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1. Introduction, Terminology and Notation
In this section we provide motivation for the approaches and results

described in this chapter. We overview the main results on the topics
of the chapter and give basic terminology and notation used throughout
the chapter.
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2 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

1.1. Introduction
The purpose of this chapter is to introduce the reader to recently de-

veloped concepts and results on exponential (size) neighborhoods and
domination analysis for the traveling salesman problem (TSP). Even
though these topics are of certain practical relevance, we restrict our-
selves to the theoretical study. The body of computational experiments
with exponential neighborhoods is insufficient yet to carry out mean-
ingful comparisons between new and classical approaches; we refer the
reader to the papers [4, 8] and Chapter 9, where certain computational
experience with exponential neighborhoods is reported. The reader may
consult Chapters 9 and 10 of this book for discussion of the experimental
performance of classical and new heuristics studied in the domination
analysis part of this chapter.

It is worth noting that while the symmetric traveling salesman prob-
lem (STSP) can be considered, in many cases, as a subproblem of the
asymmetric traveling salesman problem (ATSP), sometimes this view is
too simplistic since the ATSP and STSP are defined on different graphs
– complete directed and undirected. Thus, in particular, the number
of tours in ATSP and STSP on n vertices is (n − 1)! and (n − 1)!/2,
respectively. Therefore, while we will mostly consider the ATSP in this
chapter, we will provide a separate treatment of the STSP when needed.
We will use the term TSP when it is not important whether the ATSP
or STSP is under consideration.

Local search heuristics are among the main tools to compute near
optimal tours in large instances of the TSP in relatively short time, see,
e.g., Chapters 8, 9 and 10 of this book. In most cases the neighborhoods
used in the local search algorithms are of polynomial cardinality. One
may ask whether it is possible to have exponential size neighborhoods for
the TSP such that the best tour in such a neighborhood can be computed
in polynomial time. Fortunately, the answer to this question is positive.
(This question is far from being trivial for some generalizations of the
TSP, e.g. Deineko and Woeginger [11] conjecture that for the quadratic
assignment problem there is no exponential neighborhood ”searchable”
in polynomial time.)

There are only a few papers on exponential neighborhoods published
before the 1990s: Klyaus [31], Sarvanov and Doroshko [42, 43] and Gutin
[15, 16]. In particular, [43] and [15] independently showed the existence
of (n/2)!-size neighborhood for the TSP with n vertices (n is even). In
this neighborhood, the best tour can be computed in O(n3) time, i.e.,
asymptotically in at most the same time as a complete iteration of 3-Opt,
which finds the best tour among only Θ(n3) tours.
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Punnen [35] showed how to generalize the neighborhood from [15, 43]
and Gutin [17] proved that one of Punnen’s extensions provides neigh-
borhoods of size Θ(exp(

√
n/2)(n/2)!/n1/4). We study basic results on

exponential neighborhoods in Section 2. Notice that while Deineko and
Woeginger [11], in their own words, ”only scratched the surface” in their
survey on the topic, we provide more detailed treatment of some expo-
nential neighborhoods.

In Section 3, following Gutin and Yeo [22], we provide upper bounds
on the size of ATSP neighborhood. In particular, we prove that there is
no ATSP neighborhood of cardinality at least β(n−k)! for any constant
β > 0 and fixed integer k provided NP6⊆P/poly. (We provide an informal
description of the class P/poly in Section 3.2; for a formal introduction
of the topic, see [5].)

While it is natural to study the possible cardinality of neighborhoods,
it is clear that the size of a neighborhood is not the only parameter of
importance. Indeed, the neighborhood introduced in [15, 43] does not
perform well in computational practice. This may be a result of an un-
fortunate property of the neighborhood: many tours of the TSP are not
reachable from each other under neighborhood structure imposed by this
neighborhood. Carlier and Villon [8] showed that their neighborhood is
much better in this respect: each tour can be reached from any other
tour in at most logarithmic number (in n) of iterations if the choice of
a tour at every iteration is ”right”. Gutin and Yeo [19] introduced a
neighborhood structure, which makes the tours much closer: for every
pair of tours T1, T5 there are three tours T2, T3, T4 such that every Ti is
in the neighborhood of Ti−1, i = 2, 3, 4, 5. (The neighborhoods in [19]
are polynomially searchable.) We study the ”closeness” topic in Section
4.

Chapters 9 and 10 consider experimental performance of TSP heuris-
tics. While experimental analysis is of certain importance, it cannot
cover all possible families of TSP instances and, in particular, it nor-
mally does not cover the most hard ones. Experimental analysis provides
little theoretical explanation why certain heuristics are successful while
some others are not. This limits our ability to improve on the existing
algorithms quality and efficiency. It also limits our ability to extend
approaches successful for the TSP to other combinatorial optimization
(CO) problems.

Approximation analysis is a frequently used tool for theoretical eval-
uation of CO heuristics. Let H be a heuristic for the TSP, and let In be
the set of instances of the TSP of size n. In approximation analysis, we
use the approximation ratio rH(n) = max{f(I)/f∗(I) : I ∈ In}, where
f(I) (f∗(I)) is the cost of the heuristic (optimal) tour. Unfortunately,



4 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

in most of cases, estimates for rH(n) are not constants and provide only
a vague picture of quality of heuristics.

Domination analysis provides an alternative to approximation anal-
ysis. In domination analysis, we are interested in the number of feasible
solutions that are worse or equal in quality to the heuristic one, which is
called the domination number of the heuristic solution. In many cases,
domination analysis is very useful. In particular, some heuristics have
domination number 1 for the TSP. In other words, those heuristics, in
the worst case, produce the unique worst possible solution. At the same
time, the approximation ratio is not bounded by any constant. In this
case, domination number provides a far better insight into the perfor-
mance of the heuristics.

Results on domination number of TSP heuristics are considered in
Section 5. Domination number was formally introduced by Glover and
Punnen [14]1 in 1996. Interestingly, the first important results on domi-
nation number can be traced back to the 1970s, see Rublineckii [39] and
Sarvanov [40]. The domination number domn(H, I) of a TSP heuristic
H for a particular instance I of the TSP with n vertices is the number of
tours in I which are at least as costly as the tour found by H. The dom-
ination number domn(H, n) of H is the minimum of domn(H, I) over all
instances I with n vertices. Since the ATSP on n vertices has (n − 1)!
tours, an algorithm for the ATSP with domination number (n − 1)! is
exact. The domination number of an exact algorithm for the STSP is
(n−1)!/2. Similarly, one can define the domination number of heuristics
for other CO problems.

Glover and Punnen [14] asked whether there exists a polynomial time
STSP heuristic with domination number at least (n − 1)!/p(n), where
p(n) is a polynomial in n, provided P6=NP. Answering the this ques-
tion, Gutin and Yeo [23] introduced polynomial time heuristics for the
ATSP with domination number at least (n − 2)!. Two years after [23]
was completed, we found out that Rublineckii [39] and Sarvanov [41]
answered the above question already in the the 1970s by showing that
certain polynomial time heuristics for the STSP and the ATSP are of
domination number at least (n−2)! when n is odd and (n−2)!/2 when n
is even. Punnen, Margot and Kabadi [38] proved that the best improve-
ment2 versions of some well-known local search heuristics for the TSP
after polynomial number of steps produce tours which are not worse than

1Actually, they introduced an equivalent concept of domination ratio, which is the ratio of
the domination number and the number of tours.
2During every iteration, best improvement local search algorithms compute the best tour in
the current neighborhood.
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at least Ω((n − 2)!) other tours. Punnen and Kabadi [37] obtained an
O(n2) time heuristic with domination number at least

∑n−2
k=1(k!). Gutin

and Yeo [21] investigated the existence of polynomial time heuristics
with domination number Θ((n− 1)!).

Some heuristics may have a small domination number (thus, indi-
cating that they are not useful, in general). For example, the ”anti-
greedy” heuristic for the ATSP that starts by choosing an arc of max-
imum cost and proceeds by choosing the most expensive arc among
remaining eligible ones, is of domination number 1 (consider an instance
with c(i, i+1) = 1 for every i = 1, 2, ..., n−1, c(n, 1) = 1, and c(i, j) = 0
for every j 6= i + 1 and (i, j) 6= (n, 1)). While the fact that the domi-
nation number of the anti-greedy heuristic equals one is quite expected,
in Section 5, we prove that the same is true for the greedy and nearest
neighbor algorithms for both the ATSP and STSP (these results were
obtained by Gutin, Yeo and Zverovich in [24]). Punnen, Margot and
Kabadi [38] proved that some other TSP algorithms are of very small
domination number. In particular, they showed that the well-known
double tree heuristic for the STSP is of domination number 1.

In this chapter we discuss approaches and results obtained mostly in
the last decade. Despite limited time and effort in the areas of domi-
nation analysis and exponential neighborhoods, one can clearly see that
there is a significant progress as well as a high potential. Although a few
results and approaches have already been used in practice (see Chapter
9 and [4, 8, 13]), it seems that much more research is required before the
above mentioned areas can be used to design new high quality heuristics
for the TSP and other CO problems. We hope that this chapter will
provide motivation for scholars and practitioners to continue studying
the domination analysis and exponential neighborhoods for the TSP and
other CO problems.

1.2. Basic Terminology and Notation
Recall that the ATSP is stated as follows. Given a weighted complete

digraph (
↔
Kn, c), find a Hamiltonian cycle in

↔
Kn of minimum cost. Here

the cost function c is a mapping from A(
↔
Kn) to the set of reals. The

cost of an arc (x, y) of
↔
Kn is c(x, y). It is assumed that V (

↔
Kn) =

{1, 2, . . . , n}. The mapping c can be determined by the cost matrix [cij ].
The STSP is defined similarly with the only difference that the graph
under consideration is complete undirected (denoted by Kn). In this
case, the matrix [cij ] is symmetric. Unless it is specified otherwise, n is
the number of vertices in the instance of the TSP under consideration.
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Let C = x1x2...xkx1 be a cycle in
↔
Kn. The operation of removal

of a vertex xi (1 ≤ i ≤ k) results in the cycle x1x2...xi−1xi+1 . . . xkx1

(thus, removal of xi is not deletion of xi from C; deletion of xi gives
the path xi+1xi+2 . . . xkx1x2 . . . xi−1). Let y be a vertex of

↔
Kn not in C.

The operation of insertion of y into an arc (xi, xi+1) results in the cycle
x1x2...xiyxi+1 . . . xkx1. The cost of the insertion is defined as c(xi, y) +
c(y, xi+1)− c(xi, xi+1). For a set Z = {z1, . . . , zs} (s ≤ k) of vertices not
in C, an insertion of Z into C results in the tour obtained by inserting
the nodes of Z into different arcs of the cycle. In particular, insertion of
y into C involves insertion of y into one of the arcs of C.

