weighted Automata

Definition (Weighted Automata)
Let Σ be an alphabet, and (V,⊕,⊗) a semiring of weights. A weighted
automaton A is a tuple (Q, qI, F, γ) consisting of a set Q of states
containing an initial state qI ∈ Q, a set F ⊆ Q of final states, and a
weighted transition function γ : (Q× Σ× Q) → V.

1. The value of a run of A is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language LA is the function Σ∗ ⇀ V computed by A

Definition (Weighted Inclusion)
L1 ≤ L2 if and only if for every word w such that L1(w) is defined, L2(w) is
also defined and L1(w) ≤ L2(w)

Sum automata are weighted automata over (N,+,max)

13/20

Weighted Automata: Existing Results

Definition (Weighted Inclusion)
L1 ≤ L2 if and only if for every word w such that L1(w) is defined, L2(w) is
also defined and L1(w) ≤ L2(w)

Theorem (Krob ’94, Almagor Et Al. ’11)
Given two quantitative languages (weighted automata) L1 and L2, it is
undecidable whether L1 ≤ L2

Definition
A weighted automaton is called finite-valued if there exists a bound on the
number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini & Raskin ’14)
Given two finite-valued weighted automata A and B, it is decidable
whether LA ≤ LB

14/20

Weighted Automata: Existing Results

Definition (Weighted Inclusion)
L1 ≤ L2 if and only if for every word w such that L1(w) is defined, L2(w) is
also defined and L1(w) ≤ L2(w)

Theorem (Krob ’94, Almagor Et Al. ’11)
Given two quantitative languages (weighted automata) L1 and L2, it is
undecidable whether L1 ≤ L2

Definition
A weighted automaton is called finite-valued if there exists a bound on the
number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini & Raskin ’14)
Given two finite-valued weighted automata A and B, it is decidable
whether LA ≤ LB

14/20

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P , we can construct two kinds of
finite-valued sum automata, AP [n] (n ∈ N) and CP , which count the
unfoldings in left- and right-hand traces, respectively:

• The words accepted are paths in the proof from the root sequent
• The value of a path is the maximum number of unfoldings in the traces
along the path

• CP only counts traces following the full path
• the AP [n] count traces following any prefix of the path

• Each AP [n] considers only a subset of the paths in the proof
• A complete automaton can be constructed but is not, in general,
finite-valued

• CP is grounded when all final states correspond to ground predicate
instances

15/20

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P , we can construct two kinds of
finite-valued sum automata, AP [n] (n ∈ N) and CP , which count the
unfoldings in left- and right-hand traces, respectively:

• The words accepted are paths in the proof from the root sequent

• The value of a path is the maximum number of unfoldings in the traces
along the path

• CP only counts traces following the full path
• the AP [n] count traces following any prefix of the path

• Each AP [n] considers only a subset of the paths in the proof
• A complete automaton can be constructed but is not, in general,
finite-valued

• CP is grounded when all final states correspond to ground predicate
instances

15/20

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P , we can construct two kinds of
finite-valued sum automata, AP [n] (n ∈ N) and CP , which count the
unfoldings in left- and right-hand traces, respectively:

• The words accepted are paths in the proof from the root sequent
• The value of a path is the maximum number of unfoldings in the traces
along the path

• CP only counts traces following the full path
• the AP [n] count traces following any prefix of the path

• Each AP [n] considers only a subset of the paths in the proof
• A complete automaton can be constructed but is not, in general,
finite-valued

• CP is grounded when all final states correspond to ground predicate
instances

15/20

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P , we can construct two kinds of
finite-valued sum automata, AP [n] (n ∈ N) and CP , which count the
unfoldings in left- and right-hand traces, respectively:

• The words accepted are paths in the proof from the root sequent
• The value of a path is the maximum number of unfoldings in the traces
along the path

• CP only counts traces following the full path
• the AP [n] count traces following any prefix of the path

• Each AP [n] considers only a subset of the paths in the proof

• A complete automaton can be constructed but is not, in general,
finite-valued

• CP is grounded when all final states correspond to ground predicate
instances

15/20

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P , we can construct two kinds of
finite-valued sum automata, AP [n] (n ∈ N) and CP , which count the
unfoldings in left- and right-hand traces, respectively:

