A Non-wellfounded, Labelled Proof System for
Propositional Dynamic Logic

Simon Docherty, University College London
Reuben N. S. Rowe, Royal Holloway University of London

TABLEAUX 2019
2"d-5t September 2019, Middlesex University, London, UK

What is Dynamic Logic?

Dynamic Logic was introduced by Pratt (1976)

- Reasoning about program executions (i.e. their dynamics)

- A modal logic (programs are modal operators)

X>3 = [xi=x+1(x>4)

1/17

What is Dynamic Logic?

Dynamic Logic was introduced by Pratt (1976)

- Reasoning about program executions (i.e. their dynamics)

- A modal logic (programs are modal operators)

X>3 = [xi=x+1(x>4)

Intuitively, for a program p and assertion ¢:

[Pl means ¢ holds after all (terminating) executions of p

(p)e means there is some execution of p after which ¢ holds

1/17

The Language of Programs

Programs are constructed from:

- A set of basic programs (e.g. x :=x+1)
- Sequential composition p; g
- Non-deterministic choice p LU g

- Iteration p*

217

The Language of Programs

Programs are constructed from:

- A set of basic programs (e.g. x :=x+1)
- Sequential composition p; g

- Non-deterministic choice p LU g

- Iteration p*

- For any formula ¢, the test ¢? is a program

2/17

The Language of Programs

Programs are constructed from:

- A set of basic programs (e.g. x :=x+1)
- Sequential composition p; g

- Non-deterministic choice p LU g

- Iteration p*

- For any formula ¢, the test ¢? is a program

So, programs form a Kleene Algebra (with tests)

2/17

The Language of Programs

Programs are constructed from:

- A set of basic programs (e.g. x :=x+1)
- Sequential composition p; g

- Non-deterministic choice p LU g

- Iteration p*

- For any formula ¢, the test ¢? is a program

So, programs form a Kleene Algebra (with tests)

- Various extensions: converse p, intersection p N g, etc.

2/17

Relational (Kripke) Semantics of Dynamic Logic

Basic programs are accessibility relations on (memory) states s € S

X:=x+1]={(x—0,x—1),(x— 1,Xx—2),...}

3/17

Relational (Kripke) Semantics of Dynamic Logic

Basic programs are accessibility relations on (memory) states s € S
X:=x+1]={(x—0,x—1),(x— 1,Xx—2),...}
Formulas are interpreted as sets of states

[(Pel={s | (ss) elplAS € [¢]}
[Iple] = -l {P)~l =S\ {s | (s,s') e [Pl AS" € S\ [«]}

3/17

Relational (Kripke) Semantics of Dynamic Logic

Basic programs are accessibility relations on (memory) states s € S
X:=x+1]={(x—0,x—1),(x— 1,Xx—2),...}
Formulas are interpreted as sets of states

[(Pel={s | (ss) elplAS € [¢]}
[Iple] = -l {P)~l =S\ {s | (s,s') e [Pl AS" € S\ [«]}

Relational interpetation of the program algebra is standard

[pial=0plolal [pudl=Iplulal [p*1={J ol

n>0

3/17

Relational (Kripke) Semantics of Dynamic Logic

Basic programs are accessibility relations on (memory) states s € S
X:=x+1]={(x—0,x—1),(x— 1,Xx—2),...}
Formulas are interpreted as sets of states
[l ={s | (s.5) e [Pl A S € [¢]}
[Iple] = =[(p)~el=S\{s | (s,5") e [Pl AS" € S\ [¢l}

Relational interpetation of the program algebra is standard

[pial=0plolal [pudl=Iplulal [p*1={J ol

n>0
But tests introduce a mutual recursion: [¢?] = {(s,s) | s € [¢]}

3/17

The Influence of Dynamic Logic

Lots of variants and extensions:

- Games (Parikh, '83)

- Natural language (Groenendijk & Stokhof, '91)

- Knowledge representation (De Giacomo & Lenzarini, '94)
- XML (Afanasiev Et Al, 2005)

- Cyber-physical systems (Platzer, 2008)

- Epistemic reasoning for agents (Patrick Girard Et Al, 2012)
- etc.