For a path P = x1x2...xm in (
↔
Kn, c), the contraction3 of P in (

↔
Kn, c),

(
↔
Kn /P, c′), is a complete digraph with vertex set

V (
↔
Kn /P ) = V (

↔
Kn) ∪ {vP } − V (P ),

where vP /∈ V (
↔
Kn), such that the cost c′(u, w), for u, w ∈ V (

↔
Kn /P ), is

defined by c(u, x1) if w = vP , c(xm, w) if u = vP , and c(u, w), otherwise.
We can consider an arc a = (x, y) as the path xy of length one; this
allows us to look at

↔
Kn /a as a special case of the above definition.

The above definition has an obvious extension to a set of vertex-disjoint
paths.

Further definitions on directed and undirected graphs can be found
in the corresponding appendix of this book; see also [6].

2. Exponential Neighborhoods
We adapt the definition of a neighborhood for the TSP due to Deineko

and Woeginger [11]. Let P be a set of permutations on n vertices. Then
the neighborhood (with respect to P ) of a tour T = x1x2 . . . xnx1 is
defined as follows:

NP (T ) = {xπ(1)xπ(2) . . . xπ(n)xπ(1) : π ∈ P}.

A neighborhood structure consists of neighborhoods for every tour T .
The above definition of a neighborhood is quite restrictive4 but reflects
the very important ”shifting” property of neighborhoods which distin-
guishes them from arbitrary sets of tours. Another important property

3The operation is called path-contraction in [6], but since we do not consider any other type
of contraction, we will use the shorter name.
4In particular, this definition implies that the neighborhood of every tour is of the same
cardinality.
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usually imposed on a neighborhood N(T ) of a tour T is that the best
among tours of N(T ) can be computed in time p(n) polynomial in n.
This is necessary to guarantee an efficient local search. Neighborhoods
satisfying this property are called polynomially searchable or, more pre-
cisely, p(n)-searchable.

In the rest of this section and in Section 4, we only consider the
ATSP: the neighborhoods we describe below can be readily adapted to
the STSP.

2.1. The Pyramidal Neighborhood
In this subsection, we consider the pyramidal neighborhood intro-

duced by Sarvanov and Doroshko [42]. Let H = x1x2 . . . xnx1 be a
tour. Define the pyramidal neighborhood of H, denoted by PY (x1,H),
as follows.

A tour G = xi1xi2xi3 . . . xinxi1 , with i1 = 1, belongs to PY (x1,H), if
and only if there is an integer k, such that

i1 < i2 < . . . < ik > ik+1 > ik+2 > . . . > in.

Observe that ik = n. Note also that given {i2, . . . , ik−1} (together
with H and x1) G is uniquely determined, and given G, the set

FORW (G, H) = {i2, i3, . . . , ik−1}

is uniquely determined. The neighborhood structure is not symmetrical
as if H = x1x2x3x4x1 and G = x1x3x4x2x1, then G ∈ PY (x1,H), but
H 6∈ PY (x1, G). We first prove the well-known fact that the size of
PY (x1,H) is exponential.

Theorem 1 |PY (x1,H)| = 2n−2.

Proof: As mentioned above the tours G ∈ PY (x1,H) are uniquely
determined by FORW (G, H), which is a subset of {2, 3, . . . , n − 1} (of
cardinality n − 2). Since any subset (including the empty set and the
whole set) determines a tour in PY (x1,H), and there are 2n−2 such
subsets, we are done. �

The fact that the pyramidal neighborhood can be searched in time
O(n2) was proved for the first time by Klyaus [31]; for proofs of this
assertion and its extensions, see Section 4 of Chapter 11.

Theorem 2 We can find an optimal tour in PY (x1,H) in O(n2) time.



8 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Since every tour in PY (x1,H), when H = x1x2 . . . xnx1, either uses
the arc x1x2 or the arc x2x1 (and either xn−1xn or xnxn−1), the al-
gorithm of Theorem 2 will not produce a good tour if these arcs are
expensive. One way of avoiding this problem is to consider the neigh-
borhood PCV (H) = ∪n

j=1PY (j, H) instead (PCV stands for pyramidal
Carlier-Villon as Carlier and Villon [8] introduced this neighborhood).
Clearly, by Theorem 2, we can find an optimal tour in PCV (H) in O(n3)
time, by just running the algorithm of Theorem 2 n times.

It is not difficult to show that, for example, the well-known 2 − Opt
neighborhood is a subset of PCV (i.e., 2−Opt(H) ⊂ PCV (H)) for the
STSP. Deineko and Woeginger [11] proved that PCV covers at least 75
% of tours in 3-Opt. For some experimental results using PCV we refer
the reader to [8].

2.2. The Assign Neighborhood and Its
Variations

For the special case of |Z| = bn/2c (see the definition of Z below),
this neighborhood was introduced in [15, 43]. Punnen [35] introduced
the general definition of this neighborhood as well as its further extension
(see the last paragraphs of this subsection).

Let T = x1x2...xnx1 be a tour and let Z = {xi1 , xi2 , ..., xis} be a set of
non-adjacent vertices of T , i.e., 2 ≤ |ik−ir| ≤ n−2 for all 1 ≤ k < r ≤ s.
The assign neighborhood of T with respect to Z, N(T,Z), consists of the
tours that can be obtained from T by removal of the vertices in Z one by
one followed by an insertion of Z into the cycle derived after the removal.
(Recall that, by the definition of insertion of several vertices into a cycle
C in Subsection 1.2, the vertices of Z are inserted into different arcs of
C.) For example,

N(x1x2x3x4x5x1, {x1, x3}) =
{x2xix4xjx5x2, x2xix4x5xjx2, x2x4xix5xjx2 : {i, j} = {1, 3}}.

Theorem 3 [17, 35] The neighborhood N(T,Z) is O(n3)-searchable.

Proof: Let C = y1y2 . . . yn−sy1 be the cycle obtained from T after
removal of Z and let Z = {z1, z2, . . . , zs}. By the definition of inser-
tion, we have n − s ≥ s. Let φ be an injective mapping from Z to
Y = {y1, y2, . . . , yn−s}. (The requirement that φ is injective means that
φ(zi) 6= φ(zj) if i 6= j.) If we insert some zi into an arc (yj , yj+1), then
the weight of C will be increased by c(yj , zi) + c(zi, yj+1) − c(yj , yj+1).
Therefore, if we insert every zi, i = 1, 2, . . . , s, into (yφ(i), yφ(i)+1), the
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weight of C will be increased by

g(φ) =
s∑

i=1

c(yφ(i), zi) + c(zi, yφ(i)+1)− c(yφ(i), yφ(i)+1).

Clearly, to find a tour of N(T,Z) of minimum weight, it suffices to
minimize g(φ) on the set of all injections φ from Z to Y. This can be
done using the following weighted complete bipartite graph B. The
partite sets of B are Z and Y . The weight of an edge ziyj is set to be
c(yj , zi) + c(zi, yj+1)− c(yj , yj+1).

By the definition of B, every maximum matching M of B corresponds
to an injection φM from Z to Y. Moreover, the weights of M and φM

coincide. A minimum weight maximum matching in B can be found by
solving the assignment problem. Therefore, in O(n3) time, we can find
the best tour in N(T,Z). �

Let ins(n, s) be the number of tours in N(T,Z), s = |Z|, and let
n ≥ 5. Since there are k = n − s ways to insert x1 in C, k − 1 ways to
insert x2 in C when x1 has been inserted, etc., we obtain that ins(n, s) =
(n− s)(n− s− 1)...(n− 2s + 1). It is natural to ask what is the largest
possible size of the assign neighborhood for the ATSP with n vertices.
This question is answered in the following theorem. For a real r, [r]0
([r]1, resp.) is the maximum integer (semi-integer, respectively) that
does not exceed r (a semi-integer is a number of the form p/2, where p
is an odd integer); for an integer m, σ(m) = m mod 2.

Theorem 4 [17] For a fixed n ≥ 5, the maximum size of the assign
neighborhood equals

maxins(n) =
(n/2 + p0)!

(2p0)!
,

where p0 =
[√

1
8(n + 9

8) + 3
8

]
σ(n)

.

Proof: Assume first that n is even. Consider f(p) = ins(n, n/2 − p),
where p is a non-negative integer smaller than n/2. For p ≥ 1, the
difference ∆f(p) = f(p)−f(p−1) = b(−2p(2p−1)+(n/2+p)) = bq(p)/2,
where q(p) = −8p2 + 6p + n, b = (n/2 + p − 1)(n/2 + p − 2) · · · (2p +
1). Clearly, sign(∆f(p)) = sign(q(p)). Therefore, f(p) increases when
q(p) > 0, and f(p) decreases when q(p) < 0. For p ≥ 1, q(p) decreases

and has a positive root r =
√

1
8(n + 9

8) + 3
8 . Thus, f(p), where p ∈

{1, . . . , n/2} is maximum for p = [r]0.
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Analogously, when n is odd, we obtain that f(p) is maximum for
p = [r]1. �

The following asymptotic formula provides us with an estimate on how
large maxins(n) is. Note that, for 2m ≤ n ≤ 2m+1, ins(n, m) = [n+1

2 ]0!.

Theorem 5 [17] We have maxins(n) = Θ
(

e
√

n/2[n+1
2

]0!

n
1
4+[ 12 ]σ(n)

)
.

The value of maxins(n) is the maximum known size of a neighbor-
hood searchable in time O(n3). We can combine several neighborhoods
N(T,Z) of T for various sets Z and construct a polynomially search-
able neighborhood of size Θ(e

√
n/2[n+1

2 ]!nk) for every natural number
k [17]. Do there exist larger polynomially searchable neighborhoods?
Some stronger question is raised in Section 6.

For large values of n, the time O(n3) appears to be too high to be
used in local search algorithms. Thus, the following result is of interest
(observe that (n− 1)! = 2Θ(n log n)):

Theorem 6 [17] 1. For every β, 0 < β ≤ 2, there is an O(n1+β)-
algorithm for finding the best among 2Θ(n log n) tours.

2. For every positive integer r there exists an O(r5n)-time algorithm
for constructing the best among Ω(rn) tours.

Corollary 12 in Subsection 3.1 of this chapter implies that the first
part of this theorem cannot be, in some sense, improved.

Punnen [35] suggested an extension of the assign neighborhood. There
we allow one to remove paths rather than vertices and insert them back.
The rationale behind this extension is to preserve ”good” parts of the
current tour T . For example, one can use the following strategy: the
cheaper an arc a in T the larger the probability to preserve a. The
reader can easily add his/her own details to this approach. In practice
this more general approach seems to be more promising.

