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Abstract

We present the design and implementation of
PROSOCS, a platform supporting the pro-
gramming of software agents that have a
mind and a body. The mind reasons au-
tonomously and logically via a collection
of logic theories with generic functionality,
developed using various extensions of logic
programming, and controls the overall be-
haviour of the agent via a cycle theory that
specifies preferred patterns of operation. The
body, on the other hand, provides sensors
and effectors for the mind to be able to ac-
cess and change the environment in which
the agent is situated.

PROSOCS has been developed using Prolog
- to program the functionality of the mind,
Java - to program the functionality of the
body, and the Peer-to-Peer system JXTA - to
provide the functionality required for agent
bodies to communicate and interact in an
open distributed environment.

1 Introduction

PROSOCS (Programming Societies of Computees)
is a platform that allows a developer to build software
agents in global computing environments [GC, 2003].
The platform is being developed as part of SOCS (So-
cieties of Computies), an EU research project investi-
gating the computational and logical models of indi-
vidual and collective behaviour of computational en-
tities — referred to as computees. Computees are soft-
ware agents; they are called computees to emphasise
a strong computational logic component representing
the cognitive and social capabilities of such agents.
The work for building PROSOCS is motivated by
the observation that techniques for developing inter-
actions in open computing environments result either
in low-level implementations with no obvious logical
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characterisation, which are, therefore, not verifiable,
or in abstract specifications possibly employing ex-
pressive logics with modalities, but which - as argued
by [Rao, 1996] - have shed very little light in actual
implementations of agent-based systems.

Another motivation of PROSOCS is based on the
observation that although a number of multi-agent
systems platforms and tools are available, for exam-
ple see [Nwana et al., 1999; Poslad et al., 2000;
Bellifemine et al., 2001], the programmer is often left
alone with the responsibility to develop the reason-
ing part of the agent from scratch. Alternatively,
whenever a more sophisticated language is available
for building the reasoning component [Bordini et al.,
2002], the programmer is often left alone again, this
time to develop the communication and interaction of
the agent in an open and distributed environment.

PROSOCS is a platform that offers to the program-
mer of an agent the reasoning and communication ca-
pabilities the agent needs to operate in an open en-
vironment for free. In this context, the programmer
is only required to specify a set of logic programming
theories describing the background knowledge neces-
sary for the agent to operate within a specific environ-
ment.

In this work we focus on the development of the
generic functionality offered by PROSOCS. We first
outline the components of PROSOCS in section 2,
including the logical model of agency in which the
reasoning of PROSOCS agent is based. Then in sec-
tion 3 we discuss the implementation of the logical
model and its integration with the peer-to-peer plat-
form JXTA. We compare our approach with existing
work in section 4, and we conclude in section 5, where
we also present our plans for future work.

2 Components of PROSOCS

2.1 The SOCS Reference Model

PROSOCS implements the reference model of SOCS
shown in Fig. 1. This reference model assumes that



an agent platform should contain a discovery service
that allows agents to discover each other dynamically,
a communication module to support inter-agent com-
munication, a society infrastructure to provide verifi-
cation of agent interactions and compliance to social
rules, an agent template to facilitate the creation of
agent instances, and an agent management module to
help with the creation and management of agents in
the platform.

AGENT

AGENT
MANAGEMENT

SOCIAL COMM.
INFRASTR. MODULE

DISCOVERY
SERVICE

AGENT
TEMPLATE

MESSAGE TRANSPORT

Figure 1: The SOCS Reference Model

Multiple instances of agents can be created from
the agent template. These agents can then communi-
cate with each other either privately or via the social
infrastructure that will test for compliance of their in-
teractions according to the social rules and protocols
available in it. The social infrastructure currently used
in PROSOCS is discussed separately in a companion
paper [Alberti et al., 2004].

2.2 The Agent Template

Creation of PROSOCS agents is based on the agent
template whose design [Stathis et al., 2002] builds
upon previous work in multi-agent systems, in par-
ticular, the head/body metaphor described by [Steiner
et al., 1991] and [Haugeneder et al., 1994], and the
mind/body architecture introduced by [Bell, 1995] and
more recently used by [Huang et al., 2001].
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Figure 2: The architecture of a single agent in the
special case where the agent’s body has three effectors
and one sensor.
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As depicted in Fig. 2, the body senses what is ex-
ternal to it by using sensors that can access the cur-
rent state of the external world. Information from the
sensors is then stored in the body state, which is a
data structure containing all the necessary informa-
tion that enables the body to act. The body state
is accessed by the mind which is effectively treated
as a process that produces actions for execution, to
enable the body to choose what to do next. More
importantly, the mind and the body can function as
co-routines, thus allowing the reasoning processes of
the mind to be performed concurrently with body’s
action execution and sensing of the environment.

