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ABSTRACT
We study the development of distributed agent environ-
ments as distributed event-based systems specified in the
Ambient Event Calculus (AEC). The AEC is a logic-based
formalism that is developed here to support the representa-
tion of a distributed agent environment as a persistent com-
posite structure evolving over time. Such a complex struc-
ture supports the interaction between agents, objects, and
containers, entities that have their own external observable
state and can be distributed over a network. Interactions
between these entities are specified in terms of events that
represent actions executed by agents on objects and other
agents in the environment. When events happen they are
stored in containers and are notified to agent sensors that
subscribe to event descriptions and as a result perceive the
interactions. The AEC formalism also allows changes caused
by events to be delivered across distributed containers, ac-
cording to the topology of the application environment. We
illustrate the use of AEC and we show how to specify in-
teractions within the GOLEM agent platform applied to a
specific agent scenario.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming:—Distributed Programming ; I.2.11 [Computing Method-
ologies]: Distributed Artificial Intelligence:—Multiagent Sys-
tems
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1. INTRODUCTION
There is an increasing demand for complex distributed

systems that are capable of operating in open and dynamic
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environments, that are composed of loosely-coupled inter-
acting components with autonomous behaviour, that are
flexible, adaptive, and scalable to support what people do
at work, home, or while on the go. There are many applica-
tions that can be thought of as distributed systems of this
kind, consider for example autonomic workflow systems de-
ployed in business organisations, computer games entertain-
ing millions of people at home, and ubiquitous and ambient
intelligence applications that allow people to interact and
communicate efficiently and effectively wherever they are.

In order to meet the challenges of complex distributed
systems, the notion of agency has often been proposed as a
development metaphor for distributed systems applications.
A software agent is a computer system that is capable of
flexible autonomous action in dynamic and, possibly, un-
predictable or open environments [30]. The characteristics
of dynamic and open environments suggest that improve-
ments on traditional computing models and paradigms are
required. Thus, the need for some degree of autonomy, to
enable agents to respond dynamically to changing circum-
stances while trying to achieve their goals, is seen as funda-
mental. Many observers therefore believe that agents repre-
sent the most important new paradigm for software devel-
opment since object orientation [17].

Typically, software agents are not monolithic systems, but
they interact and collaborate with other agents to support
a specific application. A multi-agent system (MAS) is a
system composed of multiple interacting agents that can be
used to solve problems which are difficult or impossible for
an individual agent to solve. To support the deployment of a
MAS for practical applications, early agent platforms such
as JADE [2] and JACK [12], became available to support
the development activity and provide the necessary middle-
ware. These platforms supported the engineering of MAS
applications by enabling agents to interact with each other
in their environment by sending and receiving messages [13,
20]. However, attempts to model the agent environment
as a message transport system (or broker infrastructure)
have been criticized to be inadequate for complex applica-
tions [29]; these criticisms further suggest that the agent
environment should be a first-class entity [21, 28].

1.1 Motivation
We are concerned with specifying and implementing agent

environments for software agents with cognitive capabili-
ties [14], with the aim to make agents more intelligent through
the use of logical reasoning. In many of these environ-
ments [23, 4], an application does not only use agents but



also additional entities where agents are contained in or in-
teract with. We are particularly interested in agent envi-
ronments that can be distributed over a network. For such
environments it makes sense that the evolution of the state
of the environment is modelled via occurrences of events that
capture the interactions of agents at the application level [4].
It is natural then to consider Distributed Event-Based Sys-
tems (DEBS) as the underlying implementation model for
our study [3]. More specifically, our main concerns are:

Event Declaration: how are events declared in the agent
environment? What is their structure and how can the
agent environment deal with different types of events?

Event Notification: how is the occurrence of events noti-
fied to the entities situated in the environment? Should
entities in the agent environment receive an event that
happened in the past or should an event be notified
immediately as it happens? How does the topology of
the distributed agent environment affect the notifica-
tion mechanism?

Dynamic Event Binding: how can an agent dynamically
subscribe to observe different types of events?

Full Delivery: how can we notify all the components that
are interested in an event within an agent environ-
ment?

Event subscription: how can entities in the environment
subscribe for events produced within a portion of the
agent environment?

Event filtering: how can entities filter the information that
they receive from the agent environment?

Delivery semantics: how are events propagated in a dis-
tributed agent environment?

Event Persistence: how and where are the event stored
within the distributed agent environment?

Taking these issues as a starting point, this work studies the
modelling of a distributed agent environment implemented
as a DEBS, to support the implementation of agent environ-
ments as first-class complex objects.

1.2 Contribution
The contribution of this work is that it develops a new

formalism, that we call Ambient Event Calculus (AEC), to
deal with events in a distributed agent environment seen
as a distributed event-based system. We use the AEC to
show how we can deal with the subscription, notification
and production of events happening within the context of
a complex topology. More specifically, we illustrate how
agents and objects populating a distributed agent environ-
ment can be seen as publishers and subscribers to events,
which the agents can perceive using their sensors and ef-
fectors, and the object can process using their triggers and
emitters. We exemplify the discussion by re-specifying the
interactions of an existing agent environment implemented
in the GOLEM platform [4]. The significance of the new ver-
sion of the GOLEM platform is that we apply the concept of
distributed event systems to deal with distributed event no-
tification and perception, allowing us to model the evolution
of the distributed agent environment as a first-class abstrac-
tion, and thus showing how to apply DEBS techniques to
build MASs.

1.3 Organisation
The reminder of this paper is organised as follows. Section

2 presents a background on the GOLEM agent infrastruc-
ture, introducing its main components, and a scenario that
is already presented in [4] but extended here to illustrate
how an application can be distributed over a computer net-
work. Section 3 introduces the Ambient Event Calculus,
which is the logic formalism on which the new version of
GOLEM will be based upon, including example interactions
from the application scenario. The implementation of the
framework is discussed in Section 4. After Section 5 which
evaluates the AEC performance in a distributed setting, Sec-
tion 6 discusses the related work. We conclude in Section 7
where we also outline our plans for future work.