A small number of computational experiments on a fairly straight-
forward implementation of a local search heuristic using Punnen’s ex-
tension of the assign neighborhood were performed by Gutin, Punnen
and Zverovich (unpublished). In general, the results appeared to be too
modest in comparison to those of the state-of-the-art heuristics. To im-
prove the results, one should probably combine Punnen’s extension of
the assign neighborhood with some ”classical” neighborhoods.
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2.3. The Balas-Simonetti Neighborhood
The following neighborhood, was introduced by Balas [3] and studied

computationally by Balas and Simonetti in [4]. Although this neigh-
borhood has been defined for both ATSP and STSP, we consider here
only the ATSP case. Let k be any integer with 2 ≤ k ≤ n, let H =
x1x2 . . . xnx1 be a tour, and define the neighborhood of H, denoted by
BSk(x1,H), as follows (see [4]).

A tour G = xπ(1)xπ(2)xπ(3) . . . xπ(n)xπ(1) (with π(1) = 1) belongs to
BSk(x1,H) if and only if for all integers i and j with j ≥ i + k we have
π(i) < π(j).

In other words if a vertex, xj , lies k or more places after a vertex xi

in H, then xj must lie after xi in G (when one walks along the tour,
starting at x1). Furthermore, the inequality j ≥ i + k is not taken
modulo n, which is why the vertex x1 has a special function in the
above definition. The above neighborhood is not symmetric, as seen by
the following example with n = 5 and k = 3. Let H = x1x2x3x4x5x1,
G = x1x4x2x5x3x1, and note that G ∈ BSk(x1,H), but H 6∈ BSk(x1, G)
as x3 does not come after x4 in H.

In the proof of Theorem 8, we will illustrate how to find an optimal
solution in BSk(x1,H) in O(nk22k) time, by reducing the problem to a
shortest path problem in an auxiliary digraph, G∗, with at most nk(k +
1)2k−2 arcs. Note that for a fixed k this implies a linear algorithm, which
turns out to be quite effective in practice [4].

To the best of our knowledge, the following theorem that provides
bounds for the size of BSk(x1,H) is a new result.

Theorem 7 For n ≥ k(k + 1), (k
e )n−1 < |BSk(x1,H)| ≤ kn−1. Fur-

thermore, we have that |BS2(x1,H)| = Fib(n), where Fib(n) is the nth
Fibonacci number.

Proof: We will start by proving that (k
e )n ≤ |BSk(x1,H)|. First

assume that n = ik + 1, where i is an integer, and without loss of
generality let H = x1x2 . . . xnx1. Define F to be the set of all tours
of the form xπ(1)xπ(2)xπ(3) . . . xπ(n)xπ(1) with π(1) = 1 and {π(jk +
2), π(jk + 3), . . . , π(jk + k + 1)} = {jk + 2, jk + 3, . . . , jk + k + 1},
for all j = 0, 1, . . . , i − 1. This means that we only allow tours that
permute the first k vertices (not including x1), the next k vertices,
etc, but not vertices between these sets. Clearly the number of tours
in F is (k!)i and F ⊂ BSk(x1,H). Using Stirling’s formula we get
(k!)i > (

√
2πkkke−k)(n−1)/k > (k/e)n−1. This proves the case when

n− 1 is divisible by k.
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If n = ik + j, where 1 < j ≤ k, then we proceed as follows. We
still have i sets of size k we may permute, but now we have j − 1 ver-
tices left over (we do not count x1). We choose the i sets as follows:
{x2, x3, . . . , xk+1} is the first set, xk+2 is a left-over vertex,

{xk+3, xk+4, . . . , x2k+2}

is the second set, x2k+3 is a left-over vertex, etc. After all j − 1 left-
over vertices have been used, the sets will not have any vertices between
them. Since n ≥ k(k + 1) this can be done.

We can obtain a tour in BSk(x1,H) by permuting the sets and then
retaining every left-over vertex or inserting it in one of the places avail-
able. Since we have, on average, at least k possibilities for every left-over
vertex, we obtain that

|BSk(x1,H)| > (k/e)ikkj > (k/e)n−1.

We will now prove that |BSk(x1,H)| ≤ kn−1. We will build the
tour starting at x1, and show that we have at most k choices at each
position. Assume that we have built a partial tour (i.e. a path),
x1xπ(2)xπ(3) . . . xπ(i), and let l be the smallest index not used yet (i.e.,
l = min({1, 2, . . . , n} − {1, π(2), π(3), . . . , π(i)}). Clearly we can only
place xj in the (i + 1)th position if l ≤ j ≤ l + k − 1. Therefore we get
that |BSk(x1,H)| ≤ kn−1.

Finally we prove that |BS2(x1,H)| = Fib(n) by induction. Note that
BS2(x1,H) contains all tours where we only have swapped positions of
neighbors in H (and x1 stays fixed). Observe that |BS2(x1,H)| = Fib(n)
holds for n = 2 and n = 3, and assume that it holds for n − 1 and
n − 2, n ≥ 4. Let H = x1x2 . . . xnx1, and note that by the induction
hypothesis there are Fib(n − 2) tours starting with x1x3x2, and that
there are Fib(n− 1) tours starting with x1x2. Since there are no other
possibilities we get that |BS2(x1,H)| = Fib(n−2)+Fib(n−1) = Fib(n)
�

Note that Fib(n) is approximately 0.7236× 1.618n−1.

Theorem 8 [3] We can find an optimum in BSk(x1,H) in O(nk22k)
time.

Proof: We transform the problem to a minimum cost path problem,
in an auxiliary digraph Dk(x1,H), which we will simply denote by Dk.
The vertices of Dk are tuples (i, j, S−, S+), such that there exists some
tour R = xπ(1)xπ(2) . . . xπ(n)xπ(1) ∈ BSk(x1,H) (π(1) = 1) such that the
following holds:
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1. π(i) = j;

2. S− = {π(1), π(2), . . . , π(i− 1)} ∩ {i, i + 1, . . . , n};

3. S+ = {π(i), π(i + 1), . . . , π(n)} ∩ {1, 2, . . . , i− 1}.

We furthermore say that the tuple (i, j, S−, S+) is compatible with
the tour R. Note that |S−| = |S+| (= i−1−|{π(1), π(2), . . . , π(i−1)}∩
{1, 2, . . . , i − 1}|). An arc (x, y) is in Dk if x = (i, jx, S−x , S+

x ) and y =
(i+1, jy, S

−
y , S+

y ), and there exists some tour R = π(1)π(2) . . . π(n)π(1),
for which both x and y are compatible. Furthermore, if this is the case,
then S−y = S−x ∪({jx}∩{i+1, i+2, . . . , n})−{i} and S+

y = S+
x ∪({i}∩(V −

S−x ))−{jx}, where V = {1, 2, . . . , n}. Since the last two formulas can be
proved similarly, we will show only the second one. It is straightforward
to see that S+

y = S+
x ∪ ({π(i), π(i+1), . . . , π(n)}∩{i})−{jx}. However,

{π(i), π(i + 1), . . . , π(n)} ∩ {i} =
({π(i), π(i + 1), . . . , π(n)} ∪ {1, 2, . . . , i− 1}) ∩ {i} =

(V − S−x ) ∩ {i}.

We will use the fact that S−y and S+
y are totally determined by S−x ,

S+
x , i and jx several times below.
We will now show that there is a one-to-one correspondence between

tours in BSk(x1,H) and paths from (1, 1, ∅, ∅) to (n + 1, 1, ∅, ∅) in Dk.
For an example, see Figure 1.1. Clearly any tour in BSk(x1,H) has
a corresponding path from (1, 1, ∅, ∅) to (n + 1, 1, ∅, ∅) in Dk, so now
let P be a path from (1, 1, ∅, ∅) to (n + 1, 1, ∅, ∅) in Dk. Let P =
(1, 1, ∅, ∅)(2, π(2), S−2 , S+

2 ) . . . (n, π(n), S−n , S+
n )(n + 1, 1, ∅, ∅). Now we

show that Q = x1xπ(2)xπ(3) . . . xπ(n)x1 is a tour in BSk(x1,H).
Note that if R is a tour compatible with (i, π(i), S−i , S+

i ), then one can
uniquely determine the first i elements in R (but not their order), as they
are the ones with the following indices, S−i ∪({1, 2, . . . , i−1}−S+

i )∪π(i).
We will now show by induction that (i, π(i), S−i , S+

i ) is compatible with
Q and 1, π(2), π(3), . . . , π(i) are distinct. Clearly this is true for i = 2.
So assume that it is true for i − 1 (i ≥ 3). As 1, π(2), π(3) . . . , π(i − 1)
are uniquely determined by (i − 1, π(i − 1), S−i−1, S

+
i−1), and there is

an arc from (i − 1, π(i − 1), S−i−1, S
+
i−1) to (i, π(i), S−i , S+

i ) we must
have that π(i) is distinct from 1, π(2), π(3) . . . , π(i − 1) (as there is
a tour that is compatible with both (i − 1, π(i − 1), S−i−1, S

+
i−1) and

(i, π(i), S−i , S+
i )). Furthermore S−i and S+

i are totally determined by
S−i−1, S+

i−1, i−1 and π(i−1), so therefore (i, π(i), S−i , S+
i ) is compatible

with Q. This completes the inductive proof. It now follows that all
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(1, 1, ∅, ∅), (2, π(2), S−2 , S+
2 ) . . . (n + 1, 1, ∅, ∅) are compatible with Q and

Q is a tour. Therefore Q is a tour in BSk(x1,H).
Now by setting the cost of the arc xy, where x = (i, jx, S−x , S+

x ) and
y = (i+1, jy, S

−
y , S+

y ), to the cost of the arc xjxxjy the cost of a path from
(1, 1, ∅, ∅) to (n+1, 1, ∅, ∅) is equal to the cost of the corresponding tour
given by this path. For an example, see the path illustrated by the thick
rectangles in Figure 1.1, which corresponds to the tour x1x3x4x2x6x5x1.

In [3] Balas proved that the number of vertices in Dk of the form
(i, jx, S−x , S+

x ) is equal to (k + 1)2k−2, for any given i, with k + 1 ≤ i ≤
n− k + 1. It is easy to see that for every remaining i there are at most
(k +1)2k−2 such vertices. This implies that the total number of vertices
in Dk is at most n(k + 1)2k−2.