4/17

What is Propositional Dynamic Logic?

Fischer & Ladner (1979) first studied the propositional fragment

- Only abstract propositional programs

- No quantification

5/17

What is Propositional Dynamic Logic?

Fischer & Ladner (1979) first studied the propositional fragment

- Only abstract propositional programs

- No quantification
PDL is the logic of (regular) programs

[2*]((¢ = [a]=¢) A (= = [elp)) < [(aa)le Vv [(a;)]

5/17

What is Propositional Dynamic Logic?

Fischer & Ladner (1979) first studied the propositional fragment

- Only abstract propositional programs

- No quantification
PDL is the logic of (regular) programs

[2*]((¢ = [a]=¢) A (= = [elp)) < [(aa)le Vv [(a;)]

if ¢ then a else Bdg(go?;a)u(ﬂ(p?;ﬂ)

while ¢ do a % (p?7;a)"; —p?

5/17

PDL: Main Properties and Results

- Small model property
- Satisfiability EXPTIME-complete
- Finitely axiomatisable

(K) Flal(e =) — ([ale — [al¥) (Test) F e < (v = ¢)
(Distributivity) F [a](¢ A) <> ([ee A [a]) (Fixed Point) F o Alo]la*]e + [a*]e
(Choice) F [aU Ble < [a]e A [Ble (Induction) FoAla®](e = [ale) = [a*]e
(Composition) F [a; Ble + [o][Ble (Necessitation) from F ¢ infer - [a]p

Dual axioms for () (if taken as a primitive)

6/17

PDL: Main Properties and Results

- Small model property
- Satisfiability EXPTIME-complete

- Finitely axiomatisable

(K) Flal(e =) — ([ale — [al¥) (Test) F e < (v = ¢)
(Distributivity) F [a](¢ A) <> ([ee A [a]) (Fixed Point) F o Alo]la*]e + [a*]e
(Choice) F [aU Ble < [a]e A [Ble (Induction) FoAla®](e = [ale) = [a*]e
(Composition) F [a; Ble + [o][Ble (Necessitation) from F ¢ infer - [a]p

Dual axioms for () (if taken as a primitive)

- But not compact {—p, [a]-p, [a; a]-p, [a; a;a]-e, ...} FE (@)

6/17

Proof Systems for PDL

Tableaux-based systems:

- De Giacomo & Massacci, 2000
- Goré & Widmann, 2009

Sequent-based with w-rules/infinite contexts:

- Renardel de Lavalette Et Al, 2008
- Hill & Poggiolesi, 2010
- Fritella Et Al, 2014

7117

Our Goal: A Satisfactory Proof Theory

A robust, structural proof theory for PDL and PDL-type logics

- Analytic and finitary (i.e. automatable!)

- Uniform, modular and extensible

8/17

Our Goal: A Satisfactory Proof Theory

A robust, structural proof theory for PDL and PDL-type logics

- Analytic and finitary (i.e. automatable!)

- Uniform, modular and extensible

We combine two methodologies

- Labelled sequent calculus

- Non-wellfounded proof theory

8/17

Why Labelled Sequent Calculus?

Modularly capture a range of modal logics (Negri, 2005) using:

- Labelled formulas x : ¢ and relational statements x R y
- Proof rules expressing the meaning of modalities

Vi, x:Op, xRy, T = A XRy,IT=Ay:¢p

(y fresh)

x:Op, xRy, = A M= Ax:Op
- Proof rules characterising different (geometric) frame properties, e.g.
YRX, xRy, = A XRz,xXRy,yRz, [= A

(symm): (trans):
XRy, = A XRy,yRz,T = A

- Even possible to capture some non-modally definable frame properties
9/17

Why Non-wellfounded Proofs?

