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Motivation: Program Termination

struct 11 { int data; 11 =*next; }

void rev(ll *x) { /* reverseslist x/ }

void shuffle(1ll #*x) {
if ( x !'= NULL ) {

11 *y = x -> next;
rev(y);

shuffle(y);
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entailments
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- The realizability condition is equivalent to a containment
between two weighted automata that can be constructed
from the proof graph

- Under certain extra structural conditions, this containment
falls within existing decidability results
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A Cyclic Proof in LK Sequent Calculus with Equality
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Inductive Predicate Definitions and their Semantics
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- By local soundness of the inference rules, we obtain an
infinite sequence of counter-models for some infinite
path in the proof

- Each model can be mapped to an ever smaller
approximation [Pt]® in which it appears
- These strictly decrease over a case-split

- By global soundness of the proof, this gives an infinitely
descending chain in (X,C)

- But (X,C) is a well-ordered set = contradiction!
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Extracting Semantic Orderings from Cyclic Proofs
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EzFN
Vavm :m € [Ex]a = m € [NX]a ‘ > (=1)
=sz,EzEN
ie. Nx < Ex / / (Case 0)
\

/ OyENy
= NO A\(N Ry) —— (NRy)
=N OyF Nsy
NXx = Nsx
(=L) (=L)
=EO X:OI—N\ x=5sy,0yk Nx

Ox = Esx

N\ (Case E)
Ex = Osx ExFNx

T
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Extracting Semantic Orderings: Basic Ideas

To extract these semantic relationships from cyclic proofs:

- We have to consider traces along the right-hand side of
sequents, which are

- maximally finite

- matched by some left-hand trace along the same path

- We then count the number of times each trace progresses

- the left-hand one must progress at least as often as the
right-hand one
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Extracting Semantic Orderings: Example |

= NO
ExE Nx
Nx = Nsx — (Subst)
=EO0 EzENz
Ox = Esx (NR.)
EzF Nsz
Ex = 0Osx - (=L
y=sz,Ez- Ny
- (Case0)
Oyk Ny
(NRy) — (NRy)
FNO OyF Nsy
(=0 (=L)
X=0F Nx X=5sy,0yF Nx
(Case E)
ExF Nx
N b,
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Extracting Semantic Orderings: Example |

= NO [ This trace is A )
Nx = Nsx - fully maximal: the final predicate is (Subst)
) introduced by its rule =Nz
Ox = Esx - grounded: the final predicate is derived E Nz (NR.)
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t J

8/20



Extracting Semantic Orderings: Example |

= NO
ExkF Nx
NXx = Nsx - (Ax) — (Subst)
—EO NssO - NssO EzENz
(NRy) —— (NRy)
Ox = Esx N'ssO - N sssO Ezk Nsz
Ex= 0sx (=L) (=L)
N ss0 = O s550 y =5SSO,NssO+ Ny y=sz,EzF Ny
(Case 0)
OyF Ny
(NRy) —— (NRy)
FNO OyF Nsy
— (=1 — (=)
Xx=0F Nx x=5sy,0yF Nx
(Case E)
ExFE Nx
T b,

8/20



Extracting Semantic Orderings: Example |

= NO )
ExF Nx
NXx = Nsx (MY —  (Subst)
=EO0 NssO = NssO EzF Nz
(NR;) ——(NRy)
Ox= Esx NssO F NsssO Ez- Nsz
Ex= 0Osx (=L) (=)
N 'ssO = 0 sss0 y =5ss0,NssO = Ny y=sz,Ez- Ny
(Case 0)
Oyt Ny
i) ———(NR)
FNO OyF Nsy
—— b —— (=)
XxX=0F Nx Xx=sy,0yF Nx
(Case E)
ExE Nx
t J

8/20



Extracting Semantic Orderings: Example Il

( )
NxF Ex, Ox

(Subst)
NyFEy,Oy
—  (PR)
NyFOy, Ey
(OR)
NyFOQOy,0Osy
(ER1) —  (ERy)
FEO,00 Ny F Esy, Osy
— (=D (=L)
XxX=0F Ex, Ox x=sy,NyFEx,Ox

(Case N)
NxF Ex, Ox

I8 y
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Extracting Semantic Orderings: Example Il