We will now prove that the out-degree of any vertex in Dk is at most k.
Let x = (i, jx, S−x , S+

x ) be some vertex in Dk, and let y = (i+1, l, S−y , S+
y )

be an out-neighbor of x. As mentioned above, S−y and S+
y are totally

determined by S−x , S+
x , i and jx. Let p = min{S+

y ∪ {i + 1}}, (or
min{S+

x ∪ {i, i + 1} − jx}, which is equivalent), and note that p is the
smallest index, such that xp is not used in the path xπ(1)xπ(2) . . . xπ(i).
Now it is not difficult to see that p ≤ l ≤ p + k − 1. Therefore, the
out-degree of x is at most k.

This implies that the number of arcs in Dk is bounded by nk(k +
1)2k−2. So finding a cheapest path of length n in Dk can be done in
O(nk(k + 1)2k−2) = O(nk22k) time. Since any tour in BSk(x1,H) cor-
responds to a path of length n in Dk and any path of length n in Dk

corresponds to a tour in BSk(x1,H), we are done. �

The above algorithm can be generalized, such that the constant k
depends on the position on the tour. That is, given a set of integers
{k(i) : i = 1, 2, . . . , n}, in the definition of the neighborhood, we have
that, if j ≥ i + k(i) then π(i) < π(j). This generalization is not too
difficult to implement and a description of this can be found in [4].

Furthermore, using the above generalizations the algorithm can be
extended to time window problems as well as the time target problems.
We refer the reader to [4] for more details.

The algorithm of this subsection has been tested in [4], and seems to
work well as a local search algorithm. One may compare the algorithm
in this subsection with k-Opt as they both perform local changes. How-
ever, the neighborhood described here has exponential size, and can be
searched in linear time (for constant k), whereas k-Opt has polynomial
size neighborhoods, and non-linear running time (in n). The algorithms
of this subsection seem to perform particularly well on TSP instances
that model actual cities and distances between cities. One reason for
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Figure 1.1. Example when n = 6 and k = 3. The path connecting the thick nodes
correspond to the tour x1x3x4x2x6x5x1.

this could be that cities tend to cluster in metropolitan areas. For a
more detailed discussion of this topic we refer the reader to [4].

Finally we note that the digraphs Dk, described in the proof of Theo-
rem 8, can be computed using the values n and k, independently of the
input (

↔
Kn, c). Then it remains to add the costs, when the input becomes

known. This preprocessing may, in many cases, save considerable time
as actually constructing the digraphs Dk is more time consuming than
computing the shortest path in Dk.

3. Upper Bounds for Neighborhood Size
The aim of this section is to provide upper bounds for ATSP neigh-

borhood sizes. In Subsection 3.1 we prove upper bounds depending on
the time to search the neighborhood. In Subsection 3.2 we obtain an
upper bound of the size of polynomially searchable neighborhoods.

3.1. General Upper Bounds
This subsection is based on [22]. The next theorem provides an upper

bound to the size of an ATSP neighborhood depending on the time
to search the neighborhood. It is realistic to assume that the search
algorithm spends at least one unit of time on every arc that it considers.
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Theorem 9 Let Nn be an ATSP neighborhood that can be searched in
time t(n). Then |Nn| ≤ max1≤n′≤n(t(n)/n′)n′.

Proof: Let D = (
↔
Kn, c) be an instance of the ATSP and let H be the

tour that our search algorithm returns, when run on D. Let E denote the
set of arcs in D, which the search algorithm actually examine; observe
that |E| ≤ t(n) by the assumption above. Let the arcs of A(H)−E have
high enough cost and the arcs in A(D) − E − A(H) have low enough
cost, such that all tours in Nn must use all arcs in A(H)−E and no arc
in A(D)− E − A(H). This can be done as H has the lowest cost of all
tours in Nn. Now let D′ be the digraph obtained by contracting the arcs
in A(H) − E and deleting the arcs not in E, and let n′ be the number
of vertices in D′. Note that every tour in Nn corresponds to a tour in
D′ and, thus, the number of tours in D′ is an upper bound on |Nn|. In
a tour of D′, there are at most d+(i) possibilities for the successor of a
vertex i, where d+(i) is the out-degree of i in D′. Hence we obtain that

|Nn| ≤
n′∏

i=1

d+(i) ≤

(
1
n′

n′∑
i=1

d+(i)

)n′

≤
(

t(n)
n′

)n′

,

where we applied the arithmetic-geometric mean inequality. �

Corollary 10 Let Nn be an ATSP neighborhood that can be searched in
time t(n). Then |Nn| ≤ max{et(n)/e, (t(n)/n)n}, where e is the basis of
natural logarithms.

Proof: Let U(n) = max1≤n′≤n(t(n)/n′)n′ . By differentiating f(n′) =
(t(n)/n′)n′ with respect to n′ we can readily obtain that f(n′) increases
for 1 ≤ n′ ≤ t(n)/e, and decreases for t(n)/e ≤ n′ ≤ n. Thus, if n ≤
t(n)/e, then f(n′) increases for every value of n′ < n and U(n) = f(n) =
(t(n)/n)n. On the other hand, if n ≥ t(n)/e then the maximum of f(n′)
is for n′ = t(n)/e and, hence, U(n) = et(n)/e. �

It follows from the proof of Corollary 10 that

Corollary 11 For t(n) ≥ en, we have |Nn| ≤ (t(n)/n)n.

Note that the restriction t(n) ≥ en is important since otherwise the
bound of Corollary 11 can be invalid. Indeed, if t(n) is a constant, then
for n large enough the upper bound implies that |Nn| = 0, which is
not correct since there are neighborhoods of constant size that can be
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searched in constant time: consider a tour T , delete three arcs in T
and add three other arcs to form a new tour T ′. Clearly, the best of
the two tours can be found in constant time by considering only the six
arcs mentioned above. Notice that this observation was not taken into
account in [11], where the bound |Nn| ≤ (2t(n)/n)n was claimed. That
bound is invalid for t(n) ≤ n/2.

Corollary 10 immediately implies that linear-time algorithms can be
used only for neighborhoods of size at most 2O(n). Using Corollary 10,
it is also easy to show the following:

Corollary 12 The time required to search an ATSP neighborhood of
size 2Θ(n log n) is Ω(n1+α) for some positive constant α.

3.2. Upper Bounds for Polynomial Time
Searchable Neighborhoods

Deineko and Woeginger [11] conjectured that there is no ATSP neigh-
borhood of cardinality at least β(n − 1)! for any positive constant β
provided P6=NP. In this subsection based on [22] we prove that there is
no ATSP neighborhood of cardinality at least β(n−k)! for any constant
β > 0 and fixed integer k provided NP6⊆P/poly.

P/poly is a well-known complexity class in structural complexity the-
ory, see e.g. [5], and it is widely believed that NP 6⊆P/poly for otherwise,
as proved in the well-known paper by Karp and Lipton [30], it would
imply that the so-called polynomial hierarchy collapses on the second
level, which is thought to be very unlikely. The idea that defines P/poly
is that, for each input size n, one is able to compute a polynomial-sized
”key for size n inputs”. This is called the ”advice for size n inputs”. It
is allowed that the computation of this ”key” may take time exponen-
tial in n (or worse). P/poly stands for the class of problems solvable in
polynomial time (in input size n) given the poly-sized general advice for
inputs of size n. For formal definitions of P/poly and related non-uniform
complexity classes, consult [5].

Let S be a finite set and F be a family of subsets of S such that F is a
cover of S, i.e., ∪{F : F ∈ F} = S. The well-known covering problem is
to find a cover of S containing the minimum number of sets in F . While
the following greedy covering algorithm (GCA) does not always produce
a cover with minimum number of sets, GCA finds asymptotically optimal
results for some wide classes of families, see e.g. [32]. GCA starts by
choosing a set F in F of maximum cardinality, deleting F from F and
initiating a ”cover” C = {F}. Then GCA deletes the elements of F from
every remaining set in F and chooses a set H of maximum cardinality
in F , appends it to C and updates F as above. The algorithm stops



18 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

when C becomes a cover of S. The following lemma have been obtained
independently by several authors, see Proposition 10.1.1 in [2].

Lemma 13 Let |S| = s, let F contain f sets, and let every element of S
be in at least δ sets of F . Then the cover found by GCA is of cardinality
at most 1 + f(1 + ln(δs/f))/δ.

Using this lemma we can prove the following:

Theorem 14 Let T be the set of all tours of the ATSP on n vertices.
For every fixed integer k ≥ 1 and constant β > 0, unless NP⊆ P/poly,
there is no set Π of permutations on {1, 2, . . . , n} of cardinality at least
β(n − k)! such that every neighborhood NΠ(T ), T ∈ T , is polynomial
time searchable.

Proof: Assume that, for some k ≥ 1 and β > 0, there exists a set Π of
permutations on {1, 2, . . . , n} of cardinality at least β(n− k)! such that
every neighborhood NΠ(T ), T ∈ T , is polynomial time searchable. Let
N = {NΠ(T ) : T ∈ T }. Consider the covering problem with S = T and
F = N . Observe that |S| = |F| = (n−1)!. To see that every tour is in at
least δ = (n−k)! neighborhoods of N , consider a tour Y = y1y2 . . . yny1

and observe that for every π ∈ Π,

Y ∈ NΠ(yπ−1(1)yπ−1(2) . . . yπ−1(n)yπ−1(1)).

By Lemma 13 there is a cover C of S with at most O(nk lnn) neigh-
borhoods from N . Since every neighborhood in C is polynomial time
searchable and C contains only polynomial number of neighborhoods,
we can construct the best tour in polynomial time provided C is found.
To find C (which depends only on n, and not on the instance of the
ATSP) we need exponential time and, thus, the fact that the best tour
can be computed in polynomial time implies that NP⊆ P/poly. �

4. Diameters of Neighborhood Structure
Digraphs

The distance from a vertex x to a vertex y of a unweighted digraph
D is 0 if x = y, the length of the shortest path from x to y, if D has
one, and ∞, otherwise. The diameter of a digraph D is the maximum
distance in D. Given neighborhood N(T ) for every tour T in

↔
Kn (i.e.,

a neighborhood structure), the corresponding neighborhood digraph (of
order (n− 1)!) is a directed graph with vertex set consisting of all tours
in

↔
Kn and arc set containing a pair (T ′, T ′′) if and only if T ′′ ∈ N(T ′).
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The diameter of the neighborhood graph is one of the most important
characteristics of the neighborhood structure and the corresponding local
search scheme [8, 11, 12]. Clearly, a neighborhood structure with a
neighborhood digraph of smaller diameter seems to be more powerful
than one with a neighborhood digraph of larger diameter, let alone a
neighborhood structure whose digraph has infinite diameter (in the last
case, some tours are not ”reachable” from the initial tour during local
search procedure).