• The words accepted are paths in the proof from the root sequent
• The value of a path is the maximum number of unfoldings in the traces
along the path

• CP only counts traces following the full path
• the AP [n] count traces following any prefix of the path

• Each AP [n] considers only a subset of the paths in the proof
• A complete automaton can be constructed but is not, in general,
finite-valued

• CP is grounded when all final states correspond to ground predicate
instances

15/20

Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P , we can construct two kinds of
finite-valued sum automata, AP [n] (n ∈ N) and CP , which count the
unfoldings in left- and right-hand traces, respectively:

• The words accepted are paths in the proof from the root sequent
• The value of a path is the maximum number of unfoldings in the traces
along the path

• CP only counts traces following the full path
• the AP [n] count traces following any prefix of the path

• Each AP [n] considers only a subset of the paths in the proof
• A complete automaton can be constructed but is not, in general,
finite-valued

• CP is grounded when all final states correspond to ground predicate
instances

15/20

Weighted Automata from Cyclic Entailment Proofs

The full left-hand automaton for the example proof of E x ⊢ N x

qAstart

(1, E x) (12, E z) (11, E z) (8, E z) (6,O y)

(5,O y)(3,O y)

(7,N ss0) (9,N ss0)

(10,N ss0)⊥

⊤

(1),[0]

(2), [0]
(3), [0]

(3),[1] (5),[0]

(6),[0]

(7),[1](8),[1](11),[0](12),[0](1),[0] (9),[0]

(10),[0]

(N ss0),[0]

(10),[0]

(9),[0](7), [0]
(8), [0](11),[0](12),[0](1),[0]

(6),[0]
(5),[0]

(1), [0]
...

(12), [0]

15/20

An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem
Let P be a cyclic entailment proof which is dynamic and balanced; then P
satisfies the realizability condition if and only if CP ≤ AP [N] and CP is
grounded (where N is a function of P)

The proof is:

• balanced when every (reachable) basic trace cycle has a non-zero
number of progression points

• dynamic when (reachable) basic binary trace cycles has equal numbers
of left and right-hand progression points

• a binary cycle is a pair of left and right-hand trace cycles following the
same path

The bound N is a function of other graph-theoretic quantities of P

16/20

An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem
Let P be a cyclic entailment proof which is dynamic and balanced; then P
satisfies the realizability condition if and only if CP ≤ AP [N] and CP is
grounded (where N is a function of P)

The proof is:

• balanced when every (reachable) basic trace cycle has a non-zero
number of progression points

• dynamic when (reachable) basic binary trace cycles has equal numbers
of left and right-hand progression points

• a binary cycle is a pair of left and right-hand trace cycles following the
same path

The bound N is a function of other graph-theoretic quantities of P

16/20

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce Q u⃗ ≤ P t⃗ from a proof of Γ,P t⃗ ⊢ Σ,Q u⃗

Then we can safely trace across an active cut formula

Γ,P t⃗ ⊢ Σ,Q u⃗ Q u⃗,Π ⊢ ∆
(Cut)

Γ,P t⃗,Π ⊢ Σ,∆

This is explicitly forbidden in existing cyclic proof systems,
precisely because there is no way to ensure in general that
there is an inclusion between [[P t⃗]]α and [[Q u⃗]]α

17/20

Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce Q u⃗ ≤ P t⃗ from a proof of Γ,P t⃗ ⊢ Σ,Q u⃗

Then we can safely trace across an active cut formula

Γ,P t⃗ ⊢ Σ,Q u⃗ Q u⃗,Π ⊢ ∆
(Cut)

Γ,P t⃗,Π ⊢ Σ,∆

This is explicitly forbidden in existing cyclic proof systems,
precisely because there is no way to ensure in general that
there is an inclusion between [[P t⃗]]α and [[Q u⃗]]α

17/20

Limitations: Problems with Cuts

(Ax)

x = y ⊢ x = y
(rlist R1)

x = y ⊢ rlist(x, y)

llist(x, y) ⊢ rlist(x, y)
(Subst)

llist(z, y) ⊢ rlist(z, y) .
.
.
.
.
.
.