They allow us to tame (inductive) infinitary behaviour

- Allow derivations to be infinitely tall (vs. wide) — not generally sound!
- Distinguish ‘good’ derivations with a global trace condition
- Restrict to (finitely representable) cyclic proofs

10/17

Why Non-wellfounded Proofs?

They allow us to tame (inductive) infinitary behaviour

- Allow derivations to be infinitely tall (vs. wide) — not generally sound!
- Distinguish ‘good’ derivations with a global trace condition
- Restrict to (finitely representable) cyclic proofs

Examples of non-wellfounded proof theories include:

- FOL + Inductive Definitions (Brotherston & Simpson)
- FOL over Herbrand models (Cohen, R, Zohar)
- Linear Logic with fixed points
(Fortier & Santocanale, Baelde/Saurin/Doumane/Nollet/Tasson)
- Kleene/Action Algebra (pas & Pous)

10/17

Our Non-wellfounded, Labelled Sequent Calculus for PDL

- Relational statements x Ry y refer to atomic programs a
- Rules for atomic modalities a la Negri
y:p, = A XRay, T = Ay

(OL): (OR): (y fresh)
x:[ale,x Ra y,T = A M= A,x:[a)e

(av

Our Non-wellfounded, Labelled Sequent Calculus for PDL

- Relational statements x Ry y refer to atomic programs a
- Rules for atomic modalities a la Negri
y:p, = A XRay, T = Ay

(OL): (OR): (y fresh)
x:[ale,x Ra y,T = A M= A,x:[a)e

- Decompose non-atomic modalities as per semantics, e.g.

X [op,x: [Ble, T = A M= Ax:[ale T=Ax:[0le
(UL): (UR):
X:[aUpBle, = A M= Ax:[aUfBle

(av

Our Non-wellfounded, Labelled Sequent Calculus for PDL

- Relational statements x Ry y refer to atomic programs a
- Rules for atomic modalities a la Negri
y:p, = A XRay, T = Ay

(OL): (OR): (y fresh)
x:[ale,x Ra y,T = A M= A,x:[a)e

- Decompose non-atomic modalities as per semantics, e.g.

X [op,x: [Ble, T = A M= Ax:[ale T=Ax:[0le
(UL): (UR):
X:[aUpBle, = A M= Ax:[aUfBle

- Rules for iteration express its nature as a fixed point

X, X [o][@”]e, T = A Fr=Ax:p I=AX:[aa]e
(L): (*R):
x:[a*]e, T = A F=A4,x:[a"]p 117

A ‘Bad’ Non-wellfounded Derivation

=X [a]g,x: [a]e =X [a"]e, x: [a"]e
(CR) (CR)
= x:[a"]p =x:[a"]p
(WR) (WR)
= Xx: [a"]e,x: @ = x: [a]p,x : [a][a’]p
(*R)

= x:[a"]g,x: [a"]p
(CR)

= Xx:[a"]e

12/17

‘Good’ Proofs: The Global Trace Condition

We trace (possibly nested) modalities on the right-hand side

- They must be unfolded infinitely often along infinite paths

(N

x: [a*lp = x: [a*]fa*]p

: (Subst)
yilale=y:[a][a]e
(wi)

X:p,y:lale =y [a]la™e

oL
XRay,x:p,x:[ala*]e = y: [a][a**]e

(Ax)
X:p=>X:p X, x:[a][a*]e = x : [a][a*][a™]e
(wL) (L)
XX [a][a*le = x: @ " x:[a*le = x: [a]e x: [a*]le = x: [a][a*][a**]¢ -
x:[ale=x:¢ x:[a*]e = x: [a*][a**]e 2