4.1. Diameters of Pyramidal and the
Balas-Simonetti Neighborhood Digraphs

If the diameter of the pyramidal neighborhood digraph is dPY , then
Theorem 1 implies that (2n−2)dPY ≥ (n−1)! and, thus, dPY = Ω(log n).
The next theorem implies that dPY = Θ(log n).

Theorem 15 [8] The diameter of the neighborhood digraph correspond-
ing to PY (x1,H) is at most dlog2 ne.

Observe that this theorem implies that the diameter dPCV of the
pyramidal Carlier-Villon neighborhood introduced in the end of Sub-
section 2.1 is also Θ(log n). Indeed, |PCV (H)| ≤ n2n−2 and, thus,
dPCV = Ω(log n). On the other hand, PY (x1,H) ⊆ PCV (H) and,
hence, dPCV ≤ dPY . The next theorem is a new result.

Theorem 16 The neighborhood digraph of BSk(x1,H) is of diameter
O(n).

Proof: Since BSk(x1,H) includes BS2(x1,H) for every k ≥ 2, it suf-
fices to prove this theorem for k = 2. Let H = x1x2 . . . xnx1 and
G = xπ(1)xπ(2) . . . xπ(n)xπ(1). We will show that there is a sequence
of tours G = G1, G2, . . . , Gn+1 = H, such that Gi+1 ∈ BS2(x1, Gi),
i = 1, 2, . . . , n.

We find Gi as follows. When i is even, and Gi−1 = x1xz2 . . . xznx1

then let Gi = x1xw2 . . . xwnx1 such that the following holds. The first
two vertices on Gi are a sorted version of the first two vertices on Gi−1

(i.e., {xz1 , xz2} = {xw1 , xw2} and w1 < w2), the next two vertices are a
sorted version of the next two vertices on Gi−1, etc. When i is odd, we
leave the first vertex unchanged, but then the next two vertices are a
sorted version of the next two vertices on Gi−1, etc.

Observe that Gi ∈ BSk(x1, Gi−1) holds. The claim that Gn+1 = H
is equivalent to the assertion that tours G1, G2, ..., Gn+1 ”sort” numbers
π(1), π(2), . . . , π(n) (to 1, 2, . . . , n). It remains to observe that this as-
sertion follows from Part (c) of Problem 28-1 in [10], p. 651, i.e., from
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the fact that every odd-even sorting network is a sorting network. The
details are left to the interested reader. �

The result of this theorem can be improved to O(n/k). We leave details
to the interested reader.

4.2. Diameter of Assign Neighborhood Digraphs
For a positive integer k ≤ n/2, the neighborhood digraph Γ(n, k) of

the assign neighborhood has vertex set formed by all tours in
↔
Kn. An

arc (T,R) is in Γ(n, k) if there exists a set Z of k non-adjacent vertices
of T such that R ∈ N(T,Z). Clearly, (T,R) is in Γ(n, k) if and only if
(R, T ) is in Γ(n, k), i.e., Γ(n, k) is symmetric. We denote by distk(T,R)
the distance (i.e., the length of a shortest path) from T to R in Γ(n, k).

For a tour T in
↔
Kn, let Ink denote the family of all sets of k non-

adjacent vertices in T . Clearly, the neighborhood Nk(T ) of a tour T in
Γ(n, k) equals

∪Z∈Ink
N(T,Z).

Thus if, for some k, i(n, k) = |Ink| is polynomial in n, then from the
fact that N(T,Z) is polynomially searchable it follows that Nk(T ) is
polynomially searchable. Otherwise, Nk(T ) may be non-polynomially
searchable. Since polynomially searchable Nk(T ) are of our interest, we
start with evaluating i(n, k) in Theorem 17. It follows from Theorem 17
that, for fixed k, i(n, k) and i(n, n− k) are polynomial.

Theorem 17 [19] i(n, k) =
(
n−k

k

)
+
(
n−k−1

k−1

)
.

Corollary 18 [19] If p is a non-negative fixed integer, then Np+1(T )
and Nb(n−p)/2c(T ) are polynomially searchable (p < bn/2c).

Proof: This follows from Theorem 17 taking into consideration that(
m
k

)
=
(

m
m−k

)
. �

One can easily prove that if n is even, then Γ(n, n/2) consists of
an exponential number of strongly connected components and, thus,
its diameter is infinite (for example, x1x2...xnx1 and x1...xn−2xnxn−1x1

belong to different strong components of this digraph). Therefore, below
we consider Γ(n, k) for k < n/2 only.

Theorem 19 diam(Γ(n, b(n− 1)/2c)) ≤ 4.

Proof: We assume that n ≥ 5, as for 2 ≤ n ≤ 4 this claim can be
verified directly. Let C = x1x2 . . . xnx1 and T = y1y2 . . . yny1 be a
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pair of distinct tours in
↔
Kn. Put k = b(n − 1)/2c. We will prove that

distk(T,C) ≤ 4, thus showing that diam(Γ(n, k)) ≤ 4.
We call a vertex v even (odd) with respect to C if v = xj , where

1 ≤ j ≤ n and j is even (odd). For a set of vertices X of
↔
Kn, let Xodd

(Xeven) be the set of odd (even) vertices in X.
First we consider the case of even n, i.e. k = n/2−1. The proof in this

case consists of two steps. At the first step, we show that there exists a
tour T ′′ whose vertices alternate in parity and such that distk(T, T ′′) ≤ 2.
Moreover, T ′′ has a pair of consecutive vertices which are also consecutive
in C. At the second step, we will see that distk(T ′′, C) ≤ 2 as the
odd and even vertices of T ′′ (except for the vertices of the above pair)
can be separately reordered to form C. Thus, we will conclude that
distk(T,C) ≤ 4. Now, we proceed with the proof.

Clearly, T has a pair yj , yj+1 such that yj+1 is odd and yj is even. Let

Z = {yj+2, yj+4, . . . , yj+2k}

and let |Zodd| = s. Remove the vertices of Z from T and then insert the
s odd vertices of Z into the arcs yj+1yj+3, . . . , yj+2s−1yj+2s+1 and k− s
even vertices of Z into the arcs

yj+2s+1yj+2s+3, yj+2s+3yj+2s+5, . . . , yj+2k−1yj+2k+1.

We have obtained a tour

T ′ = yjyj+1vj+2yj+3vj+4yj+5 . . . yj+2k−1vj+2kyj+2k+1yj ,

where {vj+2, . . . , vj+2k} = Z.
Let Z ′ = {yj+3, yj+5, . . . , yj+2k+1} and let |Z ′

even| = t. Since the num-

ber of odd vertices in V (
↔
Kn)−{yj , yj+1} is equal to k = |Zodd|+ |Z ′

odd| =
s+ k− t, we obtain that s = t. Remove Z ′ from T ′ and insert the t even
vertices of Z ′ into the arcs yj+1vj+2, vj+2vj+4, vj+6vj+8, . . . , vj+2s−2vj+2s

and the k − s odd vertices of Z ′ into the arcs

vj+2s+2vj+2s+4, . . . , vj+2k−2vj+2k, vj+2kyj .

We have derived a tour T ′′ = u1u2 . . . unu1. Clearly, the vertices of T ′′

alternate in parity, i.e., for every m, if um is odd, then um+1 is even.
Now we prove that the processes of insertion of Z and Z ′ can be

performed in such a way that T ′′ contains a pair of consecutive vertices
which are also consecutive in C (i.e. there exist indices p and q such that
up = xq and up+1 = xq+1). Since 1 < |Z ′| < n, there exists a pair of
distinct indices i,m such that xi, xm ∈ Z ′ and xi+1, xm−1 6∈ Z ′. Without
loss of generality, we assume that i is odd. We consider two cases.
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Case 1: |Z ′
odd| ≥ 2. We prove that we may choose index q = i. Since

xi+1 6∈ Z ′ and i + 1 is even, either yj = xi+1 or xi+1 ∈ Zeven. If xi+1 ∈
Zeven, in the process of insertion of Z, we insert xi+1 into yj+2k−1yj+2k+1,
i.e. xi+1 = vj+2k. In the process of insertion of Z ′, we insert xi into
vj+2kyj if xi+1 = yj or into vj+2k−2vj+2k, otherwise (i.e. xi+1 = vj+2k).

Case 2: |Z ′
odd| = 1. Thus, m is even. Since n ≥ 6, it follows that

|Z ′
even| ≥ 2. Analogously to Case 1, one may take q = m− 1.

Therefore, without loss of generality, we assume that un−1 = xi, un =
xi+1. Since {u2, u4, . . . , u2k, xi+1} = Ceven, we can delete {u2, . . . , u2k}
from T ′′ and insert it into the obtained cycle to get the tour C ′ given
by C ′ = u1xi+3u3xi+5u5 . . . u2k−1xi−1un−1xi+1u1. Analogously, we can
delete {u1, u3, . . . , u2k−1} from C ′ and insert it into the obtained cycle
to get C. We conclude that distk(T,C) ≤ 4.

Now let n be odd; then k = (n − 1)/2. Notice that, without loss
of generality, we may assume that xn = yn (to fix the initial label-
ings of T and C). Consider tours X = x1x2 . . . xnxn+1x1 and Y =
y1y2 . . . yn−1ynyn+1y1 in

↔
Kn+1, where yn = xn, yn+1 = xn+1. If we as-

sume that j = n, j +1 = n+1, we can obtain, analogously to the case of
even n, a tour Y ′′ such that the vertices of Y ′′ alternate in parity (with re-
spect to their indices in X), xn+1 follows xn in Y ′′ and distk(Y, Y ′′) ≤ 2.
Now if i = n and i + 1 = n + 1, then we can show, similarly to the case
of even n, that distk(Y ′′, X) ≤ 2 and, thus, distk(Y, X) ≤ 4. Notice that,
in the whole process of constructing X from Y , we have never removed
xn and xn+1 or inserted any vertex into the arc xnxn+1. Thus, we could
contract the arc xnxn+1 to xn and obtain C from T in four ”steps”. This
shows that distk(T,C) ≤ 4. �

We can extend Theorem 19 using the following:

Theorem 20 [19] Let distk(T,C) = 1 for tours T and C and let m be
an integer smaller than k. Then, distm(T,C) ≤ dk/me.

Corollary 21 For every positive m,

diam(Γ(n, m)) ≤ 4db(n− 1)/2c/me.

In particular, if p is a positive integral constant, then diam(Γ(n, b(n −
p)/2c)) ≤ 8 for every n ≥ 2p + 1.