2. THE GOLEM AGENT ENVIRONMENT
We provide here the background of an existing agent envi-

ronment whose main components have been reported in [24],
the specification of the implemented platform has been de-
scribed in [4], and its use to develop a distributed systems
application in [5]. To provide continuity with this exist-
ing work we also present an extended version of a scenario
discussed in [4] in order to show how to distribute an appli-
cation in practice. Our aim is then to use the scenario to
exemplify our discussion for the rest of this paper.

2.1 Background on GOLEM
The GOLEM agent platform [24, 4] allows the deploy-

ment of three main entities: agents, objects and containers.
Agents are active and cognitive entities that can interact
with other agents and objects in the agent environment.
Agents are composed by a declarative mind, a component
that supports the reasoning abilities of the agent such as
planning, decision making, and temporal reasoning. The
mind is situated in the agent environment via another com-
ponent that is called the agent body. This component con-
tains sensors for the agent to be able to perceive the envi-
ronment and effectors to be able to affect the environment.
In other words, sensors and effectors represent the interface
between the agent environment and the agent mind.
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Figure 1: Agent Architecture in GOLEM

Unlike agents, objects are reactive entities. Objects have a



trigger to receive events from the environment and an emit-
ter to produce reactions to such events. The trigger and
the emitter ensure that the interaction between the object
and the environment is completely asynchronous. An ob-
ject is composed by an external object which is connected
to the trigger and the emitter, and its purpose is to hide
the complexity of an internal object, which could represent
an external resource. The general idea behind the internal
object is that it wraps in it a resource of the external en-
vironment, thus hiding from the agents the complexity of
interfacing with the external resource. In other words the
object abstraction can be a virtual entity or a virtualisation
of an external resource of the external real environment, for
example, a printer, a web service, or a database.

Central to the GOLEM agent platform is the concept of
affordances: normally this concept is taken to describe “all
the action possibilities latent in the environment, objectively
measurable, and independent of an agent’s ability to recog-
nise those possibilities” [11]. As with research in HCI [19],
GOLEM relies upon perceived affordances where entities of
an environment“suggest” to agents (whether artificial or hu-
man) how they should interact with them. In other words
the concept affordances in GOLEM represent the external
observable state of an agent or of an object as shown in
Fig. 1(a).

Agents and objects are situated within containers. A con-
tainer represents a portion of the distributed agent environ-
ment and it works as a mediator for the interaction taking
place between agents and objects. Events describe what
happens in the agent environment as a result of actions be-
ing executed by effectors. According to the happening of
an event the agent environment notifies those sensors capa-
ble of perceiving the action of the event. In GOLEM three
types of acts are embedded in an event: speech acts - to
allow agents to communicate with other agents and users;
sensing acts - to allow an agent to perceive the environment
actively; and physical acts - to allow the agent to interact
with other entities, in particular objects, but also agents as
well. To simulate these acts GOLEM relies upon different
kinds of sensors and effectors the agent should possess in
the agent environment. Fig. 1(b) shows how the result of a
physical act of an agent on an object is perceived not only
by the agent itself but also by another agent, using the affor-
dances of these entities within the container in which they
are situated.

In the first version of the platform, the only interaction
that was possible to perform from one container to another
was communication between agents. In the scope of this
paper we want to extend the model to have agents that
can interact across containers and assuming a distributed
topology of containers. Figure 1(c) illustrates the kind of
extra-container interaction that we wish to provide for the
GOLEM agent environment using a DEBS model.

2.2 An Example Agent Environment
In order to illustrate the specific features of the DEBS

model on a MAS application, we use as a motivating ex-
ample the Packet-World scenario [27]. As shown in Fig. 2,
the basic setup of the Packet-World consists of a number of
differently coloured packets inside a rectangular grid, whose
destination is a circle with the same colour. Each agent liv-
ing in the Packet-World has a battery that discharges as the
agent moves in different locations in the grid. The battery

can be recharged using a battery charger. This charger emits
a gradient whose value is larger if the agent is far away from
the charger and smaller if the agent is closer to the charger.
To locate the battery charger an agent must follow the direc-
tion of decreasing gradient values. The agents have the goal
to bring the packets to the collection points and can commu-
nicate with other agents to create collaborations or to ask
information about the position of the collection points.

Figure 2: The Packet-World.

As shown in Fig. 3, here we consider a version of the
Packet-World, where areas of the grid are distributed to
multiple containers that run on different hosts.

Figure 3: Distributed Packet-World in GOLEM

Every different host is responsible for the agents and the
packets deployed within it. In such a setting one requirement
is that the agent can perceive what happens in a location
that is logically nearby, but distributed in another host. An-
other requirement is the definition of the propagation of the
events and how the agents can interact with packets or des-
tinations that are logically near, but physically distributed
elsewhere.

3. THE AMBIENT EVENT CALCULUS
The Ambient Event Calculus (AEC) is a formalism that

allows the specification of complex events happening in the



complex and evolving state of a distributed agent environ-
ment. The calculus supports intra-container interactions,
i.e. interactions within a container, and provides mecha-
nisms for subscription and notification of events in this con-
text. It also supports the specification of extra-container
interactions, that is interactions across containers, and pro-
vides mechanisms for subscriptions and notifications of dis-
tributed containers. Thus, in AEC the agent environment is
specified in four main parts: intra-container persistence and
evolution; intra-container action execution and perception;
extra-container persistence and evolution; extra-container
action execution and perception. In what follows, we are
presenting examples of our formulation, using the GOLEM
platform and the Packets-World scenario.

