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Summary. The Baire or longest common prefix ultrametric allows a hierarchy, a
multiway tree, or ultrametric topology embedding, to be constructed very efficiently.

The Baire distance is a 1-bounded ultrametric. For high dimensional data, one
approach for the use of the Baire distance is to base the hierarchy construction on
random projections.

In this paper we use the Baire distance on the Sloan Digital Sky Survey (SDSS,
http://wuw.sdss.org) archive. We are addressing the regression of (high quality,
more costly to collect) spectroscopic and (lower quality, more readily available)
photometric redshifts. Nonlinear regression is used for mapping photometric and
astrometric redshifts.
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1 Introduction

In this work we introduce a novel (ultrametric) distance called Baire and
show how it can be used to produce clusters through grouping data in “bins”.
We seek to find inherent hierarchical structure in data, rather than fitting
a hierarchy structure to data (as is traditionally used in multivariate data
analysis) in an inexpensive computational way.

This paper is structured as follows: firstly we give a definition of the Baire
distance; secondly we apply that distance to a chemoinformatics dataset;
thirdly we apply the Baire distance to an astronomy dataset; finally we present
our conclusions.

2 Longest Common Prefix or Baire Distance

2.1 Ultrametric Baire space and distance

A Baire space consists of countably infinite sequences with a metric defined in
terms of the longest common prefix: the longer the common prefix, the closer
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a pair of sequences. What is of interest to us here is this longest common
prefix metric as defined in [1]. The longest common prefixes at issue are those
of precision of any value. For example, consider two such values, z;; and ¥,
which, when the context easily allows it, we will call z and y.

Without loss of generality we take x and y to be bounded by 0 and 1.
Each are of some precision, and we take the integer |K| to be the maximum
precision. We pad a value with Os if necessary, so that all values are of the
same precision.

Thus we consider ordered sets zp and yi for £k € K. In line with our
notation, we can write xj and y; for these numbers, with the set K now
ordered. So, k = 1 is the first decimal place of precision; k = 2 is the second
decimal place; . . . ; k = |K]| is the |K|th decimal place. The cardinality of
the set K is the precision with which a number, z; , is measured.

Consider as examples z = 0.478; and Y;, = 0.472. In these cases, |K| = 3.
For k =1, we find z, =y = 4. For k =2, 3, = y; . But for k = 3, xx # yx.

We now introduce the following distance (case of vectors x and y, with 1
attribute):

o 1 if I # Y1
We call this dp value Baire distance, which can be shown to be an ultra-
metric [1, 2, 3, 4, 5].
Note that the base 2 is given for convenience. When dealing with binary
data 2 is the chosen base. When working with real numbers the chosen base
is 10.

3 Application to Chemoinformatics

In the 1990s, the Ward minimum variance hierarchical clustering method be-
came the method of choice in the chemoinformatics community due to its hier-
archical nature and the quality of the clusters produced. This method reached
its limits once the pharmaceutical companies tried processing datasets of more
than 500,000 compounds mainly due to its processing requirement of O(n?).

Datasets of half a million compounds are normal in today’s world. There
are different ways of encoding a compound to a machine readable form. In
chemistry binary fingerprints for chemical compounds are common. The com-
pound is encoded in a fixed length binary string. For details of different en-
coding systems in chemistry see [6].

In [1] we applied the Baire distance to a chemoinformatics dataset with
the following characteristics:

— 1.2 million chemicals crossed by 1052 presence/absence attributes (binary
matrix)
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— the data matrix is highly sparse, occupancy is ~ 8.6347%
— chemicals per attribute follow a power law with exponent ~ 1.23
— attributes per chemical are approximately Gaussian.

3.1 Dimensionality reduction by random projection

As mentioned above it is a well known fact that traditional clustering meth-
ods do not scale well in very high dimensional spaces. A standard and widely
used approach when dealing with high dimensionality is to first apply a di-
mensionality reduction method. For example, Principal Component Analysis
(PCA) is a very popular choice to deal with this problem. It uses a linear
transformation to form a simplified data set retaining the characteristics of
the original data. PCA does this by means of choosing the attributes that
best preserve the variance of the data. This is a good solution when the data
allows these calculations, but PCA as well as other dimensionality reduction
techniques remain expensive, computationally speaking.

In order to apply the Baire distance our first step was to reduce the di-
mensionality of the original data. We chose to use random projection [7, 8]
not only because of performance but also because of some nice properties
of this methodology. Random projection is the finding of a low dimensional
embedding of a point set.

In fact random projection here works as a class of hashing function. Hash-
ing is much faster than alternative methods because it avoids the pair-wise
comparisons required for partition and classification. If two points (p,q) are
close, they will have a very small ||p — ¢|| (Euclidean metric) value; and they
will hash to the same value with high probability. If they are distant, they
should collide with small probability.

3.2 Chemoinformatics data clustering

In order to cluster the binary data we did the following:

— normalise the binary data matrix A by column sums; let’s call the resulting
matrix B

— produce a random vector Z

— project B into Z; let’s call the resulting matrix R

— sort the matrix R

— cluster R applying the longest common prefix or Baire distance; then values
that are identical fall in the same cluster.

Following the above process, we show in [1] (p. 728) that for this dataset
we can get clusters that are very close to the clusters obtained by k-means.
This can be due to many reasons: one reason is that data sparsity in a key
factor (i.e. in a large sparse dataset groups are likely to be far from each other,
and therefore groups are easier to identify).
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4 Application to Astronomy

The Sloan Digital Sky Survey (SDSS) [9] is systematically mapping the sky,
producing a detailed image of it and determining the positions and absolute
brightnesses of more than 100 million celestial objects. It is also measuring
the distance to a million of the nearest galaxies and to one hundred thousand
quasars. The acquired data has been openly given to the scientific community.