2.3 A Logical Model of the Mind

In SOCS we have developed a logical model of agency
for building the mind of an agent that is called the
KGP (Knowledge, Goals and Plan) model. Asshown
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Figure 3: The KGP Model of Agency

in Fig. 3, a KGP agent is based on a set of reasoning
capabilities that allow that agent to perform planning,
temporal reasoning, identification of preconditions of
actions, reactivity and goal decision, together with a
sensing capability for the agent to perceive the envi-
ronment in which it is situated. An agent has an inter-
nal (or mental) state on which its various capabilities
operate. The capabilities are used by a set of transi-
tion rules describing how the internal agent changes,
given input from the environment. A cycle theory is
finally used to describe how transitions are sequenced
for the agent to behave in a particular way.

The internal state of a KGP agent is a triple
(K B,Goals, Plan), where:

e KB describes what the agent knows of itself and
the environment and consists of separate mod-
ules supporting the different reasoning capabil-
ities. For example, K Bp,, supports Planning,
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K Bgyq Goal Decision, etc. One part of the KB,
called K Bq reflects changes in the environment
and is typically updated by the agent when it
observes the environment through its sensing ca-
pability. We will assume that KBy is the only
part of the knowledge of the agent that changes
over time.

e Goals is a set of properties that the agent has
decided that it wants to achieve by a certain
time possibly constrained via some temporal con-
straints. Goals are split into two types: mental
goals that can be planned for by the agent us-
ing its Planning reasoning capability and sensing
goals that can not be planned for but only sensed,
via the Sensing capability, to find out from the
environment whether they hold or not. Goals
are initially introduced via the Goal Introduction
transition and the Goal Decision capability used
within this.

e Plan is a set of “concrete” actions, partially
time—ordered, of the agent by means of which
it plans (intends) to satisfy its goals, and that
the agent can execute in the right circumstances.
Each action in Plan relies upon preconditions
for its successful execution. These preconditions
might be checked before the actions are executed.
Preconditions are associated to actions via the
reasoning capability for the Identification of Pre-
conditions. Actions are added to the tree struc-
ture via the Planning reasoning capability and via
the Reactivity reasoning capability.

The operation of an agent is then given by the ap-
plication of transitions in sequences, which produce
progressive changes over the state of the agent. In
KGP these sequences are not determined by a one-
size-fits-all cycle of behaviour, as in BDI architectures
[Rao and Georgeff, 1995], but rather by reasoning with
a cycle theory. We will see later that such a theory
defines declaratively preference policies over the order
of application of transitions. These policies are sen-
sitive to changes in the environment and the internal
state of an agent, and provide a means of declarative
and intelligent control. Such declarative control is a
highly novel feature of PROSOCS agents in that it
allows the developer to build (behaviourally) hetero-
geneous agents based on different cycle theories.

3 The Implementation of PROSOCS

To realise the SOCS reference model we have chosen
to implement agents as intelligent peers on top of the
Peer-to-Peer JXTA Project [JXTA, 2004]. JXTA is
suitable for our reference model in that it supports,
amongst other, peer discovery protocols to implement
facilities of the discovery service, facilities for message
transport and structuring via a a pipe binding and
resolver protocols, as well as facilities to name peers
for agent management.

3.1 Implementation of the Body

When an agent is created in PROSOCS, the platform
creates a generic body which uses a JXTA API we

have built to import sensors (called listen and see) and
effectors (called speak and do). The body then creates
a mind (whose details will be described shortly) and
starts a new thread of control whose execution is based
on the pseudo-code below:

void bodyControl() {
do {
nextAction = askActionFromMind() ;
if (nextAction != null)
switch (isActionType(nextAction)){
case SENSING: doSensors(mextAction);
case COMMUNICATIVE: doSpeak(nextAction);
case PHYSICAL: doEffectors(nextAction);
}
nextPercepts = sensors.passiveObservation();
if (nextPercepts != null)
tellMind (nextPercepts);
} while (!stopped);}

The body asks the mind for an action to be executed.
This call activates the cycle theory to execute the next
transition, resulting in a change of the mind’s state.
The body then checks if the transition has generated
a new action and, if it has, the body carries it out. At
this point, the body will also passively observe to see
if there are any new events that are happening in the
environment. If there are any, the body will append
them as input to the mind’s percepts. This process
goes on forever, until the agent is stopped.

3.2 Implementation of the Mind

The language in which the mind of a PROSOCS
agent is specified comprises of the language of Logic
Programming with Priorities (LPP) [Dimopoulos and
Kakas, 1995) and the language of Abductive Logic Pro-
gramming (ALP) [Kakas et al., 1993] combined with
the Abductive Event Calculus [Shanahan, 1989]. We
build the mind using SICStus Prolog [SICStus, 2000]
and the bidirectional Java-Prolog interface Jasper it
provides; Jasper is used by the body to exchange in-
formation with the mind.