3.1 Evolution of the Agent Environment
To represent the state of a container and the entities it

contains we use the object-based notation used by C-logic
[7], a formalism that allows the description of complex ob-
jects. By state we mean the complex data structures re-
quired to represent the perceived affordances of the entities
within a container, including the container itself. For exam-
ple the description:

container:c1[address ⇒“container://one@134.219.7.1:13000”,
laws ⇒ physics:pw1,
type ⇒ open,
entities ⇒ {picker:ag1,

packet:p1,
packet:p2,
destination:d1,
battery:b1}

]

describes a container whose affordances include an address
attribute whose value is container://one@134.219.7.1:13000,
a laws attribute pointing another object pw1 of class physics,
the type attribute has the value open, meaning that any
agent can enter the container, and the entities contained
in the container is a set (multiple values attribute) of one
picker agent (ag1), two packets (p1, p2), a destination for
packets (d1), and a battery (b1). Entities within a container
can have their own perceived affordances, for example, the
perceived affordances of the picker ag1 are shown below:

picker: ag1[ understands ⇒ ontology:o1,
sensors ⇒ {sight:s1, hearing:s2, smell:s3},
effectors ⇒ {speak:ef1, arm:ef2, arm:ef3},
position ⇒ square:sq3,
activity ⇒ idle

]

The advantage of this representation is that agents can
perceive directly these affordances and reason about them,
as these descriptions have a translation to first-order logic,
see [7] for the details.

To represent how phenomena change the state of a GOLEM
container we use the object-based event calculus (OEC) de-
scribed by Kesim and Sergot in [15]. The OEC assumes
an object-based data model and describes how instances of
complex terms, such as containers, evolve over time. A sub-
set of the clauses describing the OEC is given below:

(C1) holds at(Id, Class, Attr, Val, T)←
happens(E, Ti), Ti ≤ T,
initiates(E, Id, Class, Attr, Val),
not broken(Id, Class, Attr, Val, Ti, T).

(C2) broken(Id, Class, Attr, Val, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤Tn,
terminates(E, Id, Class, Attr, Val).

(C3) holds at(Id, Class, Attr, Val, T)←
method(Class, Id, Attr, Val, Body),
solve at(Body, T).

(C4) attribute of(Class, X, Type)←
attribute(Class, X, Type).

(C5) attribute of(Sub, X, Type)←
is a(Sub, Class),

attribute of(Class, X, Type).

(C6) instance of(Id, Class, T)←
happens(E, Ti), Ti ≤ T,
assigns(E, Id, Class),
not removed(Id, Class, Ti, T).

(C7) removed(Id, Class, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤ Tn,
destroys(E, Id).

(C8) assigns(E, Id, Class)←
is a(Sub, Class),
assigns(E, Id, Sub).

(C9) terminates(E, Id, Class, Attr, )←
attribute of(Class, Attr, single),
initiates(E, Id, Class, Attr, ).

(C10) terminates(E, Id, , Attr, )←
destroys(E, Id).

(C11) terminates(E, Id, , Attr, IdVal)←
destroys(E, IdVal).

Clauses C1-C2 provide the basic formulation of OEC de-
riving how the value of an attribute for a complex term holds
at a specific time. Clause C3 describes how to represent de-
rived attributes of objects treated as method calls computed
by means of a solve at/2 meta-interpreter as specified in [16].
C4-C5 support a monotonic inheritance of attributes names
for a class limited to the subset relation. As C1-C2 describe
what holds at a specific time, C6-C7 determine how to de-
rive the instance of a class at a specific time. The effects
of an event on a class is given by assignment assertions; the
clause C8 states how any new instance of a class becomes
a new instance of the super-classes. Finally, deletion of ob-
jects is catered for by clauses C9-C11. C9 deletes single
valued attributes that have been updated, while C10-C11
delete objects and dangling references.

Event descriptions themselves are specified as complex
terms. For example, the event description below:

do:e14 [actor ⇒ ag1, act ⇒ move:m1 [destination⇒ sq3]].

represents a physical action of agent ag1 who tries to move
from one location to another. We will see later, how such an
action is executed by the agent that causes the event to hap-
pen. For the time being, we will assume that the event has
happened and we will show next how the affordances in the
agent environment will evolve as a result of the happening
of this event. To do this we need to define domain specific
initiates and terminates clauses, as shown below:

initiates(E, picker, A, position, Pos) ←
do:E [actor ⇒ A, act ⇒ move:M [destination⇒ Pos]].

In this way the new position of the agent has been initiated
as a result of the move. The complete description of the
event’s effects also requires to terminate the attribute hold-
ing the old position of the agent; this is handled in OEC by
the general rule described in clause C9.



3.2 Intra-container action and perception
In an agent environment the producers of events are agent

effectors and object emitters, while consumer of events are
agent sensors and object triggers. The issue then becomes
how sensors and triggers subscribe to events, how events are
notified to sensors once they happen, and how the notifica-
tions trigger objects make agents to perceive these events.

3.2.1 Event Subscription
To show how sensors subscribe to specific events in the

AEC we need to understand how affordances of effectors and
sensors are specified in the environment. To illustrate event
subscription, consider the definition of the hand effector for
a picker agent in Packet-World. This is described using the
following C-Logic term:

hand:ef1[
abilities ⇒ {pick, drop, throw}
status ⇒ free
]

While the status of the hand is free, the agent body that is
equipped with this effector can produce three kind of events:
pick, drop, and throw. Events produced by effectors must
be consumed by sensors. We link sensors and effectors at
the level of sensor affordances (if it is an agent) and trigger
affordances (if it is an object). For example, to express that
an agent sensor listens to every kind of speech act we define
listener sensors as:

listener:s1[
senses ⇒ speech acts,
status ⇒ open
]

In order to specify which events a sensor can perceive, we
need to allow agents (or objects) to change the affordances of
their sensors (or triggers) by opening and closing the sensor
to the event notification. To deal with the way sensors sub-
scribe/unsubscribe to events we use subscribes/3 predicates
written as:

(C12) subscribes(E, S, T)←
holds at(S, sensor, senses, ActClass, T),
ActSubClass: E,
is a(ActSubClass, ActClass),
holds at(S, sensor, status, open, T).