(=R)

⊢ x = x
(rlist R1)

⊢ rlist(x, x)
(Ax)

f(x, y) ⊢ f(x, y)
(rlist R2)

f(x, y) ⊢ rlist(x, y)
(=L)

f(x, z), z = y ⊢ rlist(x, y)

(Ax)

f(v, y) ⊢ f(v, y)

f(x, z), rlist(z, y) ⊢ rlist(x, y)
(Subst)

f(x, z), rlist(z, v) ⊢ rlist(x, v)
(rlist R2)

f(x, z), rlist(z, v), f(v, y) ⊢ rlist(x, y)
(Case rlist)

f(x, z), rlist(z, y) ⊢ rlist(x, y)

(Cut)

f(x, z), llist(z, y) ⊢ rlist(x, y)
(Case llist)

llist(x, y) ⊢ rlist(x, y)

18/20

Limitations: Problems with Cuts

(Ax)

x = y ⊢ x = y
(rlist R1)

x = y ⊢ rlist(x, y)

llist(x, y) ⊢ rlist(x, y)
(Subst)

llist(z, y) ⊢ rlist(z, y) .
.
.
.
.
.
.

(=R)

⊢ x = x
(rlist R1)

⊢ rlist(x, x)
(Ax)

f(x, y) ⊢ f(x, y)
(rlist R2)

f(x, y) ⊢ rlist(x, y)
(=L)

f(x, z), z = y ⊢ rlist(x, y)

(Ax)

f(v, y) ⊢ f(v, y)

f(x, z), rlist(z, y) ⊢ rlist(x, y)
(Subst)

f(x, z), rlist(z, v) ⊢ rlist(x, v)
(rlist R2)

f(x, z), rlist(z, v), f(v, y) ⊢ rlist(x, y)
(Case rlist)

f(x, z), rlist(z, y) ⊢ rlist(x, y)

(Cut)

f(x, z), llist(z, y) ⊢ rlist(x, y)
(Case llist)

llist(x, y) ⊢ rlist(x, y)

18/20

Limitations: Problems with Cuts

(Ax)

x = y ⊢ x = y
(rlist R1)

x = y ⊢ rlist(x, y)

llist(x, y) ⊢ rlist(x, y)
(Subst)

llist(z, y) ⊢ rlist(z, y) .
.
.
.
.
.
.

(=R)

⊢ x = x
(rlist R1)

⊢ rlist(x, x)
(Ax)

f(x, y) ⊢ f(x, y)
(rlist R2)

f(x, y) ⊢ rlist(x, y)
(=L)

f(x, z), z = y ⊢ rlist(x, y)

(Ax)

f(v, y) ⊢ f(v, y)

f(x, z), rlist(z, y) ⊢ rlist(x, y)
(Subst)

f(x, z), rlist(z, v) ⊢ rlist(x, v)
(rlist R2)

f(x, z), rlist(z, v), f(v, y) ⊢ rlist(x, y)
(Case rlist)

f(x, z), rlist(z, y) ⊢ rlist(x, y)

(Cut)

f(x, z), llist(z, y) ⊢ rlist(x, y)
(Case llist)

llist(x, y) ⊢ rlist(x, y)

18/20

Conclusions

• We have shown that information about inclusions between the
semantics of inductive predicates can be extracted from cyclic proofs
of entailments

• This information can be used to construct ranking functions for
programs

• Our results are formulated abstractly, and so hold for any cyclic proof
system whose rules satisfy certain properties (e.g. separation logic)

• We use the term realizability because we extract semantic information
from the proofs

19/20

Future Work

• Implement the decision procedure within the cyclic proof-based
verification framework Cyclist

• Evaluate to what extent entailments found ‘in the wild’ satisfy the
realizability condition

• Extend the results to better handle cuts in proofs

• Investigate further theoretical questions:

• are there weaker structural properties of proofs that still admit
completeness with the approximate automata

• If the semantic inclusion [[P x⃗]]α ⊆ [[Q y⃗]]α holds, is there a cyclic proof of
P x⃗ ⊢ Q y⃗ satisfying the realizability condition?

20/20

