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Abstract

We provide a characterization of the cases when the greedy algo-
rithm may produce the unique worst possible solution for the problem
of finding a minimum weight base in an independence system when the
weights are taken from a finite range. We apply this theorem to TSP
and the minimum bisection problem. The practical message of this pa-
per is that the greedy algorithm should be used with great care, since
for many optimization problems its usage seems impractical even for
generating a starting solution (that will be improved by a local search
or another heuristic).

Keywords: Greedy algorithm; traveling salesman problem; combi-
natorial optimization

1 Introduction

The greedy algorithm is one of the simplest algorithms in combinatorial opti-
mization. The greedy paradigm is often used in combinatorial optimization
theory and practice. In our view, this phenomenon can be explained by the
fact that it is widely assumed that while the greedy algorithm rarely out-
puts optimal solutions, it often provides some kind of ’approximation’, i.e.,
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it provides solutions that are significantly better than the worst ones. This
assumption seem to be justified by numerous results on ’good’ behavior of
the greedy algorithm, see, e.g., [1] for results on Euclidean TSP, max SAT,
etc.

However, several experimental and theoretical results question this as-
sumption. For example, the experimental results for the Asymmetric TSP
presented in [7] led its authors to the conclusion that the greedy algorithm
’might be said to self-destruct’ and that it should not be used even as ’a
general-purpose starting tour generator’. The theorem in [6] on the greedy
algorithm for the Asymmetric TSP confirms the above conclusion: for every
n ≥ 2 there exist instances of the Asymmetric TSP with n vertices for which
the greedy algorithm produces the unique worst tour. We show in Theorem
4.3 that this result can be strengthened, i.e., there are TSP instances that
have an exponentially large number of optimal tours, which are f(n) times
shorter than the unique worst tour, where f(n) is any function in n, and yet
the greedy algorithms produces the unique worst tour. It is worth noting
that there are many heuristics for the Asymmetric TSP that always produce
a tour, which is better than at least an Ω(1/n) part of all tours, see, e.g.,
[5, 9, 10, 11].

The authors of [4] generalized the above-mentioned theorem from [6] to
a wide class of uniform independence families (these families are defined in
the next section). As a consequence of the main theorem in [4], it is shown in
[4] that even for the polynomially solvable Assignment Problem the greedy
algorithm may produce the unique worst possible solution. The authors
of [4] posed the problem of obtaining results, which show that the greedy
algorithm fails on other combinatorial optimization problems.

The main theorem of [4] is applicable only to combinatorial optimization
problems with unrestricted weights. At the same time, in some combina-
torial optimization problems, the weights are restricted. For example, in
TSP(1,B) [2, 8, 12] only weights {1, 2, . . . , B} are available. TSP(1,2) has
applications in the frequency assignment problems in mobile and radio net-
works, see, e.g., [3]. The obvious restriction in length of the memory units of
computers indicates that we may always assume that the maximum weight
in an optimization problem is restricted.

The purpose of this paper is to extend the main theorem of [4] to the
case of restricted weights. Unlike the main theorem in [4] whose inequality
conditions are sufficient but not necessary, our main theorem completely
characterizes all independence families and finite range weight functions for
which the greedy algorithm may find the unique worst possible solution.

We also provide some applications of this theorem to particular combi-
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natorial optimization problems including TSP with restricted weights. The
first two theorems in Section 4 strengthen the greedy algorithm theorem
in [6] by showing the following results: For every n ≥ 3 there exists an in-
stance of the Symmetric TSP (the Asymmetric TSP) with weights restricted
to the set {1, 2, . . . , n−1} ({1, 2, . . . , dn+1

2 e}) for which the greedy algorithm
may find the unique worst possible tour. The same result, but with only
weights {1, 2} available, is proved for the minimum bisection problem, see
Proposition 5.1.

The main practical message of this paper is that the greedy algorithm
should be used with great care, since for many optimization problems its
usage seems impractical even for generating a starting solution (that will be
improved by a local search or another heuristic). Whenever possible, more
robust alternatives to simple greedy approaches should be considered.

2 Terminology and Notation

An independence system is a pair consisting of a finite set E and a family F
of subsets (called independent sets) of E such that (I1) and (I2) are satisfied.

(I1) the empty set is in F ;

(I2) If X ∈ F and Y is a subset of X, then Y ∈ F .