The above definition specifies that a sensor S subscribes to
an event E if the class of act in the event is a subclass of the
actions that can be sensed by the sensor and that the status
of the sensor is open. Otherwise, if the sensor is not any-
more interested in events of a certain class, the agent must
close the sensor and the sensor will not subscribe to events
for the time it is closed (non-subscription can then be de-
duced from subscribes/3 definitions and the use of negation
as failure [8]). Also, the is a/2 use above relies on a hier-
archy of events to optimize the number of clauses needed
for event subscriptions. The event schema we use for the
Packet-World environment is shown in Fig. 4.

More detailed definitions of subscriptions can be defined
that take into account topological information within a con-
tainer. Consider for example agents facing each other. How-
ever, we abstract away from these definitions for simplicity
of presentation. Similarly, we need to specify definitions for
triggers (the sensors of objects). The details we omit as
these subscriptions are simpler in that the agent producing
the event has to specify also the object identifier to which
the action is directed to.

   

Generic Event

­actor
­time

isa isa isa

Sensing Act
­focus
­sensor

Speech Act

­receiver
­content
­volume

Physical Act

­object

isa isa isa

Pick
­object:packet

Drop
­object:packet
­location:square

Throw
­object:packet
­target:destination

Move

­location:square

isa

Figure 4: Event Schema for Packet-World

3.2.2 Local Action Execution
In AEC we represent actions within an agent environment

as attempts. An attempt represents an action that is going
to occur within the agent environment. Attempts are de-
scribed by the assertion of events at a specific time, provided
that such an attempt is possible within the physics of the
agent environment. For instance, an agent that is attempt-
ing to pick an object at a certain time could be specified as
follows:

attempt(e20,100)
do:e20[actor⇒ag1,act⇒ pick,object⇒obj1]

Such an attempt happens in the environment if the action
is possible in the state of that environment. We specify this
as:

(C13) happens(Event,T)← attempt(Event,T), possible(Event,T).

This definition requires that we describe the preconditions
in which an event is possible at a certain time within the
environment before an event can happen. Consider, for ex-
ample, how to define when it is possible for an agent to move
to a square in the grid:

possible(E, T)←
do:E [actor ⇒ A, act ⇒ move:M [destination⇒ PosB]],
holds at(A, , position, PosA, T),
adjacent(PosA, PosB),
not occupied(PosB, T).

The possible/2 rules mediate and constraint agent inter-
action happening within a container. Similar rules need to
be defined to deal with an agent trying to move outside the
area of the environment. We will show later, in Section 3.3,
how to specify environment reactions as part of the physics.

3.2.3 Local Passive Perception
When an event happens, the agent environment notifies

instantaneously all the types of sensors that are capable of
detecting it, according to the type of sensors and the physics.
Here the agent environment works as a mediating event dis-
patcher for event subscribers represented as agents and ob-
jects. The definition of the event notification has to take
into consideration the affordances of the sensors and trig-
gers. For passive perceptions, as in a fire alarm, we define
the notification of events in AEC as:

(C14) notify(E, S, T) ← happens(E, T), detectable(E, S, T).

The key to notification is the detectable/3 predicate. For an
event E, this checks if a sensor S subscribes to that event at
time T, before E notified to the sensor. We define this as:



(C15) detectable(E,S,T) ← subscribes(E,S,T), not interfered(E,S,T).

Detectability of events by sensors does not only depend
on subscription of events but also on some high level fil-
tering that is due to the physical laws of the environment.
We capture this via the notion of interference specified as
rules named interfered/3. In Packet-World an agent cannot
perceive an event of type pick, drop, throw or move if an ob-
stacle is between the agent and the location where the event
is generated. We represent this as:

interfered(E, S, T) ←
physical act:E [actor ⇒ Actor],
holds at(Actor,entity,position,XYe,T),
holds at(A, picker, sensor, S, T),
holds at(A, picker, position, XYa, T),
holds at(Entity, entity, position, XYent, T),
in between(XYent, XYa, XYe).

In other words, a notification of a pick, drop, throw or move
act is interfered only when there is an entity between the
position of the agent and the location in which the event
happened.

3.2.4 Local Active Perception
Agents in AEC are enabled to actively perceive other en-

tities deployed in the agent environment. Such perceptions
are performed by an agent sensor that makes the call and
specifies the conditions of what needs to be perceived. We
specify this as:

(C16) perceive(E, S, T) ←
happens(E, T),
sensing(E),
not interfered(E, S, T),
E [filter ⇒ Focus],
solve at(Focus, T).

Here we assume that the agent has attempted to generate
a sensing event successfully, there is nothing that interferes
with the perception, the perception filters a set of proper-
ties of interest defined in the Focus, and these properties are
retrieved by means of an asynchronous call to the environ-
ment via the solve at/2 predicate. The call will return the
variable substitutions to Focus; if there are no variables the
call will verify whether the query holds or not.

3.3 Extra-container action and perception
Modelling an agent environment often requires designing

an application as a complex topology of containers repre-
senting different parts of the environment. Such a topology
could require containers to be embedded within containers
or containers to be adjacent to other containers. One way
to handle these requirements is to have a centralised com-
ponent that knows about the affordances of every entity in
the topology. However, the main issue with this solution is
that the whole system is difficult to scale and will have a
single point of failure. We present next an alternative solu-
tion where containers are distributed on different machines.
We also discuss the issues of how to decide what holds in
the distributed environment and how to distribute action
execution, notification, and perception.