The State
We represent K By as assertions of the form:

e executed(Action, Time) — records that Action
has been executed at Time.

e observed(Property, Time) — represents that
Property has been observed to hold at Time.

e observed(Agent, Action, Time) — states that
an Agent has been observed to execute an Action
at a Time.

Goals and actions are organised as a tree with goals
and actions as nodes. Goals are represented by asser-
tions of the form:

goal(Goal, Parent, TempCs).

Goal and Parent are both of the form (Fluent,
Time), indicating that the agent is trying to achieve
the goal specified in the Fluent at a Time (Time is a
non-negative integer constrained by a the list of tem-
poral constraints TempCs). Similarly, actions are rep-
resented by assertions of the form:



action(Action, Parent, Preconds, TempCs).

Action is a pair (Operator, Time), whose Operator
must be executed at a Time (constrained as before by
a list of temporal constraints TempCs) provided that
the list of preconditions Preconds is satisfied in the
current state of the agent.

Proof-Procedures, Capabilities, & Transitions

To reason with priorities in PROSOCS we use Gor-
gias [Gorgias, 2003], an interpreter that implements a
formal proof for argumentation with context-sensitive
attacking relation which is sound and complete with
respect to the LPwNF semantics [Kakas et al., 1994].
Gorgias is used to develop the Goal Decision capabil-
ity and the cycle theory of the system. Similarly, for
reasoning abductively, PROSOCS uses C-IFF [C-IFF,
2003], an interpreter that implements both an exten-
sion and a refinement of the IFF proof-procedure for
abductive logic programming proposed by [Fung and
Kowalski, 1997]. C-IFF is used to implement the capa-
bilities of Planning, Reactivity, Temporal Reasoning,
as well as a Constraint Solver.

On top of the proof procedures for preference and
abductive reasoning we then build the various capabil-
ities of the mind. For example, to implement the Goal
Decision capability, we use a program of the form:

goal_decision(Goals):-
findall(G, gorgias_solve(G, _), Gs),
list_to_ordered_set(Gs, Goals).

This eventually calls Gorgias to select the list of goals
to be considered next. Similarly, the state of the mind
is then changed by transitions rules (which are for-
mally specified [Kakas et al., 2003]) based on the vari-
ous capabilities and additional functionality for chang-
ing the agent’s internal state.

Declarative Control

The cycle theory part of the mind, implemented in
LPP, regulates the operation of the agent, by using
preference reasoning to choose which transition to be
executed next. For example, we may choose to build
an agent that gives preference to responding to com-
municative acts received by another agent as a result
of the Passive Observation (PO) transition. What we
need to specify here is that after a PO transition, pref-
erence should be given to the Goal Introduction (GI)
transition. We specify this as a priority logic rule of
the form:

Rg(l)l* :rpo|ar(S,0) > rpoj«(S, 0) + comm_msg(O)

which in Gorgias syntax is written as:

ct_rule(prefer(step(’GI’,_ ), step(_,_)),
prefer(step(’GI’,_), step(_,_)), [1) :-
last_transition(’P0’, 0),
comm_msg(0) .

The Goal Decision capability then is used to decide
the response to the observation of the communicative
action held in O.

4 Related Work

At a first glance, the KGP model of agency used in
PROSOCS and the classical BDI model [Bratman et
al., 1988] appear to be similar. However, the models
are quite different in detail. One major difference is
that KGP is not based on a modal-logic approach to
represent an agent’s beliefs but instead it is based on
a non-monotonic computational logic that supports
defeasible reasoning for the knowledge of agents. As
we saw earlier, KGP does not have a fixed cycle and
like BDI allows plans to be generated dynamically (as
part of the reasoning process) and statically through
the use of plan libraries. For lack of space, we refer
the interested reader to [Kakas et al., 2003], for an
up-to-date review of KGP with the most important
models of agency available in the literature, including
BDI

We examine next an important effort in the develop-
ment of agent platforms, namely, the standardisation
work of FIPA. This proposes a reference model that is
based on a Directory Facilitator (DF) providing “yel-
low pages” services to other agents. A number of FTPA
compliant platforms, most notably JADE [Bellifem-
ine et al., 2001], FIPAOS [Poslad et al., 2000], ZEUS
[Nwana et al., 1999], and 3APL [3APL, 2004], rely on
a DF of this kind. PROSOCS differs from these plat-
forms in that the PROSOCS reference model relies on
a discovery service, so that when an agent is started
is being discovered by JXTA automatically. Our use
of JXTA pushes the handling of an agent’s presence
at the lower-level implementation of the platform, so
that the agent developer does not need to think about
registering with a yellow pages service at the appli-
cation level (as a notion we find DF being closer —
at least conceptually — to the social organisation of a
MAS application and not a component of the lower-
level platform).