All maximal sets of F are called bases. An independence system is
uniform if all its bases are of the same cardinality.

Many combinatorial optimization problems can be formulated as follows.
We are given a uniform independence system (E,F), a set W ⊆ Z+ and a
weight function w that assigns a weight w(e) ∈ W to every element of E (Z+

is the set of non-negative integers). The weight w(S) of S ∈ F is defined
as the sum of the weights of the elements of S. It is required to find a base
B ∈ F of minimum weight. We will consider only such problems and call
them the (E,F ,W )-optimization problems.

If S ∈ F , then let I(S) = {x : S ∪ {x} ∈ F}− S. This means that I(S)
consists of those elements from E − S, which can be added to S, in order
to have an independent set of size |S| + 1. Note that by (I2) I(S) 6= ∅ for
every independent set S which is not a base.

The greedy algorithm tries to construct a minimum weight base as follows:
it starts from an empty set X, and at every step it takes the current set X
and adds to it a minimum weight element e ∈ I(X), the algorithm stops
when a base is built.
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We assume that the greedy algorithm may choose any element among
equally weighted elements in I(X). Thus, when we say that the greedy
algorithm may construct a base B, we mean that B is built provided the
appropriate choices between elements of the same weight are made.

An ordered partitioning of an ordered set Z = {z1, z2, . . . , zk} is a col-
lection of subsets A1, A2, . . . , Aq of Z satisfying that if zr ∈ Ai and zs ∈ Aj

where 1 ≤ i < j ≤ q then r < s. Some of the sets Ai may be empty and
∪q

i=1Ai = Z.
The complete undirected (directed) graph on n vertices will be denoted

by Kn (
↔
Kn).

3 Characterization

In the following theorem we characterize all independence systems (E,F)
for which there is a finite range assignment of weights to the elements of E
such that the greedy algorithm solving the (E,F , {1, 2, . . . , r})-optimization
problem may construct the unique worst possible solution.

Theorem 3.1 Let (E,F) be independence system and let r ≥ 2 be a natural
number. There exists a weight assignment w : E → {1, 2, , . . . , r} such
that the greedy algorithm may produce the unique worst possible base if and
only if F contains some base B with the property that for some ordering
x1, . . . , xk of the elements of B and some ordered partitioning A1, A2, . . . , Ar

of x1, . . . , xk the following holds for every base B′ 6= B of F :

r−1∑

j=0

|I(A0,j) ∩B′| <
r∑

j=1

j × |Aj |, (1)

where A0,j = A0 ∪ . . . ∪Aj and A0 = ∅.

Proof: We may assume that ∪F∈FF = E as the weight of elements not
contained in any base is immaterial.

Suppose B is a base and that B = {x1, . . . , xk} is an ordering that
satisfies (1) with respect to the ordered partitioning A1, . . . , Ar of B. Let
w : E → {1, 2, . . . , r} be the weight function that assigns weight s to x
precisely when x ∈ I(A0,s−1) − I(A0,s). By this assignment every element
of Ai is assigned weight i and hence the weight of B is given by

w(B) =
r∑

j=1

j × |Aj | (2)
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Now let B′ be any base distinct from B. By (I2) every element in
I(A0,j)∩B′ is also in I(A0,i)∩B′ for all 0 ≤ i < j. Thus it follows from the
definition of w that z ∈ B′ has weight j + 1 precisely if it belongs to each of
the sets I(A0,i), for i = 0, 1, 2, . . . , j but z 6∈ I(A0,j+1). Thus we can write
w(B′) as follows

w(B′) =
r−1∑

j=0

|I(A0,j) ∩B′| (3)

It follows from (1) that B is the worst possible base; hence it remains
to show that the greedy algorithm may produce B. This is clearly the case
if xj+1 has minimum weight in I({x1, x2, . . . , xj}), for all j = 0, 1, 2, . . . , k−1.
Thus, assume that this is not the case for some j, and let z ∈ I({x1, x2, . . . , xj})
be some element with s = w(z) < w(xj+1). By the definition of the weight
function we see that z 6∈ I(A0,s). Therefore, the fact that A1, . . . , Ar is an
ordered partitioning of x1, . . . , xk and z ∈ I({x1, x2, . . . , xj}) implies that
{x1, x2, . . . , xj} ⊂ A0,s. This in turn implies that {x1, x2, . . . , xj , xj+1} ⊆
A0,s, and, thus, w(xj+1) ≤ s = w(z), a contradiction. Therefore the greedy
algorithm may produce B.

