A Heuristic for the Resource-Constrained Traveling
Salesman Problem

Gregory Gutin, Alexei Zverovitch
Department of Computer Science
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

David Blokh
The Schottenstein Cellscan Center for Early Detection of Cancer
Department of Physics, Bar-Ilan University
Ramat Gan, 52900, Israel

1 Introduction

The Resource-Constrained Traveling Salesman Problem (RCTSP) is formu-
lated as follows. A set of n cities is given (denoted by V); travelling from
city ¢ to city j incurs cost c¢;; as well as resource consumption 7;;. The
objective is to find a minimum cost Hamilton cycle (or tour) that consumes
not more than R,,,; units of the resource, where R,,,, is some constant.
The cost (resource consumption) of a tour is the sum of the costs (resource
consumptions) of its arcs.

We study the asymmetric version of the problem, whereby generally
cij # cji and/or ri; # rj; for at least some pairs (7, j).

RCTSP is a generalization of the well-known Traveling Salesman Prob-
lem (TSP); see, for example, [15] and [10]. RCTSP was first introduced
by Pekny and Miller in [19], who have proposed an exact parallel branch-
and-bound algorithm for solving the problem. They have also shown the
Resource Constrained TSP to subsume the Prize Collecting TSP [4] and
Orienteering Problem [8] as special cases. In [19], Pekny and Miller dis-
cuss an application of the RCTSP to scheduling a processing facility with
sequence dependent transition costs and an aggregate deadline for job com-
pletion.

In this paper, we slightly modify and adapt to RCTSP a Lagrangian
relaxation method for general NP-hard optimization problems that can

be traced back to the 1970s. Since then, this method has been stud-
ied for special NP-hard problems in a large number of papers including
[1,2,5,7,9, 11, 14]. A Lagrangian relaxation method is described in sev-
eral monographs including [6, 18]. Recently, the authors of [14] managed
to prove that the Lagrangian relaxation method is of strongly polynomial
complexity for the restricted shortest path problem. A. Juttner (private
communication, 2001) claims that the method used in [14] can be applied to
prove strong polynomiality of the Lagrangian relaxation method for a quite
general family of optimization problems.

We modify the Lagrangian relaxation scheme from [5]. The modification
is required due to necessity to have certain parameters bounded and integral
(for TSP solvers). Our computational experience shows that heuristic solu-
tions are fairly close to optima. Thus, the Lagrangian relaxation method can
be applied to RCTSP if a fast heuristic solution is required or the RCTSP
data are not exact. Such heuristic solutions can be used as upper bounds
for exact algorithms and as good initial solutions for metaheuristics.

2 Heuristic

Algorithm 1 presents a heuristic for RCTSP and, without the d. and 4,
scaling part, this is an adoption of the Lagrangian relaxation scheme from
[5]. The scaling part and the rounding down for D is required since we need
the entries of matrix (array) D to be within certain range.

Most of the TSP codes we are aware of are only capable of dealing with
integer inter-city distances. Therefore when the matrix D is computed, its
elements are rounded to an integer so that a TSP solver can be applied to
D. This makes it necessary to scale d. and 4, to minimize loss of precision
as a result of rounding. The scaling is controlled by the parameter u: the
scaling results in one of the two coefficients (0. or d,) becoming equal to
and the other becoming less than or equal to p in absolute value.

In addition to minimizing precision loss, the parameter p also bounds
the values of é. and 9§, from above. This prevents uncontrollable growth of
the coefficients and consequently the elements of matrix D.

Sometimes elements of D may become negative. If the TSP solver used
is not able to deal with negative inter-city distances correctly, the following
transformation can be applied to matrix D before executing the TSP solver:
d;j = d;j —min{d;;|1 <i <n,1 <j<n}, where n is the number of cities in
the RCTSP.