Proof: The first inequality follows directly from the above two theorems
and the triangle inequality for distances in graphs. The first inequality
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implies the second one. Indeed, n ≥ 2p + 1 implies

(n− 1)/2
(n− p− 1)/2

≤ 2,
b(n− 1)/2c
b(n− p)/2c

≤ 2.

�

5. Domination Analysis
Recall that the domination number, domn(H, n), of a heuristic H for

the TSP is the maximum integer k = k(n) such that, for every instance
I of the TSP on n vertices, H produces a tour T which is not worse than
at least k tours in I including T itself.

In this section, we describe some important results in domination anal-
ysis of TSP heuristics. In Subsection 5.1, domination numbers of ATSP
and STSP heuristics are compared. In Subsection 5.2, we consider TSP
heuristics of large domination number, at least Ω((n− 2)!). It turns out
that several well-known heuristics have a large domination number. In
Subsection 5.3 we briefly discuss bounds on the largest possible domi-
nation number of a polynomial time TSP heuristic. TSP heuristics of
small domination number are considered in Subsection 5.4. It is some-
what surprising that such heuristics as the greedy, nearest neighbor and
double tree algorithms are all of domination number 1.

5.1. Domination Number of Heuristics for the
STSP and ATSP

In this subsection we observe that, in certain cases (e.g., for lower
bounds on domination number), it is enough to study heuristics for the
ATSP since one can readily obtain similar results on heuristics for the
STSP from the corresponding ones for the ATSP. This justifies that we
mostly study ATSP heuristics in this section. We also prove an assertion
that relates the maximum possible domination numbers of polynomial
time heuristics for the ATSP and STSP.

For a tour H = x1x2 . . . xnx1 in
↔
Kn, the tour xnxn−1 . . . x1xn will be

denoted by H.
Since an instance of the STSP can be transformed into an ”equivalent”

instance of the ATSP by replacing every edge xy of Kn by the pair xy, yx
of arcs of costs equal to the cost of the edge xy, every heuristic for
the ATSP can be used for the STSP5. Observe that a polynomial time
heuristic A for the ATSP with domination number d(n) has domination

5This, in particular, allows one to apply ATSP heuristics to the STSP without redefining
them, see, e.g. Subsection 5.4.
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number at least d(n)/2 for the STSP. The factor 1
2 is due to the fact

that a pair Q,Q of tours in
↔
Kn is indistinguishable in Kn.

One of the central natural questions on the domination number is
to determine the maximum domination number of a polynomial time
heuristic for the ATSP. We call it the maximum domination number of
the ATSP. We can introduce the similar parameter for the STSP. The
STSP being, in a sense, a special case of the ATSP, one may suspect
that the maximum domination number of the STSP is larger than that
of the ATSP. We will now show that this is not true.

Theorem 22 [18] For every polynomial heuristic H for the STSP, there
is a polynomial heuristic H′ for the ATSP such that domn(H′, n) ≥
domn(H, n).

Proof: To an instance of ATSP with cost function c assign an instance of
STSP defined on the same set of vertices and with cost function c′ defined
by c′(x, y) = 1

2(c(x, y) + c(y, x)) for every x 6= y. Let T = x1x2...xnx1

be a tour found by the heuristic H applied to (Kn, c′) and let S be
the set of all tours R in (Kn, c′) such that c′(T ) ≤ c′(R). The cycle
T = x1x2...xnx1 can be considered as a tour in (

↔
Kn, c). For a tour Q in

(
↔
Kn, c), let Q−, Q+ be defined as follows:

{Q−, Q+} = {Q,Q}, c(Q−) = min{c(Q), c(Q)}.

This theorem now follows from the fact that for every Z ∈ S, c(T−) ≤
c(Z+) as c(T−) ≤ c′(T ) ≤ c′(Z) ≤ c(Z+). �

5.2. Heuristics of Domination Number
Ω((n − 2)!)

While the assertion of the next theorem for odd n was already known
to Rev Kirkman (see [7], p. 187), the even case result was only estab-
lished by Tillson [44] as a solution to the corresponding conjecture by
J.C. Bermond and V. Faber (who observed that the decomposition does
not exist for n = 4 and n = 6).

Theorem 23 For every n ≥ 2, n 6= 4, n 6= 6, there exists a decomposi-
tion of A(

↔
Kn) into tours.

Let T (
↔
Kn) (τ(n, c)) be the total cost of all tours (the average cost

of a tour) in (
↔
Kn, c). Since every arc of

↔
Kn is contained in (n − 2)!

tours, τ(n, c) = T (
↔
Kn)/(n − 1)! = (n − 2)!c(

↔
Kn)/(n − 1)!, and hence,
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τ(n, c) = c(
↔
Kn)/(n−1). This formula can also be shown using linearity of

expectation. For the STSP, it is easy to see that τ(n, c) = 2c(Kn)/(n−1),
where as above τ(n, c) is the average cost of a tour.

The following result was first obtained by Sarvanov [41] when n is
odd, and Gutin and Yeo [23] when n is even. As we see below Theorem
24 allows us to show that certain heuristics are of domination number
at least (n− 2)!.

Theorem 24 Consider any instance of the ATSP and a tour H such
that c(H) ≤ τ(n, c). If n 6= 6, then H is not worse than at least (n− 2)!
tours.

Proof: The result is trivial for n = 2, 3. If n = 4, the result follows
from the simple fact that the most expensive tour T in

↔
Kn has cost

c(T ) ≥ c(H).
Assume that n ≥ 5 and n 6= 6. Let D1 = {C1, . . . , Cn−1} be a

decomposition of the arcs of
↔
Kn into tours (such a decomposition exists

by Theorem 23). Given a tour R in
↔
Kn, clearly there is an automorphism

of
↔
Kn that maps C1 into R. Therefore, if we consider D1 together with

the decompositions (D1, . . . , D(n−1)!) of
↔
Kn obtained from D1 using all

automorphisms of
↔
Kn which map the vertex 1 into itself, we will have

every tour of
↔
Kn in one of Di’s. Moreover, every tour is in exactly n− 1

decompositions Di’s (by mapping a tour Ci into a tour Cj 1 ≤ i 6= j ≤
n− 1) we fix the automorphism).

Choose the most expensive tour in each of Di and form a set E from
all distinct tours obtained in this manner. Clearly, |E| ≥ (n − 2)!. As∑n−1

i=1 c(Ci) = c(
↔
Kn), every tour T of E has cost c(T ) ≥ τ(n, c). There-

fore, c(H) ≤ c(T ) for every T ∈ E . �

To see that the assertion of Theorem 24 is almost best possible, choose
a tour H and an arc a not in H. Let every arc in H be of cost one, let
c(a) = n(n − 1) and let every arc not in A(H) ∪ {a} be of cost zero.
Clearly the cost of H is less than the average (which is n2/(n− 1)), but
only tours using the arc a have higher cost. Thus, H is not worse than
exactly (n− 2)! + 1 tours (including itself).

The first remark in Subsection 5.1 and Theorem 24 imply that, for the
STSP, the assertion similar to Theorem 24 holds with (n− 2)! replaced
by (n − 2)!/2. However, Rublineckii [39] proved the following stronger
result.
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Theorem 25 Consider an instance (Kn, c) of the STSP and a tour H
such that c(H) ≤ τ(n, c). Then H is not worse than at least (n − 2)!
tours when n is odd and (n− 2)!/2 tours when n is even.

The ideas in the proof of Theorem 25 are similar to those used in
the proof of Theorem 24. Instead of Theorem 23, Rublineckii [39] used
a much simpler result that the edges Kn (2Kn) can be decomposed in
edge-disjoint tours when n is odd (even), where 2Kn is the complete
multigraph with 2 edges between every pair of distinct vertices.

The vertex insertion algorithm for the ATSP work as follows. First,
we fix some ordering v1, . . . , vn of the vertices of

↔
Kn. Then, we perform

n − 1 steps. On the first step we form the cycle v1v2v1. On step k,
2 ≤ k ≤ n−1, given the k-cycle vπ(1)vπ(2) . . . vπ(k)vπ(1) from the previous
step, we find the value j0 of j, which minimizes the expression

c(vπ(j), vk+1) + c(vk+1, vπ(j+1))− c(vπ(j), vπ(j+1)),

1 ≤ j ≤ k, and insert vk+1 between vπ(j0) and vπ(j0+1) forming a (k +1)-
cycle. Clearly, the vertex insertion algorithm for the STSP differs from
the ATSP one in the fact that it starts from a cycle with three vertices.
The following theorem was first proved by E.M. Lifshitz (see [39]) for
the STSP.

Theorem 26 Let Hn be a tour constructed by the vertex insertion al-
gorithm A for the TSP with n vertices. Then c(Hn) ≤ τ(n, c).

Proof: We prove this result only for the ATSP by induction on n. The
theorem is trivially true for n = 2. Let Hn−1 = vπ(1)vπ(2) . . . vπ(n−1)vπ(1)

be the cycle constructed in Step n− 2 of the algorithm and assume that
in Step n− 1, it was decided to insert vn between vπ(j0) and vπ(j0+1) in

order to obtain Hn. Let V be the vertex set of
↔
Kn and, for a partition

X ∪ Y = V , let (X, Y ) = {(x, y) : x ∈ X, y ∈ Y }. Then, we have
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c(Hn) =
c(Hn−1) + c(vπ(j0), vn) + c(vn, vπ(j0+1))− c(vπ(j0), vπ(j0+1)) ≤

c(Hn−1) +

∑n−1
i=1 c(vπ(i), vn) + c(vn, vπ(i+1))− c(vπ(i), vπ(i+1))

n− 1
=

c(Hn−1) +
c(V − vn, vn) + c(vn, V − vn)− c(Hn−1)

n− 1
≤

(n− 2)τ(n− 1, c) + c(vn, V − vn) + c(V − vn, vn)
n− 1

=

c(
↔
Kn −vn) + c(vn, V − vn) + c(V − vn, vn)

n− 1
= τ(n, c),

where τ(n− 1, c) is the average cost of a tour in
↔
Kn −vn. �

Theorems 24 and 26 imply the following result (similar result holds
for the STSP, see Theorem 25).

Theorem 27 [37] For the ATSP vertex insertion algorithm A and n 6=
6 we have domn(A, n) ≥ (n− 2)!.

Gutin and Yeo [23] proved that the following ATSP algorithm always
produces a tour of cost at most the average cost: choose an arc e such
that the average cost of a tour through e is minimum, contract e and
repeat the above choice and contraction until only two arcs remain.
The output is the tour obtained from the two arcs together with the
contracted ones. A similar algorithm was described by Vizing [45].