In this work we are interested into four parameters from a subset of the
SDSS data release 5 [10]: declination (DEC), right ascension (RA), spectro-
metric (Zgpee) and photometric (Zppet). In particular we look into redshift
data that, for either redshift, vary between 0 and 0.6.

DEC and RA give the position of an astronomical object in the sky. Spec-
trometric and photometric parameters are two different values obtained to
measure the redshift. On one hand we have the spectrometric technique that
uses the spectrum of electromagnetic radiation (including visible light) which
radiates from stars and other celestial objects. On the other hand we have
the photometric technique that uses a faster and more economical way of
measuring the redshift, but is less precise than the spectrometric method.

Notice that when talking on the context of speed the advantage of using
the Baire metric lies on that it can calculated in O(n) time, unlike many of the
traditional clustering method that need a higher computational complexity.

4.1 Clustering SDSS data based on a Baire distance

Figure 1 a) shows DEC versus RA, i.e. the object’s position in the sky. Figure 1
b) shows the Zpe. and Z,po currently used to cluster redshifts. This section
of the sky represents approximately 0.5 million coordinate points. As can be
observed, various sections of the sky are represented in the data.

Figures 1 ¢), d), e) and f) show graphically how Zg,e. and Z,po clusters
look at different levels of decimal precision. For example, on the one hand we
find that values of Zyp,c. and Zppo: that have equal precision in the 3rd decimal
digit are highly correlated. On the hand when Zg,e. and Zp have only the
first decimal digit in common correlation is weaker (as shown in Figure 1 e).

Notice that in Figure 1 f) the data point are scatter around the plot area,
these are the data points that have the least information in common, i.e. the
data points that do not share any decimal places but the first digit.

Table 1 shows the clusters found for all different levels of precision. In
other words this table shows the confidence levels for mapping of Zgpe. and
Zphot- For example, we can expect that 82.49% of values for Zspe. and Z,po
to have at least two common prefix digits. Additionally we observe that a
considerable number of observations share at least 3 digits in common.

In the following section we a take this notion of clusters even further and
compare it to results obtained with the k-means clustering algorithm.
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Table 1. Clusters based on the longest common prefix
[Digit] No [ % |

1 | 76.187(17.19
270.920(61.14
85.999(19.40
8.982| 2.07
912 0.20

90| 0.02

4| —

| [443.094] 100 |

| O T = | W[ N

4.2 Baire and K-means cluster comparison

In order to establish how “good” the Baire clusters are we can compare them
with k-means. Let us recall that our data values are in the interval [0, 0.6] (i.e.
including zero values but excluding 0.6). Thus when building the Baire based
clusters we will have a root node “0” that includes all the observations. For
the Baire distance equal to two we have six nodes (or clusters) with indices
“00, 01, 02, 03, 04, 05”. For the Baire distance of three we have 60 clusters
with indices “000, 001, 002, 003, 004,...,059” (i.e. ten children for each node
00,..,05).

We carried out a number of comparisons for the Baire distance of two
and three. For example, we know that for dg = 2 there are six clusters, then
we took our data set and applied k-means with six centroids based on the
Hartigan and Wong [11] algorithm. The results can be seen in Table 2, where
the columns are the k-means clusters and the rows are the Baire clusters. From
the Baire perspective we see that the node 00 has 97084 data points contained
within the first k-means cluster and 64950 observations in the fifth. Looking
at node 04, all members belong to the cluster 3 of k-means. We can see that
the Baire clusters are closely related to the clusters produced by k-means at
a given level of resolution.

Table 2. Cluster comparison based on Baire distance = 2; columns present the
k-means clusters (k=6); rows present Baire nodes.

([t [5] 46 ]2]3]
00 [97084[64950] 0 [ 0 [ 0 [ 0
01 | 0 [28382[101433[14878] 0 | 0
02 0 | 0 | 0 [18184[4459] 0
03 0 [ 0 | 0 | 0 [25309]1132
04 0 [ 0 | 0 | 0 [ 0 [11116
05 0 | 0 0 [ 0] 0|2
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‘We can push this procedure further and compare the clusters for dg defined
from 3 digits of precision, and k-means with k£ = 60. Looking at the results
from the Baire perspective we find that 27 clusters are overlapping, 9 clusters
are empty, and 24 Baire clusters are completely within the boundaries of the
ones produces by k-means as presented in Table 3.

It is seen that the match is consistent even if there are differences due to
the different clustering criteria at issue. We have presented results in such as
way as to show both consistency and difference.

Table 3. Cluster comparison based on Baire distance = 3; columns present the
k-means clusters (k=60); rows present Baire nodes.

[—J21] 1 ] 6 [38[25][58][32][20[15]13]14]37]
0153733 0 0 0|0
004 3495| 0 0 0
018 0 [0
020 1370| 0
001
000
022
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049
050
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5 Conclusions

In this work a novel distance called the Baire distance is presented. We show
how this distance can be used to generate clusters in a way that is compu-
tationally inexpensive when compared with more traditional techniques. This
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approach therefore makes a good candidate for exploratory data analysis when
data sets are very big or in cases where the dimensionality is large. In addition
to the advantage of speed, this distance is an ultrametric which can easily be
seen as a hierarchy. We applied the Baire definition of distance to two cases:

e In the chemoinformatics case “good” clusters were obtained in the sense
that these are close to those produced by k-means.

e In the astronomy case clusters generated with the Baire distance can be
useful when calibrating redshifts. In generally, applying the Baire method
to cases where digit precision is important can be of relevance, specifically
to highlight data “bins” and some of their properties.

Future direction of work includes applying the Baire metric to other data
sets. Our particular interest lies in high dimensional and massive data sets
like the ones presented in this paper.
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