To prove the other direction assume that w : E→{1, 2, . . . , r} is a weight
function with respect to which the greedy algorithm may produce a base B
such that w(B) > w(B′) for every base B′ 6= B. Let Ai = {x ∈ B : w(x) =
i}. Note that Ai may be empty for some i. Clearly w(B) is then given by
(2). Let B′ be any base different from B. For each j ∈ {0, 1, 2, . . . , r − 1}
we have w(z) ≥ j + 1 for every z ∈ I(A1 ∪ . . . ∪ Aj) ∩ B′ since the greedy
algorithm extends A1 ∪ . . . ∪ Aj by elements from the first non-empty A`,
` ≥ j + 1, all of which have weight ` ≥ j + 1. This implies that we have

w(B) > w(B′)

≥
r−1∑

j=0

|I(A0,j) ∩B′|,

implying that (1) holds. 2

The following theorem can be deduced from Theorem 3.1. However, it
has a shorter proof, which is presented.

Theorem 3.2 Let (E,F) be a uniform independence system. For every
choice of distinct natural numbers a, b there exists a weight function w :
E→{a, b} such that the greedy algorithm may produce the unique worst base
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if and only if F contains a base B = {x1, x2, . . . , xk} such that for some
1 ≤ i < k the following holds:

(a) If B′ is a base such that {x1, . . . , xi} ⊆ B′ then B′ = B.

(b) If B′ is a base such that {xi+1, . . . , xk} ⊆ B′ then B′ = B.

Proof: Suppose B = {x1, x2, . . . , xk} is a base satisfying (a) and (b), and
assume that a < b. Let all elements in {xi+1, xi+2, . . . , xk} have weight b,
and all other elements have weight a. Clearly B is the unique worst solution,
as by (b) no other base contains all the elements of weight b. Moreover, the
greedy algorithm may produce B, since if it starts by picking {x1, x2, . . . , xi}
then it has to produce B, by (a).

We now just need to show that if the greedy algorithm does pick the
unique worst solution, say B = {x1, x2, . . . , xk} for some weight function w :
E→{a, b}, then (a) and (b) hold. We may assume that {x1, x2, . . . , xi} are all
the elements in B of weight a. All other elements in B have weight b. If (a)
does not hold then there is some base B′ 6= B, such that {x1, x2, . . . , xi} ⊆
B′. If there is another element in B′ of weight a, then the greedy would not
have produced B, and if there is not, then w(B′) = w(B), a contradiction.
Hence (a) holds. If (b) does not hold, then clearly there is another base of
weight greater than or equal to B, a contradiction. Thus (b) holds, and the
theorem is proved. 2

4 Applications to TSP

In this section we apply the general results and approaches from the previ-
ous section to the Symmetric and Asymmetric Traveling Salesman Prob-
lems (STSP and ATSP). Let E be the set of edges (arcs) in Kn (

↔
Kn)

and let H be the collection of sets of edges (arcs) such that every such
set is a subset of edges (arcs) of a Hamilton undirected (directed) cycle in
Kn (

↔
Kn). The usually formulated STSP and ATSP can be considered as

the (E,H,Z+)-optimization problems. As we discussed in Section 1, also
(E,H,W )-optimization problems, which are restricted versions of STSP and
ATSP, are of interest, where W ⊂ Z+.

For all these problems the bases are Hamilton cycles (called tours in the
TSP literature) in the corresponding graph. Thus, we will use the terms
’base’ and ’tour’ interchangeably in the rest of this section.

Theorem 4.1 Consider restricted versions of STSP as (E,H,W )-optimization
problems.
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(a) If n ≥ 4 and |W | ≤ bn−1
2 c, then the greedy algorithm never produces

the unique worst possible base.

(b) If n ≥ 3, r ≥ n − 1 and W = {1, 2, . . . , r}, then there exists a weight
function w : E→{1, 2, . . . , r} such that the greedy algorithm may pro-
duce the unique worst possible base.

Proof: To prove (a) suppose that B = {x1, x2, . . . , xn} is a base pro-
duced by the greedy algorithm and that its elements were chosen by the
algorithm in the order x1, x2, . . . , xn. Also assume that B is the unique
worst base.