Given neighborhood structure N , the best improvement local search
(LS) algorithm starts from an arbitrary tour; at every iteration it finds
the best tour T ′ in the neighborhood N(T ) of the current tour T and
replaces T by T ′. The algorithm stops when c(T ′) = c(T ), in which case
T is a local optimum with respect to N . Normally practical LS codes do
not use the best improvement strategy; instead they find a better (than
T ) tour T ′ at every iteration as long as it is possible. This strategy
saves running time and often yields better practical results, but the first
improvement LS is difficult to formalize since the way to find the first
improvement varies from code to code. Thus, let us restrict ourselves to
the best improvement versions of 2-Opt and 3-Opt.
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The k-Opt, k ≥ 2, neighborhood of a tour T consists of all tours that
can be obtained by deleting a collection of k edges (arcs) and adding
another collection of k edges (arcs). Rublineckii [39] showed that every
local optimum for 2-Opt and 3-Opt for the STSP is of cost at least the
average cost of a tour and, thus, by Theorem 25 is of domination number
at least (n−2)!/2 when n is even and (n−2)! when n is odd. Observe that
this result is of restricted interest since, to reach a k-Opt local optimum,
one may need exponential time (see Section 3 in [29]). However, Punnen,
Margot and Kabadi [38] managed to prove the following result.

Theorem 28 For the STSP the best improvement 2-Opt algorithm pro-
duces a tour of cost at most τ(n, c) in at most

O(min{n3 logn, n log(c(H0)− τ(c, n))})

iterations, where H0 is the initial tour.

Punnen, Margot and Kabadi observed that Theorem 28 holds also for
3-Opt and the pyramidal Carlier-Villon neighborhood. The last result
can be extended to the ATSP because of Theorem 22. It is pointed out
in [38] that analogous results hold also for the well-known Lin-Kernighan
algorithm [33] and shortest path ejection chain algorithm of Glover [12,
36] (see also Chapter 8).

5.3. Bounds on Maximum Domination Number
of Polynomial Heuristics

Clearly, unless P=NP, there is no polynomial time ATSP algorithm
with domination number (n − 1)!. Punnen, Margot and Kabadi [38]
proved that unless P=NP, there is no polynomial time ATSP algorithm
with domination number at least (n − 1)! − k for any constant k. This
result can be extended from constant k to some slow growing functions
of n.

Gutin and Yeo [21] showed that, if there is a constant r > 1 such that
for every sufficiently large k a k-regular digraph of order at most rk− 1
can be decomposed into Hamiltonian cycles in polynomial time in n, then
the maximum domination number of the ATSP is Θ((n− 1)!). This re-
sult is of interest due to the fact that Häggkvist [26, 27] announced (not
published) that the above Hamiltonian decomposition exists for every
1 < r ≤ 2, see also Alspach et al. [1]. His approach is constructive
and implies a polynomial algorithm to find such a decomposition. If
Häggkvist’s result holds, the main theorem in [21] implies that, in poly-
nomial time, one can always find a tour, which is not worse than 50% of
all tours.
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Notice that the 50% threshold may seem to be easily achievable at
first glance: just find the best in a large sample S of randomly chosen
tours. A random tour has approximately a 50% chance of being better
than 50% of all tours. However, in this approach the probability that
the best tour of S is more expensive than 50% of all tours is always
positive (if we consider only polynomial size samples of random tours).
The difficulty of the problem by Glover and Punnen is well illustrated by
the problem [34] to find a tournament on n vertices with the number of
Hamiltonian cycles exceeding the average number of Hamiltonian cycles
in a tournament of order n. This problem formulated long time ago has
not been solved yet.

5.4. Heuristics with Small Domination Numbers
Chapters 9 and 10 describe experimental results indicating that the

greedy algorithm performs rather badly in the computational practice of
the ATSP and STSP, see also [9, 13, 25, 29]. The aim of this subsection
is to show that greedy-type algorithms are no match, with respect to
the domination number, to heuristics considered in Subsection 5.2. This
provides some theoretical explanation why ”being greedy” is not so good
for the TSP. This subsection is based on Gutin, Yeo and Zverovich [24].

Before considering greedy-type algorithms in detail, we would like to
notice that Punnen, Margot and Kabadi [38] recently constructed STSP
instances for which the well-know double tree heuristic produces the
unique worst tour. Note that these instances even satisfy the triangle
inequality, i.e., for them the double tree heuristic computes a tour which
is at most only twice more expensive than the cheapest tour. The au-
thors of [38] also showed that the famous Christofides heuristic is of
domination number at most dn/2e!.

The greedy algorithm (GR) builds a tour in (
↔
Kn, c) by repeatedly

choosing the cheapest eligible arc until the chosen arcs form a tour; an
arc a = uv is eligible if the out-degree of u in D and the in-degree of v
in D equal zero, where D is the digraph induced by the set S of chosen
arcs, and a can be added to S without creating a non-Hamiltonian cycle.
The nearest neighbor algorithm (NN) starts its tour from a fixed vertex
i1, goes to the nearest vertex i2 (i.e., c(i1, i2) = min{c(i1, j) : j 6= i1}),
then to the nearest vertex i3 (from i2) distinct from i1 and i2, etc.
Computational experience with NN for the ATSP and STSP is discussed
in Chapters 9 and 10, and [9, 29]. We will also consider a stronger version
of NN, the repetitive NN algorithm (RNN), which starts NN from each of
the vertices in turn and chooses the best tour. In the rest of the chapter
we assume that NN starts from vertex 1.
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The following theorem was first proved in [24]. We give a different
proof by adapting the proof of a much more general result from [20]. The
result holds for a wide family of CO problems including the assignment
problem, i.e., the domination number of the greedy algorithm for the
assignment problem is proved to be 1.

Theorem 29 The domination number of GR for the TSP is 1.

Proof: This proof holds for both ATSP and STSP, but for simplicity
we assume that we deal with the STSP. We will consider tours of STSP
as sets of their edges. For a set S = {e1, . . . , es} of edges forming a
partial tour in Kn (i.e., this set of edges can be extended to a tour),
Z(e1, . . . , es) denotes the set of edges not in S such that each edge from
Z(e1, . . . , es) can be added to S to form a (larger) partial tour.

Let T ′ = {e′1, e′2, . . . , e′n} be an arbitrary fixed tour and let T be an
arbitrary tour distinct from T ′. It is easy to see that

n−1∑
j=0

|Z(e′1, e
′
2, . . . , e

′
j) ∩ T | < n(n + 1)/2. (1)

Let M > n, let c(e′i) = iM for each e′i ∈ T ′ and, for e 6∈ T ′, let
c(e) = 1+jM if e ∈ Z(e′1, e

′
2, . . . , e

′
j−1) but e 6∈ Z(e′1, e

′
2, . . . , e

′
j). Clearly,

GR constructs T ′ and c(T ′) = Mn(n + 1)/2.
Let T = {e1, e2, . . . , ek}. Assume that c(ei) ∈ {aM, aM + 1}. Then

clearly
ei ∈ Z(e′1, e

′
2, . . . , e

′
a−1),

but ei 6∈ Z(e′1, e
′
2, . . . , e

′
a), so ei lies in Z(e′1, e

′
2, . . . , e

′
j}) ∩ T , provided

j ≤ a− 1. Thus, ei is counted a times in the sum in (1). Hence,

c(T ) =
n∑

i=1

c(ei) ≤ n + M

n−1∑
j=0

|Z({e′1, e′2, . . . , e′j}) ∩ T |

≤ n + M(n(n + 1)/2− 1) = n−M + c(T ′),

which is less than the cost of T ′ as M > n. Since GR finds T ′, and T is
arbitrary, we see that GR finds the unique most expensive tour. �

The proof of Theorem 29 implies that the domination number of NN
for TSP is also 1 (indeed, NN will construct the same tour as GR).
However, the following two theorems show that the situation is slightly
better for RNN.

Theorem 30 [24] Let n ≥ 4. The domination number of RNN for the
ATSP is at least n/2 and at most n− 1.
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Proof: We first consider the following instance of the ATSP, which
proves that RNN for the ATSP has domination number at most n − 1.
Let N > 2n. Let all arcs (i, i + 1), 1 ≤ i < n, have cost iN , all arcs
(i, i+2), 1 ≤ i ≤ n−2, cost iN +1, and all remaining forward arcs (i, j)
cost iN + 2. Let a backward arc (i, j) have cost (j − 1)N .

When NN tour T starts at i /∈ {1, n}, it has the form (i, 1, 2, . . . , i −
1, i + 1, i + 2, . . . , n, i) and cost

` =
n−1∑
k=1

kN −N + 1.

When T starts at 1 or n, we simply have T = (1, 2, . . . , n, 1) of cost∑n−1
k=1 kN > `. Let F denote the set of all tours T described above (note

that |F| = n − 1). Observe that any tour in F has cost at least `. Let
C be any tour not in F . Let B denote the set of backward arcs in C,
and define the length of a backward arc (i, j) by i− j. Let q denote the
sum of the lengths of the arcs in B. Since C is a tour (and therefore
there is a path from n to 1) we have q ≥ n − 1. The cost of C is at
most

∑n
i=1(iN + 2)− qN − |B|N , since if (i, j) is an arc in B, then the

corresponding term iN + 2 in the sum can be replaced by the real cost
(j − 1)N = iN + 2− (i− j + 1)N − 2 of the arc. We have

n∑
i=1

(iN + 2)− qN − |B|N ≤ ` + 2n + N(n + 1− q − |B|)− 1.

Since C is not in F we have |B| ≥ 2, implying that 2n + N(n + 1 −
q− |B|)− 1 is negative except for the case of q = n− 1 and |B| = 2. We
may conclude that the cost of C is less than `, as q = n− 1 and |B| = 2
would imply that C belongs to F . Therefore all cycles not in F have
cost less than those in F .

In order to prove that RNN has domination number at least n/2,
assume that this is false, and proceed as follows. RNN constructs n
tours, but several of them may coincide. By the assumption, there exist
at least three tours that coincide. Let F = x1x2 . . . xnx1 be a tour such
that F = Fi = Fj = Fk, where Fs is the tour obtained by starting
NN at xs and xi, xj and xk are distinct. Without loss of generality,
we may assume that i = 1 and 2 < j ≤ 1 + (n/2). For every m,
with j < m ≤ n, let Cm be the tour obtained by deleting the arcs
(xi, xi+1), (xj , xj+1), (xm, xm+1) and adding the arcs

(xi, xj+1), (xm, xi+1), (xj , xm+1).
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Note that c(Cm) ≥ c(F ), since c(xi, xi+1) ≤ c(xi, xj+1) (because we
used NN from xi to construct Fi), c(xj , xj+1) ≤ c(xj , xm+1) (since we
used NN from xj to construct Fj) and c(xm, xm+1) ≤ c(xm, xi+1) (since
NN chose the arc xmxm+1 on Fj , when the arc xmxi+1 was available).
Therefore the cost of F is at most that of F,Cj+1, Cj+2, . . . , Cn, implying
that the domination number is at least n− j +1 ≥ n/2, a contradiction.
�

We call a tour x1x2 . . . xnx1, x1 = 1, of the STSP pyramidal if x1 <
x2 < . . . < xk > xk+1 > . . . > xn for some index k. Since every pyrami-
dal tour x1x2 . . . xnx1, x1 = 1, is determined by the set {x2, x3, . . . , xk−1}
or the set {xk+1, xk+2, . . . , xn} (clearly, xk = n), we obtain that the num-
ber of pyramidal tours of the STSP is 2n−3.