(*R)

x:[a%)e = x:[a"]e

13/17

‘Good’ Proofs: The Global Trace Condition

We trace (possibly nested) modalities on the right-hand side

- They must be unfolded infinitely often along infinite paths

r

x:[a*le = x:[a"][a**]e

y:lalp=y:[a’]la”]e

X,y :lale =y [a]lae

@
XRay,x:p,x:[a][a*]e =y [a][a**]e
(Ax) (OR)
Xip=>X:¢p X, x:[a)[a*]e = x: [a][a*][a*]e
(wL) (xL
X, x:[a¥][a*]le = x: " x:[a*le = x: [a]e x:[a*le = x: [a][a”]|[a**]e
*L (xR)
x:[ale=x:¢ x:[a*le=x:[a][a**]ga(|
R

x:[a%)e = x:[a"]e

13/17

‘Good’ Proofs: The Global Trace Condition

We trace (possibly nested) modalities on the right-hand side

- They must be unfolded infinitely often along infinite paths

x:[a*le =)‘< s [a*][a**]e

— (Subst)
y:lale=y:[a]a"]e
(we)

X:p,y:lale =y [aa e

@)
XRa y,x:p,x:[a][a*]e =y : [a*][a™]e ‘
(AX) (OR)
X:p=>X:p X, x:[a)[a*]e = x: [a][a*][a™"]e ‘
(W) :)
XX [a*][a*]go:»x:go(5 x:[a*le=x:[a"]p X :[a*]e = x : [a][a*][a]g&(Y
x:[ale=x:¢ x:[a*]e = x: [@*][a**]p ¢------------mmmmmm - /

x:[a*]le=x:[a"]¢

13/17

Soundness

Theorem
I = A is valid if there is a non-wellfounded proof deriving it

- Traced modalities ' = A, x : [a1]. .. [an][3" ¢ identify particular substructures in
countermodels:

14/17

Soundness

Theorem
I = A is valid if there is a non-wellfounded proof deriving it

- Traced modalities ' = A, x : [a1]. .. [an][3" ¢ identify particular substructures in
countermodels:

14/17

Soundness

Theorem
I = A isvalid if there is a non-wellfounded proof deriving it

- Traced modalities ' = A, x : [a1]. .. [an][5"]¢ identify particular substructures in
countermodels:

14/17

Soundness

Theorem
I = A isvalid if there is a non-wellfounded proof deriving it

- Traced modalities ' = A, x : [an]. .. [an] [37 | identify particular substructures in
countermodels:

14/17

Soundness

Theorem
I = A isvalid if there is a non-wellfounded proof deriving it

- Traced modalities ' = A, x : [an]. .. [an] [37 | identify particular substructures in
countermodels:

ek

- Cyclic proofs capture an infinite-descent style proof by contradiction.
14/17

Completeness

Theorem
There is a cut-free non-wellfounded proof of each valid I = A

15/17

Completeness

Theorem
There is a cut-free non-wellfounded proof of each valid I = A

Lemma
The axioms characterising PDL have cyclic proofs

Lemma (Necessitation)
There is a cyclic derivation simulating the rule

X:1p oo, X 1on =X 10

X [a)er, .. x: [alen = X [y

15/17

Completeness

Theorem
There is a cut-free non-wellfounded proof of each valid I = A

Lemma
The axioms characterising PDL have cyclic proofs

Lemma (Necessitation)
There is a cyclic derivation simulating the rule

X:1p oo, X 1on =X 10

X:[o]er, ..., x: [a]on = x: [o]y
Theorem
If ¢ is a PDL theorem, there is a cyclic proof deriving = x: ¢

15/17

Proof Search for Test-free sequents

We propose the following proof-search strategy:

- Apply (invertible) logical rules as much as possible
- But do not allow traces to progress more than once
- For test-free sequents, this terminates

- Close open leaves with axioms where possible
- Apply a series of validity-preserving weakenings
- Repeat process for any remaining open leaves

All formulas that appear are in the Fischer-Ladner closure of the end sequent

Conjecture
The number of distinct labels appearing in a sequent is bounded

16/17

Future Work

- Prove cut-free regular completeness results (also for tests?)

- Demonstrate capture of different frame conditions

- Incorporate additional constructs in the program algebra
- Converse, Intersection

- Extend to capture other modal fixpoints (temporal, common knowledge)

- Derive interpolation results from the proof theory
- cf. Cyclic system and Lyndon interpolation for for GL (Shamkanov, 2014)

17/17