Since there are at most bn−1
2 c different weights, there must exist vertex

disjoint edges xi, xj of the same weight k. Let xi have endvertices u and v
and xj have endvertices x and y. Without loss of generality, we may assume
that B′ = B∪{uy, vx}−{uv, xy} is a base. We must have w(uy), w(xv) ≥ k
since otherwise the greedy algorithm would have chosen one of these edges
instead of xi or xj in the step just before the first of xi, xj was chosen. Thus,
w(B′) ≥ w(B), a contradiction.

To prove (b) let B be an arbitrary base and fix an ordering {x1, x2, . . . , xn}
of B such that v0, x1, v1, x2, v2, . . . , vn−1xn, v0 is a tour, where xi = vi−1vi.
Let A1, A2, . . . , An−1, be the ordered partitioning of {x1, x2, . . . , xn} such
that A1 = {x1, x2} and Aj = {xj+1} for j = 2, 3, . . . , n− 1.

We will show that (1) of Theorem 3.1 holds w.r.t. the given ordering of
B and A1, A2, . . . , An−1. By the choice of the ordering of B (corresponding
to the tour v0, x1, v1, x2, v2, . . . , vnxn, v0) it follows that

|I(A0,0) ∩B| = n and |I(A0,j) ∩B| = n− j − 1 for j = 1, 2, . . . n− 2. (4)

This implies that

n−2∑

j=0

|I(A0,j) ∩B| = n(n− 1)
2

+ 1 (5)

Let B′ be a base different from B. We claim that

|I(A0,j) ∩B′| ≤ |I(A0,j) ∩B| for j = 0, 1, . . . n− 2. (6)

This clearly holds for j = 0. To see that it holds for j = 1, 2, . . . n− 2, it
suffices to observe that no edge incident to the vertices v1, . . . , vj belongs to
I(A0,j) ∩B′. Hence at least j + 1 edges of B′ do not belong to I(A0,j) and
(6) follows from (4).
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We claim that we will have strict inequality at least once in (6). Assume
that this is not true.

Observe that unless the vertices v1, v2, . . . vj induce a connected compo-
nent in the tour B′ (that is, when we delete these vertices we get a path)
we will have |I(A0,j) ∩ B′| < n − j − 1. Furthermore none of the edges
v0vj+1, j = 1, . . . , n − 2 can belong to B′. This is because the edge v0vj+1

cannot belong to I(A0,j), implying again that if it was in B′ we would have
|I(A0,j) ∩ B′| < n − j − 1. But then B′ must contain the edges v0v1 and
v0vn and using that the set v1, v2, . . . vj induces a connected component in
B′ for j = 1, 2, . . . , n − 2 we conclude that B′ = B, a contradiction. Thus
we have shown that we have strict inequality in (6) and now it follows from
Theorem 3.1 that we can assign weights from {1, 2, . . . , n− 1} to the edges
of Kn so that the greedy algorithm may find the unique worst tour. 2

Remarks: 1. Notice that while W in part (a) of Theorem 4.1 is an
arbitrary set of cardinality at most b(n − 1)/2c, W in part (b) is the set
with elements 1, 2, . . . , r. We have to restrict the elements in W in part (b)
because we use Theorem 3.1.

2. It follows from the way we proved (a) that no greedy tour containing
two vertex disjoint edges of the same cost can be the unique worst possible.
Hence if B is a ’greedy’ base, which is also the unique worst possible, then
there are at most two edges of cost k for any k in the range of w and
furthermore such edges must be consecutive on the tour B.

3. The proof of (b) does not work if we replace n − 1 by n/2. This is
because in this case we cannot guarantee that a base B′ which has equality
in (6) must use the edges v0v1 and vn−1v0. Consider, for example, the case
when n = 6 and B = v0, x1, v1, x2, v2, . . . , v5, x6, v0. Then the suggested
assignment used in the proof of Theorem 3.1 would give w(x1) = w(x2) = 1,
w(x3) = w(x4) = 2 and w(x5) = w(x6) = 3 and B would have weight 12.
On the other hand it is easy to check that the tour which visits the vertices
in the order v0, v3, v1, v2, v4, v5, v0 also has weight 12, implying that B is not
the unique worst base.