3.3.1 Distributing Containers
The first feature that we need to support is containers

within containers. The issue then becomes how to allow for
querying the state of a container with complex structure. We
define the notion of a property holding locally, to a single,
possibly structured container as follows:

(C17) locally at(CId, Path, Path∗, Id, Class, Attr, Val, T)←
holds at(CId, container, entity of, Id, T),
holds at(Id, Class, Attr, Val, T),
append(Path, [CId], Path∗).

(C18) locally at(CId, Path, Path∗, Id, Class, Attr, Val, T)←
instance of(SubCId, container, T),
holds at(SubCId, container, super, CId, T),
append(Path, [CId], NewPath),
locally at(SubCId, NewPath, Path∗, Id, Class, Attr,Val,T).

The definition of locally at/8 states that the affordances of
an entity can be inferred either from the top-level container
(C17) or from a sub-container (C18) and at the same time
keeping the path of the visited containers (to be used in a
while). In this way containers can be recursively embedded
inside other containers as objects, according to the topology
needed, and implemented on different hosts, if necessary.

In many applications the topology of the environment re-
quires that containers are next to each other, for example,
the distributed Packet-World in Fig. 3. As a result, we will
need to define a region of the environment that agents will
interested in, where an agent that belongs to one container
needs to access part of another one. For this purpose we
define containers that are linked with other containers to
be neighbours, if one of the containers does not contain (or
is contained by) the other container. We define querying
neighbouring containers as follows:

(C19) neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
Max > 0,
locally at(C, Path, Path∗, Id, Cls, Attr, Val, T).

(C20) neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
holds at(C, container, neighbour, N, T),
not member(N, Path),
Max∗ is Max -1,
append(Path, [C], New),
neighbouring at(N, New, Path∗, Max∗, Id, Cls, Attr, Val, T).

Now we need to keep the maximum number of containers
(Max) that are part of the region and which containers have
been visited so far (Path) with a resulting path (Path∗), if
the query succeeds. Clause C19 then looks for the property
of the object locally, while C20 looks for the property in
neighbouring containers not already visited.

One of the problems of neighbouring at/9 is that when we
look at a region, if the query fails, we do not check the super-
container of the container that we fired the query from. To
address this problem we introduce the regionally at/9 pred-
icate so that to query large areas of a distributed topology
within the agent environment.

(C21) regionally at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
neighbouring at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T).

(C22) regionally at(C, Path, Path∗, Max, Id, Cls, Attr, Val, T)←
holds at(C, container, super, S, T),
Max∗ is Max - 1,
Max∗ >= 0,
append(Path, [C], New),
regionally at(S, New, Path∗, Max∗, Id, Cls, Attr, Val, T).

Assuming a large Max, clauses C21 and C22 above visit
all the nodes of the topology until a solution is found. Com-
plex queries about the attributes of an entity are obtained
as a combination of locally at/8 and neighbouring at/9 def-
initions. Similar rules are defined for the generalisation of
instance of/3 that are defined as local instance of/6, neigh-
bouring instance of/6, and regional instance of/6. Their defi-



nitions we omit, as these simply rely on calling the predicates
of clauses C17...C22, instead of holds at/5.

3.3.2 Distributed Physics
When we deal with distributed containers, we need to

enhance the definition of possible/2 to use what holds in
regions. As a consequence, to specify that it is possible for
an agent to pick up a packet, this must be adjacent. We
define this as follows:

possible(E,T)←
do:E[actor⇒A, act⇒ pick, object⇒Id],
holds at(A, agent, effector, Ef, T),
instance of(Ef, hand, T),
holds at(Ef, effector, state, free, T),
holds at(A, agent, position, PosA, T),
neighbouring at(this, [], , 1, Id, packet, position, PosB, T),
adjacent(PosA, PosB).

Such a definition means that it is possible for an agent to
pick a packet if it has an effector of type hand, this is free
and the agent resides in a position that is logically adjacent
to the position of the packet. The call to neighbouring at/9
allows us to check that the packet is in the right position,
but possibly in a different container, thus allowing for a fully
distributed physics of the agent environment.

From the perspective of a distributed event-based system,
this means that the event publication is mediated by the
physics of the agent environment. If the event is confor-
mant with the physics, this will be published, otherwise the
physics will prevent its execution.

After an agent attempts to move by generating a moving
event in this way, such an event will cause a reaction by the
environment. We support environment reactions in terms of
attempts from the environment that are ‘physically’ neces-
sary. We specify this as:

(C23) happens(E, T)← attempt(E, T), necessary(E, T).

In other words, attempt/2 captures the reaction event pro-
duced by the environment, while the necessary/2 specifica-
tion is part of the physics. In the distributed Packet-World,
we model an agent moving from one container to another in
this way. For this purpose we define necessary/2 as:

necessary(E, T)←
happens(E∗, T),
E∗[actor⇒A, move ⇒ Pos],
outside borders(this, Pos),
neighbouring at(this, [], [C], 1, Id, square, position, Pos, T),
E[move to⇒(C, Id) agent⇒A,type⇒physical act].

The definition above specifies that the environment should
move an agent A who is in this current container to the
square Id of container C with position Pos, as a consequence
of the agent trying to move outside the boarders of this
container. The event E is an event generated by the agent
environment.

(C23) is used also to capture a process in the agent envi-
ronment. The main role of such an abstraction is to support
ongoing activities within a container, making a container an
active entity through a relationship of causality. An exam-
ple of a process is a force applied to an object: since there is
an evolution over the time of an action, the process related
to the force produces events accordingly to the intensity of
the force applied to the object. A more detailed discussion
on this topic is beyond the scope of this work.

3.3.3 Distributed Passive Perception
We have already seen that the detectable/3 and the sub-

scribes/3 predicates specify the delivery semantics of an agent
environment. However, to deal with a distributed agent en-
vironment we have to modify such predicates to use the AEC
local, neighbouring, and regional versions for the notifica-
tion of the events. For this purpose we change subscribes/3
as follows:

subscribes(E,S,T)←
Class:E,
forwards(E, Max, T),
neighbouring instance of(this, [], , Max, S, sensor, T),
neighbouring at(this, [], , Max, S, sensor, senses, Class, T),
neighbouring at(this, [], , Max, S, sensor, status, open, T).