The next theorem gives an upper bound for the domination number
of RNN for the STSP. Even though the theorem leaves a possibility
that this domination number is exponential, it is still much smaller than
Θ((n− 2)!).

Theorem 31 [24] Let n ≥ 4. The domination number of RNN for the
STSP is at most 2n−3.

Proof: We consider the following instance of the STSP, which proves
that RNN for the STSP has domination number at most 2n−3. Let N >
2n. Let all edges (i, i + 1), 1 ≤ i < n, have cost iN , all edges (i, i + 2),
1 ≤ i ≤ n − 2, cost iN + 1, and all remaining edges (i, j), i < j, cost
iN + 2.

Let cRNN be the cost of the cheapest tour constructed by RNN. It is
straightforward to verify that

cRNN = c(12 . . . n1) =
n−1∑
i=1

iN + N + 2. (2)

Let T = x1x2 . . . xnx1 be a tour in Kn, x1 = 1; we orient all edges of T
such that T becomes a directed cycle T ′. Some of arcs in T ′ are forward,
others are backward. For a backward arc e = (j, i), we define its length
as q(e) = j − i. We denote the sum of the lengths of backward arcs in
T ′ by q(T ′). (By the definition of a backward arc the length of every
backward arc is positive.) Let cmax be the cost of the most expensive
non-pyramidal tour T . Since the number of pyramidal tours is 2n−3, to
prove this theorem it suffices to show that cmax < cRNN.

Observe that q(T ′) ≥ n for every T ′ corresponding to a non-pyramidal
tour T . Let H be a non-pyramidal tour of cost cmax, and let ei = (i, j) be
an arc of H ′. If ei is forward, then c(ei) ≤ iN +2, and if ei is backward,
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then c(ei) ≤ jN + 2 = iN + 2− q(ei)N. Thus,

cmax ≤
n∑

i=1

(iN + 2)− q(H ′)N ≤
n−1∑
i=1

iN + 2n

as q(H ′) ≥ n. Since N > 2n and by (2), we conclude that indeed cmax <
cRNN. �

By the observation in the first paragraph of Subsection 5.1 and the
lower bound in Theorem 30, the domination number of RNN for the
STSP is at least n/4. It would be interesting to find the exact values of
the domination number of RNN for the ATSP and STSP.

6. Further Research
Exponential neighborhoods can be included into a quite general ap-

proach in combinatorial optimization (CO): restrict the feasible set of
solutions of a CO problem such that one can find the best solution of the
restricted problem in polynomial time. This method, which we suggest
to call the polynomial restriction approach (PRA) is somewhat dual to
the analysis of polynomial solvable cases of the TSP: while in the latter
one restricts instances to consider, in the PRA we restrict the solution
set for all instances of the TSP. There is some interaction between the
two approaches, see e.g. Glover and Punnen [14], but in essence they
are quite different. Notice that PRA may be of interest not only for
exponential neighborhoods; non-neighborhood type sets of exponential
size, where the best tour can be computed in polynomial time, may be
used in exact algorithms (see below) or in certain meta-heuristics.

The following approach is obviously hardly practical, but perhaps its
modifications may be of interest to practical exact algorithms. All tours
of the ATSP can be enumerated and represented as leaves of a special
rooted tree T as follows. The root of T (e.g. the first level of T ) is
the vertex 1. Every node of the tth level of T corresponds to a path
i1i2...it in

↔
Kn such that i1 = 1, and every edge of T is of the form

{i1i2...it−1, i1i2...it} and has weight c(it−1it) (except for t = n when the
weight is c(in−1in)+c(ini1)). It is clear how to develop a simple branch-
and-bound algorithm using T : search T by the means of the depth first
search. The well-known Held-Karp dynamic programming algorithm [28]
solves the ATSP to optimality in time O(n22n). A simple modification of
this algorithm can be used to find a cheapest Hamiltonian path between
a pair of given vertices in

↔
K log n in time O(n log2 n). This modification

can be applied to cut log n last levels of T , i.e., visit in the worst case
less than nlog n(n− log n)! leaves instead of (n− 1)! leaves.
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Our study of exponential neighborhoods for the ATSP suggests the
following natural question.

Problem 32 Do there exist polynomially searchable neighborhoods of
size more than Θ(e

√
n/2bn+1

2 c!nk) for any positive integer k?

The following question is stronger in a sense; it was raised by Deineko
and Woeginger [11], who conjectured that the answer to Problem 33 is
yes (under the assumption that P6=NP).

Problem 33 Do there exist polynomially searchable neighborhoods of
size at least bα(n− 1)c! for some fixed α > 1

2?

While one can see certain progress in the theoretical study of expo-
nential neighborhoods, their use in computational algorithms has been
less successful so far. We hope that this chapter will motivate extensive
computational study of various exponential neighborhoods.

The following problem, which we raised earlier, is one of the central
questions in domination analysis for the TSP.

Problem 34 Determine the maximum domination number of a polyno-
mial heuristic for the ATSP (STSP).

We provided exact values and bounds for the domination number of
various heuristics for the ATSP and STSP. Since the Euclidean TSP is
of great importance to practice, it would be quite interesting to obtain
domination number results for Euclidean TSP heuristics (where the set
of instances is restricted to the Euclidean TSP ones). Observe that, for
a given TSP instance I, most of TSP heuristics will retain domination
number if we increase the cost of every arc (edge) in I by the same
positive constant M . This implies that such heuristics will have the
same domination number even if we restrict the set of instances from all
ATSP (STSP) instances to those for which the triangle inequality holds.

The domination number reflects the worst case behavior of a heuristic.
If the worst case instances of the TSP are rather untypical for some
heuristic, the domination number may not indicate the true value of the
heuristic. Perhaps, certain probabilistic parameters, such as the average
domination number, may provide further indication of the quality of the
heuristic.
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and Their Applications. Univ. Press, Cambridge, 1998.

[3] E. Balas. New classes of efficiently solvable generalized traveling
salesman problems. Ann. Oper. Res., 86:529–558, 1999.

[4] E. Balas and N. Simonetti. Linear time dynamic pro-
gramming algorithms for new classes of restricted TSPs:
A computational study. INFORMS Journal on Comput-
ing, 13:56–75, 2001. The code is currently available from
http://www.contrib.andrew.cmu.edu/∼neils/tsp/index.html.

[5] J.L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity, vol-
ume I of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, 2 edition, 1995.

[6] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and
Applications. Springer-Verlag, London, 2000.

[7] C. Berge. The Theory of Graphs. Methuen, London, 1958.

[8] J. Carlier and P. Villon. A new heuristic for the travelling salesman
problem. RAIRO, Recherche Operationelle, 24:245–253, 1990.

[9] J. Cirasella, D.S. Johnson, L.A. McGeoch, and W. Zhang. The asym-
metric traveling salesman problem: Algorithms, instance generators,
and tests. In A.L. Buchsbaum and J. Snoeyink, editors, Algorithm
Engineering and Experimentation, Third International Wor kshop,
ALENEX 2001, Lect. Notes Comput. Sci., Vol. 2153, pages 32–59.
Springer-Verlag, Berlin, 2001.

[10] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to
Algorithms. The MIT Electrical Engineering and Computer Science
Series. MIT Press, Cambridge, MA, 1990.

35



36 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

[11] V.G. Deineko and G.J. Woeginger. A study of exponential neigh-
bourhoods for the traveling salesman problem and the quadratic
assignment problem. Math. Program., Ser. A, 87:519–542, 2000.

[12] F. Glover. Ejection chains, reference structures, and alternat-
ing path algorithms for traveling salesman problem. University of
Colorado-Boulder, April 1992.

[13] F. Glover, G. Gutin, A. Yeo, and A. Zverovich. Construction heuris-
tics for the asymmetric TSP. Eur. J. Oper. Res., 129:555–568, 2001.

[14] F. Glover and A.P. Punnen. The travelling salesman problem: new
solvable cases and linkages with the development of approximation
algorithms. J. Oper. Res. Soc., 48:502–510, 1997.

[15] G. Gutin. On an approach to solving the traveling salesman prob-
lem. In Proceedings of the USSR Conference on System Research,
pages 184–185. Nauka, Moscow, 1984. (in Russian).

[16] G. Gutin. On the efficiency of a local algorithm for solving the
travelling salesman problem. Autom. Remote Control, 49(11):1514–
1519, 1988.

[17] G. Gutin. Exponential neighbourhood local search for the travelling
salesman problem. Comput. Oper. Res., 26:313–320, 1999.

[18] G. Gutin and A. Yeo. TSP heuristics with large domination number.
Technical Report 12, Dept Math and Stats, Brunel University, 1998.

[19] G. Gutin and A. Yeo. Small diameter neighbourhood graphs for the
traveling salesman problem: at most four moves from tour to tour.
Comput. Oper. Res., 26:321–327, 1999.

[20] G. Gutin and A. Yeo. Anti-matroids. Submitted, 2001.
[21] G. Gutin and A. Yeo. TSP tour domination and Hamilton cycle

decomposition of regular digraphs. Oper. Res. Lett., 28:107–111,
2001.

[22] G. Gutin and A. Yeo. Upper bounds on ATSP neighborhood size.
Technical Report TR-01-01, Dept of Computer Science, Royal Hol-
loway Univ. London, 2001.

[23] G. Gutin and A. Yeo. Polynomial approximation algorithms for
the TSP and the QAP with factorial domination number. Discrete
Appl. Math., to appear.

[24] G. Gutin, A. Yeo, and A. Zverovich. Traveling salesman should
not be greedy: domination analysis of TSP greedy-type heuristics.
Discrete Appl. Math., to appear.

[25] G. Gutin and A. Zverovich. Evaluation of the Contract-or-Patch
Heuristic for the Asymmetric TSP. Submitted.



REFERENCES 37
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