For ATSP we can in fact determine the exact borderline for the complete
failure of the greedy algorithm.

Theorem 4.2 Consider restricted versions of ATSP as (E,H,W )-optimization
problems. Let n ≥ 3.

(a) If |W | ≤ bn−1
2 c, then the greedy algorithm never produces the unique

worst possible base.
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(b) For every r ≥ dn+1
2 e there exists a weight function w : E(

↔
Kn)→{1, 2, . . . , r}

such that the greedy algorithm may produce the unique worst possible
base.

Proof: Since the proof is similar to that of Theorem 4.1 we will only
give a few hints. To prove (a) observe that since there are at most bn−1

2 c
different weights, there will be three arcs with the same weight in any base
B. By deleting three such arcs and adding three different ones not in B we
obtain a new base B′ and as above we can argue that w(B′) ≥ w(B).

To prove (b) we consider a tour v0, x1, v1, x2, v2, . . . , vn, xn, v0, fix the
base B = {x1, x2, . . . , xn} and take the ordered partition to be A1, . . . , Abn+1

2
c

where Ai = {x2i−1, x2i}, i = 1, 2, . . . bn−1
2 c and Abn+1

2
c = {xn−1, xn} if n is

even and Abn+1
2
c = {xn} if n is odd. Now arguing in a way similar to

that in the proof of Theorem 4.1 we can show that equality holds in (6) if
and only if B′ − A0,j is a path with the same endvertices as B − A0,j for
j = 0, 1, . . . , bn−1

2 c (the key observation here is that if we have equality in
(6), then the arc v0v1 must belong to B′). Since B′ 6= B it follows that B′

cannot have equality in (6) for every j = 0, 1, . . . , bn−1
2 c and hence (1) holds

and Theorem 3.1 implies that (b) holds. 2

Some ideas used to prove Theorem 3.1 can be reutilized to show the
following:

Theorem 4.3 For each even n ≥ 4 there exists an instance of STSP (ATSP)
that has Ω( (n−1)!

2nn3/2 ) optimal tours, each of which is f(n) times shorter than
the unique worst tour, where f(n) ≥ 1 is an arbitrary function in n, and yet
the greedy algorithms produces the unique worst tour.

Proof: The proof is very similar for STSP and ATSP. Thus, we restrict
ourselves to the STSP only, but we comment on the part, where there is
some difference. Let Kn be a complete graph on vertices {1, 2, . . . , n} and
let edge {i, i + 1} be denoted by ei for i = 1, 2, . . . , n, where n + 1 = 1.

Then T = {e1, e2, . . . , en} is a base. Let T ′ be an arbitrary base distinct
from T . It was proved in [4] that

n−1∑

j=0

|I(e1, e2, . . . , ej) ∩ T ′| < n(n + 1)/2. (7)

Let w′(ei) = i(n+1) for each ei ∈ T and, for e 6∈ T , let w′(e) = 1+j(n+1)
if e ∈ I(e1, e2, . . . , ej−1) but e 6∈ I(e1, e2, . . . , ej).
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Let P (n) be the w′-weight of a w′-heaviest tour in Kn. Let L = {2, 3, . . . , n
2 +

1} and R = {n
2 + 2, n

2 + 3, . . . , n} ∪ {1}. We define the weights of e ∈ E as
follows: w(e) = w′(e) unless both endvertices of e are in R, in which case
w(e) = w′(e) + f(n)P (n).

Clearly, the greedy algorithm constructs T and w′(T ) = n(n + 1)2/2,
w(T ) = w′(T ) + (n

2 − 1)f(n)P (n). Let A be the set of all tours alternating
between L and R and containing edges e′ = {n

2 + 1, n
2 + 2} and e′′ = {2, 1}.

Let G be the induced subgraph of Kn obtained from Kn by deleting the
vertices n

2 + 1 and n
2 + 2. Clearly, there are [(n

2 − 2)!]2 tours alternating
between L and R and containing the edge e′′ in the graph G. To form a
tour containing e′, e′′ in Kn from a tour C containing e′′ in G, it suffices
to insert the edge e′ into C such that e′′ remains in the tour. This can be
done in n − 3 ways. Hence, |A| = [(n

2 − 2)!]2(n − 3) = Ω( (n−1)!