This new definition of subscriptions identifies first the
class of event, finds the maximum number of containers
Max that the event can be forwarded, and then finds all
the sensors within this neighbourhood that can sense the
event. The forwarding of an event is specified according
to the policies of the distributed environment for a certain
type of event. For example, the forwarding of a speech act
is specified as:

forwards(E, I, T)←
Class: E [intensity⇒I],
is a(Class, speech act).

The number of containers notified in the case of the speech
act depends on the intensity attribute of the event. For in-
stance, if a speech act event has to be detected only in the
adjacent and local container, the agent will produce an event
with intensity I equal to 1.

To complete the definition of what is detectable in the
agent environment we need to provide domain constraints
for interference. For the distributed Packet-World, we define
these as:

interfered(E, S, T) ←
E[actor⇒ Actor, type⇒ Type],
holds at(Actor, entity, position, XYe, T),
is physical action(Type),
forwards(E, Max, T),
neighbouring at(this, [], , Max, A, picker, sensor, S, T),
neighbouring at(this, [], , Max, A, picker, position, XYa, T),
neighbouring at(this, [], , Max, Id, entity, position, XYent, T),
in between(XYent, XYa, XYe).

In this way, the delivery semantics of an application can
be defined according to the requirements we have for the
distributed agent environment. The AEC allows the devel-
oper to customise the agent environment according to these
needs.

4. IMPLEMENTATION ISSUES
To accommodate the distributed environment model of

the AEC presented here we need to extend the GOLEM
model presented in [4] with a new reference model shown
in Fig. 5. As with [4], we have a notification module, a
passive/active perception module, an attempts module, a
container connector interface, a process module specifying
the environment’s reactions, and a physics module. Un-
like [4], however, we have now a new AEC state, a mobility
module (within the connector interface) to support agents
moving between containers, a context daemon to deal with
distributed Prolog queries, and a new synchroniser module
to synchronise the various containers. We outline next the
need to implement the three new modules of this extended
COLEM in AEC: the mobility module, the context daemon,
and the synchroniser module.



4.1 The Mobility Module
One of the issues of a distributed environment is that

an agent may have to move from one container to another
(destination container) in order to access resources and in-
teract with them. For this purpose a mobility module has
been introduced within the connector interface of GOLEM.
This enables the serialisation of an agent body that is im-
plemented as a set of Java classes, and the serialisation of
the agent mind implemented using SWI-Prolog [1]. Since
both Java and SWI-Prolog support serialisation, our infras-
tructure supports strong mobility between containers. The
deployment context and the modules within the physics are
implemented as Prolog modules in tuProlog [26]. This Pro-
log engine was chosen because it allows the registration of
Java objects within the Prolog context, has reflection mech-
anisms to translate Prolog calls to Java calls, and provides
a programmable medium of interaction to constrain and en-
able the coordination between agents.
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Figure 5: The New GOLEM Reference Model.

4.2 The Context Daemon
On top of the deployment context which handles the in-

teraction within a container, we have added a context dae-
mon that wraps the deployment context handling the AEC
queries coming from other containers. To access the context
of a container B from a container A we use the proxy pat-
tern that allows us to represent container B in the container
A. The predicates of the AEC in the container A will then
make use of the proxy to query the context daemon of con-
tainer B. Put another way, the proxy is a stub towards the
context daemon and allows for remote method invocation on
it. The methods here are predicates such as holds at/5 and
locally at/8. The important point here is that the proxy
allows for distributed backtracking via the transportation
layer, which makes the whole approach quite powerful. An-
other important point to make is that the Context Daemon
allows for multiple queries to be performed on a single con-
tainers working as a Web server: the declarative context of
the GOLEM container is copied to perform a query and de-
stroyed when not needed anymore. This avoids deadlocks
and prevents an external entity to write in the original con-

text of the container.
Another aspect of the implementation is that it seeks to

minimise the number of messages exchanged between con-
tainers in the query phase. For this we added optimisation
predicates in the AEC module, where rather than asking for
just one attribute at a time, we ask for multiple attributes
instead. For example we define locally at many/1 to query
multiple attributes as follows:

locally at many([]).
locally at many([Oterm | Oterms])←

locally at one(Oterm),
locally at many(Oterms).

locally at one((CId, Id, Class, Attr, Val, T))←
locally at(CId, Id, Class, Attr, Val, T) .

In this way, we optimise the number of queries to the
Context Daemon but we still need to deal with distributed
backtracking. We deal similarly with the other predicates of
the AEC, such as neighbouring at/9 and regionally at/9.

4.3 The Synchroniser Module
Another issue that we had to take into consideration in

our implementation is that of synchronisation. A synchro-
niser component has been introduced to alleviate the issue
of keeping an ordering between events generated in different
containers. Every container in the distributed topology syn-
chronises with its super-container using a PTP (Precision
Time Protocol) described in the IEEE standard 1588. In
this protocol a super-container sends a synchronisation mes-
sage – SYNC message – with an estimated value of the time
cyclically to the connected sub-containers. Parallel to this,
the time at which the message leaves the sender is measured
as precisely as possible, if possible at the nanosecond by the
Java clock. The super-container then sends this actual ex-
act transmission time of the corresponding SYNC message
to the sub-containers in a second (follow-up) message. The
sub-containers also measure the reception time of these mes-
sages as precisely as possible and correct the offset value to
the one of the super-container. The sub-container clock is
then corrected by this offset. If the transmission line were
to have no delay, both clocks would be synchronized. We
do not take into consideration any addition delays here and
further consideration of this issue is beyond the scope of this
work.