( N\
NxFEx,Ox
— (ERy) — (Subst)
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Extracting Semantic Orderings: Example Il

( N\
NxFEx,Ox
[ A negative trace ] —(ERy) —— (Subst)
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(L) ——(PR)
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Extracting Semantic Orderings: Example Il

( N\
NxFEx,Ox
[ A positive trace ] —(ERy) —— (Subst)
FEO NyFEy,Oy
” (L) ——(PR)
-EOF NyFOy,Ey
(ER) ——WR) ——(OR)
F EO,—-EO -EOF OO NyF Oy, Osy
(Cu) ———(ERy)
FEO,O0 Ny Esy,Osy
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(Case N)
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Extracting Semantic Orderings: A Realizability Condition

Definition (Realizability Condition)
For every positive maximal right-hand trace, there must exist
a left-hand trace following some prefix of the same path such

that:

- either the right-hand trace is grounded, or it is partially
maximal with the left-hand trace matching in the length

and final predicate

- right unfoldings < left unfoldings
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Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX = Q¥ satisfying the realizability
condition, then [PX]a € [QV]a, for all o (i.e. QY < PX)

Proof.
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Soundness of the Realizability Condition

Theorem

Suppose P is a cyclic proof of PX = Q¥ satisfying the realizability
condition, then [PX]a € [QV]a, for all o (i.e. QY < PX)

Proof.
Pick a model m € [PX] (i.e. 38 < a:m € [PX]s)

- m corresponds to a positive maximal right-hand trace in P

- Since P is a proof PX+ QVy is valid, in particular m € [Q¥]

- The number of unfoldings in this right-hand trace is an bound
on the least approximation [Q¥]- containing m

- The number of unfoldings in any left-hand trace following the same
path is a bound on the least approximation [PX]s containing m

- From the realizability condition, we have that 6 > ~
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Deciding the Realizability Condition

- We use weighted automata to decide whether the
realizability condition holds

- We construct weighted automata that count the
progression points in left and right-hand traces

- The realizability condition corresponds to an inclusion of
the right-hand trace automaton within the left-hand one
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Weighted Automata

Definition (Weighted Automata)

Let X be an alphabet, and (V, &, ®) a semiring of weights. A weighted
automaton < is a tuple (Q, gi, F,~) consisting of a set Q of states
containing an initial state g, € Q, a set F C Q of final states, and a
weighted transition function v : (Q x £ x Q) — V.
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1. The value of a run of & is the semiring product of all its transitions
2. The value of a word is the semiring sum of all runs accepting that word
3. The quantitative language L. is the function ¥* — V computed by &/

Definition (Weighted Inclusion)
L1 < L, if and only if for every word w such that £:(w) is defined, £;(w) is
also defined and £y(w) < £Lo(w)

automata are weighted automata over (N, +, max)
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Weighted Automata: Existing Results

Definition (Weighted Inclusion)

L1 < L, if and only if for every word w such that £,(w) is defined, £;(w) is
also defined and £y(w) < Ly(w)

Theorem (Krob '94, Almagor Et AL "11)

Given two quantitative languages (weighted automata) £, and L, it is
undecidable whether £, < L,
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Weighted Automata: Existing Results

Definition (Weighted Inclusion)

L1 < L, if and only if for every word w such that £,(w) is defined, £;(w) is
also defined and £y(w) < Ly(w)

Theorem (Krob '94, Almagor Et AL "11)
Given two quantitative languages (weighted automata) £, and L, it is
undecidable whether £, < L,

Definition

A weighted automaton is called if there exists a bound on the
number of distinct values of accepting runs on any given word

Theorem (Filiot, Gentilini & Raskin "14)

Given two finite-valued weighted automata .« and 4, it is decidable
whether Loy < Lo
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Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two kinds of
finite-valued sum automata, <7 [n] (n € N) and %», which count the
unfoldings in left- and right-hand traces, respectively:
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Weighted Automata from Cyclic Entailment Proofs

Given a cyclic entailment proof P, we can construct two kinds of
finite-valued sum automata, <7 [n] (n € N) and %», which count the
unfoldings in left- and right-hand traces, respectively:

- The words accepted are paths in the proof from the root sequent

- The value of a path is the maximum number of unfoldings in the traces
along the path