2nn3/2 ). (Notice
that for ATSP, the definition and cardinality of A are slightly different: A
consists of tours alternating between L and R and containing arcs (1, 2) and
(n

2 + 1, n
2 + 2), |A| = [(n

2 − 2)!]2(n
2 − 1) = Ω( (n−1)!

2nn3/2 ).)
It is easy to verify that each cycle H in A has the same weight and

w(T )/w(H) ≥ f(n). It remains to prove that every H ∈ A is an optimal
tour and T is the unique worst tour.

Let C be a tour alternating between L and R. Observe that the sum of
the weights of two edges of C incident to a vertex i ∈ L equals 2i(n + 1) + 2
provided none of the two edges coincides with e′ or e′′ (the only exception
is when one of the edges is incident to vertex 1, in which case n has to be
subtracted; notice that there are exactly two edges of C incident to vertex
1). Including e′ (e′′) into C, we decrease the weight of C by one. Thus,
every tour C alternating between L and R and not containing at least one
of the edges e′, e′′ has weight larger than that of H ∈ A. Every tour C
not alternating between L and R has an edge between vertices in R. Thus,
w(C) > w(H).

Let C = {e′1, e′2, . . . , e′n} be a tour distinct from T . Assume that w′(e′i) ∈
{a(n + 1), a(n + 1) + 1}. Then clearly e′i ∈ I(e1, e2, . . . , ea−1), but e′i 6∈
I(e1, e2, . . . , ea), so e′i lies in I(e1, e2, . . . , ej) ∩C, provided j ≤ a− 1. Thus,
e′i is counted a times in the sum in (7). Hence,

w′(C) =
n∑

i=1

w(e′i) ≤ n + (n + 1)
n−1∑

j=0

|I({e1, e2, . . . , ej}) ∩ C|

≤ n + (n + 1)(n(n + 1)/2− 1) = n− (n + 1) + w′(T ) < w′(T ).

It remains to notice that w(T ) = w′(T ) + (n
2 − 1)f(n)P (n) and no tour

contains more than n
2 − 1 edges whose all endvertices are in R. 2
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5 Applications to Other Problems

Let F be the sets of those subsets X of E(K2n) which induce a bipartite
graph. Then (E(K2n),F) is a uniform independence system and the bases of
(E(K2n),F) correspond to copies of the complete balanced bipartite graph
Kn,n in K2n. The (E(K2n),F ,Z+)-optimization problem is called the min-
imum bisection problem [1].

Proposition 5.1 Let n ≥ 4. The greedy algorithm for the (E(K2n),F , W )-
optimization problem may produce the unique worst solution even if |W | = 2.

Proof: Fix an arbitrary copy B of Kn,n in K2n and order the edges of
B as B = {e1, e2, . . . , en2} so that the first 2n − 1 edges form a spanning
tree T in K2n and the last 2n−1 edges form a spanning tree T ′ in K2n (this
is clearly possible when n ≥ 4). Now consider any base (a copy of Kn,n) B′

which is different from B. Then both (a) and (b) of Theorem 3.2 must hold
for B′ because as soon as a bipartite subgraph of K2n contains the edges
of either T or T ′ the bipartition is fixed to be that of B. Thus it follows
from Theorem 3.2 that there exists an assignment of weights, using only
two weights such that the greedy algorithm will produce the unique worst
solution. 2

Let A be the arc set of the complete digraph
↔
Kn. Let F be the family

of those subsets X of A for which the subdigraph D[X] induced by the arcs
in X has maximum out-degree one and contains at least one vertex with
out-degree zero. Then (A,F) is an independence system and the bases of
(A,F) correspond to in-branchings of

↔
Kn. It is not difficult to show that

the greedy algorithm does not always find an optimal base, even if the arcs
have only two different weights. On the other hand, we can prove that it
never produces the unique worst solution either.

Proposition 5.2 Let n ≥ 2 and let (A,F) be the independence system
above. Then the greedy algorithm will never produce the unique worst possi-
ble solution for the (A,F , {1, 2, . . . , r})-optimization problem for any r ≥ 2
and weight function w.

Proof: Let B be a base produced by the greedy algorithm. Observe that if e
is the last arc included in B by the greedy algorithm, then {e, e′} ⊆ I(B−e)
for some e′ 6= e. Then w(e′) ≥ w(e) and w(B ∪ {e′}− {e}) ≥ w(B) and B is
not the unique worst base. 2
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