5. EVALUATION
The AEC formalism works as a distributed backtracking

algorithm that moves from one container to another until
a solution is found. The main purpose of AEC is to link
the physics of containers as the distributed Packet-World
presented here. However, to support such distributed appli-
cations we need to ensure a certain level of efficiency.

In this section we evaluate the performance of our ap-
proach on a medium scale network of containers where we
show the behaviour of the neighbouring at/9 predicate. The
evaluation has been performed on a Intel Centrino Core 2,
with 1GB of RAM and 1.9GHz. The most suitable topology
for AEC is that of spanning trees as shown in Fig. 6. The
AEC can also deal with graphs, but due to the fact that
AEC implements a distributed backtracking, a node could
be part of a solution multiple times, leading to performance
issues.

The evaluation, done in GOLEM, is based on a spanning-
tree topology of 50 containers where we register approxi-



Figure 6: Agent Environment Topology.

mately 100 objects per container in the topology randomly.
The attributes of such objects are then checked using neigh-
bouring at/9 queries. The evaluation of the neighbouring at/9
predicate is shown in Fig. 7.

Figure 7: Neighbouring at/9 Results.

Since objects are registered randomly, querying an object
near the container from where the query is performed re-
quires less time. The result shows that if the topology gets
bigger, also the time to perform the neighbouring at/9 query
gets longer, following a linear asymptote. This result tells us
that it is acceptable to use the AEC to link the physics of ad-
jacent containers, but tells also that the AEC is not suitable
for discovery of entities in large networks, because the time
to retrieve the affordances of an entity can be long. Note also
that the evaluation of neighbouring at/9 is representative for
the other predicates of the AEC (C17,C18,C21,C22) because
they have the same behaviour from a network standpoint,
except that these other predicates consider super and sub-
containers rather than neighbour containers, meaning that
rather than moving horizontally in the topology they move

vertically.

6. RELATED WORK
The first work that we consider relevant to ours is the one

presented by Gazzotti et al. [10], where the architecture of
an event-based middleware is modelled for agents that in-
teract by means of events. Their infrastructure may deploy
different coordination laws using the notion of local interac-
tion context, which defines the agent perceivable world, as
a place where the interaction occurs. One advantage of this
work is that it allows us to have a neat separation between
inter-agent and intra-agent interactions since an agent’s goal
is specified within the internal reasoning of the agent, while
the coordination between the agents is specified in the lo-
cal interaction context. Such a context takes the form of
a programmable coordination medium with a set of prim-
itives operations that let the agents access it and a set of
laws which define the internal behaviour in response to in-
teraction events that the agents can generate or subscribe
to. The coordination medium represented by the local inter-
action context works as an event dispatcher that receives, re-
distributes and elaborates events according to the behaviour
programmed in it. Events are notified to the proper agent
according to the signature of the event to which the agents
are subscribed. Particular emphasis is given to the fact that
the agents can move in the network across local interaction
contexts. As a consequence the mobility is intended as a
movement across organisations and not just across locations
of the distributed infrastructure.

In our work, a single local interaction context can be seen
as a container representing a portion of the distributed envi-
ronment. Our main advantage is that events and primitives
about subscription, notification, and delivery of events are
defined in the AEC, whereas in the model proposed by Gaz-
zotti et al. the structure of the events and the primitives of
interaction remain undefined. Similarly to the model of Gaz-
zotti et al., our new implementation of GOLEM in AEC sup-
ports mobility of agents and subscription to events through
sensors, although the emphasis of AEC is not on the mobil-
ity part of an infrastructure, but on the interactions between
the containers defining the distributed agent environment.
In addition, the AEC formalism deals with event persistence
implicitly, offering an easy way to give historical information
about the interaction when needed. Moreover, the AEC al-
lows our containers to define a distributed but connected
topology where the rules can be shared between contain-
ers as well as being specific to the local context. Further-
more, GOLEM defines the concept of affordances to describe
declaratively the producers and subscribers within the sys-
tem, allowing an heterogeneous environment where agents
and objects can coexist.

Natali et al [18] define a Java-based framewok for the de-
velopment of component-based software systems. Such a
framework focuses both on specifying the logic of interaction
at the component level and on specifying the glue between
the components deployed within the system. The work re-
lies on first-order logic as the computational reference model
for describing and defining the logic of interaction. In par-
ticular the framework specifies the logic of interaction at the
component level, defining the interactive capabilities of in-
dividual components, and at the system level specifying the
laws that define and govern the interaction that characterise
the overall ensemble of the components together. Two main



entities of the system are used: Actors and Kernels. Ac-
tors are components meant to provide some kind of task or
service which can be added or removed dynamically from a
kernel. Kernels provide actors with specific services for sup-
porting their interaction, working as the environment for the
components. As a consequence the system is composed by a
kernel and a dynamic set of actors linked through the same
kernel. Components are characterised by the set of interac-
tion signals that they can generate and receive. The kernel
role is to act as a glue which enables mediates and controls
the generation of output interaction signals. Of particular
importance in the system are the interaction laws and the
interaction vetoers. The former specify how the event listen-
ing happens, allowing a dynamic set of listeners to observe a
specific interaction signal generated by a specific emitter or
actor, the latter can specify cases when a component could
prevent an event to be dispatched to another actor. More
complex models can be created composing the primitives
provided in the basic model.

There are several similarities between the model proposed
by Natali et al. and an agent environment specification in
AEC. First of all, the kernel abstraction can be seen as a
container whose set of physical laws constrains the inter-
action in the system. Making use of sensors/triggers and
emitters/effectors we can specify the capabilities of an en-
tity deployed in the system. Our specification of the new
GOLEM infrastructure has several advantages on the pro-
totype proposed by Natali et al. First our use of AEC makes
the specification of the interaction explicitly via notification,
delivery, subscription, and distribution, including the im-
plicit treatment of event persistence. Using AEC, GOLEM
allows for a set of containers to interact and being controlled
by coordination laws mediated in a distributed manner.