- &p only counts traces following the full path
- the #/p[n] count traces following any prefix of the path

- Each @#p[n] considers only a subset of the paths in the proof

- A complete automaton can be constructed but is not, in general,
finite-valued

- ¢p is grounded when all final states correspond to ground predicate
instances
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Weighted Automata from Cyclic Entailment Proofs

The full left-hand automaton for the example proof of Ex = N x

a @M ‘;/y: \ )] /7 \ / \\ (N'ss0),[0] / \
start —| 3 u (3,0y) /,‘?—"{ (5,0y) u u 1 \«—u(wo Nsso)
\_/ \\,,,/ NI \\,:,/
o] B Jowo o]
/ / \ (12),[ / \\ (1),[0] / \ (801 / \\ nl / \\ / \ (10),[0] / \\
[ (.Ex) u<—u EZ) \<—u (1,E2) ‘u<—<\\ (8.E2) \M—{\\ 0y) »—»u (7,N'ss0) »—»u (9, N'ss0) »—»u

w \C _ o

().101

(12),[0]
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An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let P be a cyclic entailment proof which is and ; then P
satisfies the realizability condition if and only if €» < @/p[N] and €p is
grounded (where N is a function of P)
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An Equivalence between Realizability and Weighted Inclusion

The construction of the weighted automata admits the following result:

Theorem

Let P be a cyclic entailment proof which is dynamic and balanced; then P
satisfies the realizability condition if and only if €» < @/p[N] and €p is
grounded (where N is a function of P)

The proofis:
- balanced when every (reachable) basic trace cycle has a non-zero
number of progression points

- dynamic when (reachable) basic binary trace cycles has equal numbers

of left and right-hand progression points
* a binary cycle is a pair of left and right-hand trace cycles following the
same path

The bound N is a function of other graph-theoretic quantities of P
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Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce Qi < Pt from a proof of I,Pt+ X,Q0

Then we can safely trace across an active cut formula

MLPtHX, QU QU,NFA
(Cut)

MLPLOFE A
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Corollary: Bootstrapping Cyclic Entailment Systems

Suppose we deduce Qi < Pt from a proof of I,Pt+ X,Q0

Then we can safely trace across an active cut formula

MLPtHX, QU QU,NFA

= (Cut)
LPLAFL, A

This is explicitly forbidden in existing cyclic proof systems,
precisely because there is no way to ensure in general that
there is an inclusion between [Pt], and [Q 0]
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Limitations: Problems with Cuts

(=R)
Fx=x
(rlist Ry) (AX) —
F rlist(x, x fx,y) F fix,y : :
(%) ) ) tar) 5 f(x, 2), rlist(z, y) F—rhst(x,y)(subso
f(x,y) F rlist(x,y) fv,y) F f(v,y) f(x, 2), rlist(z, v) + rlist(x, v)
(=L) (rlist Ry)
f(x,2),z =yt rlist(x, y) f(x, 2), rlist(z, v), f(v, y) b rlist(x, y)
(Case rlist)
f(x, 2), rlist(z, y) F rlist(x, y)
r \ )
5 list(x,y) F rUst(x,y)(SubSo :
x=ykbx=y llist(z,y) F rlist(z,y)
(rlistR;) (Cut)
x =y Frlist(x, y) f(x, 2), Wist(z, y) F rlist(x, y)
- . (Case llist)
list(x, y) F rlist(x, y)
L >
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Conclusions

- We have shown that information about inclusions between the
semantics of inductive predicates can be extracted from cyclic proofs
of entailments

- This information can be used to construct ranking functions for
programs

- Our results are formulated abstractly, and so hold for any cyclic proof
system whose rules satisfy certain properties (e.g. separation logic)

- We use the term realizability because we extract semantic information
from the proofs
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Future Work

- Implement the decision procedure within the cyclic proof-based
verification framework CycLIST

- Evaluate to what extent entailments found ‘in the wild’ satisfy the
realizability condition

- Extend the results to better handle cuts in proofs

- Investigate further theoretical questions:

- are there weaker structural properties of proofs that still admit
completeness with the approximate automata

- If the semantic inclusion [PX]o C [Q¥]« holds, is there a cyclic proof of
PX I QY satisfying the realizability condition?

20/20