In PROSOCS an agent is treated as a first-class ob-
ject in the sense that the developer can start an agent
and inherit a set of tools supporting the development
of both a reasoning component and the interaction
with the environment for free. Most of the FIPA com-
pliant platforms referred to in the previous paragraph
support only the interaction of the agent with the
environment, while the programmer has to develop
from scratch the reasoning component. To the best
of our knowledge, only the 3APL platform [Hindriks
et al., 1999; 3APL, 2004] provides a set of tools that
support the reasoning capabilities of the agent (for
the mind), including a deliberation cycle. However,
like all FIPA compliant platforms, the 3APL platform
does not have a society infrastructure [Alberti et al.,
2004] to test for conformance of protocols as we have
in PROSOCS.

The IMPACT platform [Arisha et al., 1999; Sub-
rahmanian et al., 2000] too treats agents as first-class
objects (in the sense discussed earlier), further facili-
tating the creation, deployment, interaction, and col-
laborative aspects of applications in a heterogeneous,
distributed environment. As with FIPA compliant
platforms, IMPACT relies on a yellow pages server



for keeping information about agents. However, in
IMPACT, when an agent is deployed the registration
is done automatically by the runtime environment of
the platform, and thus an agent does not have to regis-
ter explicitly by executing a communicative act. The
platform also provides an Agent Development Envi-
ronment for creating, testing, and deploying agents.
Unlike PROSOCS, where agents are built from scratch
by assuming a logic programming approach, an IM-
PACT agent may be built on top of an arbitrary
piece of software, defined in any programming lan-
guage. IMPACT uses deontic concepts to represent
action and action policies which in KGP correspond to
ALP integrity constraints, while the system relies on
an interval-based logic for temporal reasoning rather
than the Event Calculus approach of PROSOCS. How-
ever, IMPACT does not have a flexible cycle the-
ory and thus cannot support (behaviourally) hetero-
geneous agents, as we can in PROSOCS.

IndiGolog [Giacomo et al., 2001] is a high-level pro-
gramming language for robots and intelligent agents
that supports on-line planning and plan execution in
dynamic and incompletely known environments. Pro-
grams may perform sensing actions that acquire infor-
mation at runtime and react to exogenous actions. In-
diGolog is a member of the Golog family of languages
[Levesque et al., 1997] that use a Situation Calculus
theory of action to perform the reasoning required in
executing the program. Instead in PROSOCS we rely
on abductive logic programming and logic program-
ming with priorities combined with an Event Calculus
approach to program an agent. Moreover, goals can-
not be decided dynamically in IndiGolog, instead in
PROSOCS change according to the patterns specified
in a goal decision theory.

An extension of Golog called ConGolog [Giacomo
et al., 2000] has also been introduced, adding support
for concurrent processes with possibly different prior-
ities, interrupts, and exogenous events. However, like
earlier planning-based systems, Golog and ConGolog,
assume an off-line search model. To overcome the lim-
itation of off-line search, IndiGolog uses the notion of
exogenous actions assuming that there is a concurrent
process executing these actions outside the control of
the agent. This assumption implies that it is up to
the programmer of an agent to interface IndiGolog to
the rest of the agents of an application domain.

The logic programming language Go! [Clark and
McCabe, 2003] is descendant of the multi-threaded
symbolic programming language April [McCabe and
Clark, 1995], with influences from IC-Prolog II [Chu.
and Clark, 1993] and L&O [McCabe, 1992]. Go! has
many features in common with Prolog, particularly
multi-threaded Prologs, and provides types, higher—
level programming constructs, such as single solution
calls, iff rules, and the ability to define ‘functional’
relations as functions. However, as with IndiGolog,
Go! does not directly rely on any specific agent ar-
chitecture or agent programming methodology, hence
the system does not yet treat agents as first-class ob-
jects. As a result, facilities such as planning, temporal
reasoning, and preference reasoning are not available

but the programmer has to build them from scratch;
the system though provides library modules, so that
components can be reused once they are developed.

5 Conclusions and Future Work

We have presented PROSOCS, a platform supporting
the programming of software agents in open comput-
ing environments. The contribution of the platform
is that it integrates novel computational logic tech-
niques to build a mind for an agent, and advanced
peer-to-peer computing techniques to allow an embod-
ied mind to interact and communicate with an open
and distributed environment. A modular approach al-
lows an agent to be built in terms of components, such
as the mind and the body, which in turn consist of ad-
ditional components, such as the mind’s cycle theory
and knowledge, or the body’s control, sensors, and ef-
fectors.

For future work we plan to experiment with the
platform on global computing applications and test
the PROSOCS agents and social infrastructure with
complex problems. We also plan to extend PROSOCS
to support interactions of agents with the environ-
ment, other than the current inter-agent communica-
tion support.
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