The JEDI platform [9] is an example of a distributed
event-based infrastructure that could support agents. Such
a platform is not explicitly based on the concept of agent, the
authors prefer to abstract away an talk about active objects,
autonomous component, each with its own thread of con-
trol, performing application specific tasks. In JEDI, events
are represented as ordered set strings, which are generated
by active objects and sent to a component called event dis-
patcher (ED). The role of the ED function is to notify events
to active objects. In order to declare the classes of events
the active object is interested in, it has to subscribe the
class of events in the event dispatcher. Active objects can
also arbitrarily unsubscribe their own interests. A hierarchi-
cal architecture of Dispatcher Servers is also proposed that
can be interconnected to create a dissemination tree for the
notification of events. The JEDI infrastructure proposes a
synchronisation strategy called causal ordering to ease the
issue of keeping an ordering between the events in a dis-
tributed infrastructure. In such a strategy, the events that
are a consequence of other events are always delivered after
the events that caused them. Such an infrastructure allows
for mobility through serialisation of active objects, where
the active objects are allowed to subscribe and unsuscribe
their interest from the dispatcher server according to the
position where they are in the topology.

With respect to JEDI, GOLEM deals explicitly with ac-
tive entities that are cognitive agents and object that are
reactive. The specification of an event dispatcher in AEC
can be based on a distributed agent environment. Since
there is an explicit model for the topology of the distributed

environment, the dispatching and notification of events in
AEC can be modified according to the particular topology
of the environment and according to the event produced,
while in JEDI this issue is not considered. Like JEDI the
new GOLEM implementation presented here support the
mobility of software entities through the serialisation of Java
classes, and the dynamic event binding is realised register-
ing sensors and effectors of the agents in the new container.
GOLEM also supports the discovery of described entities
through their affordances which JEDI abstracts away from.

HERMES [22] is another DEBS infrastructure with an ad-
vanced distributed event-based system model. The system is
based on the concept of event broker, which works as a server
for event publishers and event subscribers. The event bro-
kers are distributed in the system by means of a distributed
hash table created on top of the event types advertised in the
system by event publishers. HERMES provides two routing
protocols that are type-based and type-based routing with in-
heritance to notify event subscribers, where the difference
between the two is given by how the event dissemination
trees are created. HERMES also introduces the concept
of rendezvous nodes, which are in charge of the definition of
dissemination trees. Differently from other platforms, HER-
MES allows the definition of events as objects, or concepts
of an ontology, with inheritance of the attributes from the
top-level of the hierarchy to the bottom level. To enhance
the robustness of the approach, HERMES handles the situ-
ation where an event broker leaves the network by mean of
heartbeat messages exchanged by event brokers in order to
update the dissemination trees periodically. If a rendezvous
node is failing, another one can take over.

The main difference between GOLEM and HERMES is
that the agent environment does not work just as an event
dispatcher, but also as a mediator for the interaction hap-
pening in it. Similarly, HERMES and in general DEBS do
not consider the entities to be situated in a particular envi-
ronment were they interact. Due to the fact that there is no
need to provide mediation systems like HERMES and JEDI,
what happens is that modelling heterogeneous systems, like
the one proposed in this paper, is very hard because of lack
of coordination mechanism (like the physics of GOLEM) to
avoid inconsistent states and due to the fact that there is
no support to perceptions and physical actions. To model
a MAS as a DEBS system, we need to take into consider-
ation more factors than just how to dispatch events from
the point of view of interaction. Since GOLEM resides at
a higher level of abstraction than JEDI and HERMES, an
advantage of the GOLEM infrastructure as defined here is
flexibility: mediating the interaction of agents and objects
allows us to potentially define a different dispatching pol-
icy according to the particular event. We can achieve this
by modifying/adding predicates to the AEC or by adding a
new service to the agent environment in charge to receive a
selected number of types of events (or all of them) produced
in the environment and dispatch them according to the pol-
icy defined by the developer, without having to change the
whole infrastructure.

7. CONCLUSION
We have studied the development of distributed agent en-

vironments as distributed event-based systems specified in
the Ambient Event Calculus (AEC). The AEC is a logic-
based formalism that has been developed to support the



representation of a distributed agent environment as a per-
sistent composite structure evolving over time. Such a com-
plex structure can support the interaction between agents,
objects, and containers, entities that have their own exter-
nal observable state and can be distributed over a network.
We have shown how interactions between these entities are
specified in terms of events that represent actions executed
by agents on objects and other agents in the environment.
When events happen they are stored in containers and are
notified to agent sensors that subscribe to event descriptions
and as a result perceive the interactions. The AEC formal-
ism also allows changes caused by events to be delivered
across distributed containers, according to the topology of
the application environment. We have illustrated the use of
AEC and we have shown how to specify interactions within
the GOLEM agent platform applied to a specific agent sce-
nario. We have also implemented a prototype of the plat-
form and experimented with the scenario.

One of the contributions of the AEC is the hierarchi-
cal definition of a distributed agent environment defined
through containers which are recursively deployed in other
containers, where the issues of event dispatching and deliv-
ery semantics are handled according to the topology and
physical laws of the environment. The resulting framework
is a powerful mechanism for developing distributed multi-
agent systems capable of mediating the interaction of the
entities deployed in it, and supports both dynamic binding
of agents to events and mobility between containers.

The Packet-World example has been chosen here for sim-
plicity of presentation. More sophisticated applications of
GOLEM, in the way described here, include how to apply
multi-agent systems to support applications for (a) web-
service discovery, selection, and negotiation [6] and (b) 3D
virtual environments [5]. Future work involves testing the
AEC as used in GOLEM with application on ubiquitous
computing and ambient intelligence [25] and show how the
system can deploy context aware agents in small devices.
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