The following notation is used Algorithm 1:

e 1 is some constant used for scaling . and d,; a typical value of 1 on
a 32-bit platform can be, e.g., 1000.

e r(z) and c(z) denote the cost of tour x w.r.t. matrices R = [r;;] and
C = [c;j] respectively.

e T'SP(A) denotes a solution for the unconstrained TSP defined by dis-
tances matrix A. The algorithm does not require this to be an opti-
mal solution, it can be an approximate solution obtained using some
heuristic, for example, the Lin-Kernighan heuristic [16].

3 Lower Bound

In this section we derive a lower bound (LB) for the Resource-Constrained
Traveling Salesman Problem.
Let Ds, 5, := [0,C + 6.R] for some 6, and .. Let

L((Sra 60) = %(LBTSP(D(ST,&) - 5cRmam)7
where LB1gp(A) is a lower bound for the unconstrained TSP defined by ma-
trix A. The following assertion is an adoption for RCTSP of the general La-
grangian lower bound, see, e.g., the papers (or monographs) on Lagrangian
relaxation cited above.

Claim. For any 6, > 0 and 6. > 0, the value L(d,,0.) provides a
lower bound for the RCTSP defined by the cost matrix C' and resource
consumption matrix R with resource consumption constrained by Ry,qz-

Proof: Assume f* is an optimal solution to the RCTSP. Let c¢(f*)
denote the cost and r(f*) the resource consumption of solution f*.

L(,,50) = ;(LBTSP(DMC) — 0¢Rmaz)
< é(DaT,ac(f ") = 6cRmaz)
_ (slr(16,¢(f*) + 607 (F*)] — GeRmas)
<)) = 5 R
=c(f*) + g:(r(f*) — Rinaz)
<c(ff) O

Algorithm 1 Heuristic for RCTSP

begin
{ STEP 1 - Optimize C }
z.— TSP(C)

if r(x.) <= Ry then
{Optimal solution found}
terminate and return z.

end if

{ STEP 2 - Optimize R }
x, — TSP(R)

step «— 3

repeat
{ Compute ¢, and J. }
de «— c(xy) — c(xc)
Op — r(xze) —r(z,)

{ Scale §, and ¢, }
if |9;| > |0, then
Op — Oppt/0c
O 1t
else
O 50#/57"
Op — 14
end if
if this (o, d,) pair has already been tried before, then
terminate and return l,,q.
end if

{ Solve unconstrained TSP }
D «— 6,C + 4.R|
x—TSP(D)

{ Replace . or z, }
if r(x) > Ryqe then x. — x else z, «— z end if
step «— step + 1
end repeat
end

To obtain the best lower bound, one needs to maximize L(d,,d.) over d,
and d.:
L* .= max L(6,,0.).
5508020 (9, c)
In order to approximate L*, it is possible to use an iterative procedure
similar to the one discussed in the previous section. The procedure is de-
tailed in Algorithm 2. It uses the following notation:

e i is some constant used for scaling d. and d,; a typical value of p on
a 32-bit platform can be, e.g., 1000.

e (1), ¢(l), and d(l) denote the cost of lower bound [w.r.t. matrices R,
C, and D respectively.

e LBrsp(A) denotes a lower bound for the unconstrained TSP defined
by distances matrix A.

This procedure relies on computing a lower bound for the unconstrained
Traveling Salesman Problem. For example, the Held-Karp lower bound
[12, 13] can be used.

4 Computational results

Following [19], we generate test RCTSP instances as follows. Cost matrix
elements, c;;, are independently and uniformly chosen random integers in
the range [0,1000]. (In this section, when we say ”"random”, we in fact mean
pseudorandom, generated using an implementation of the Mersenne Twister
generator of [17]). Resource matrix elements, 7;;, are independently and
uniformly chosen integers in the range [0,1000 — ¢;;]. The cost matrix C' =
[cij] is generally not symmetric, since ¢;; and c¢j; are generated independently
of each other and therefore may differ. This is also true for the resource
matrix R = [r;].

Maximum resource usage, Rpqz, i computed using the following for-
mula:

S 5 9 SIS RNIEE) 9 ST L
i€V jev i€V jev

In the above formula, values zf; represent an optimal solution of the

unconstrained TSP defined by the cost matrix [(c;;)]; z§; = 1 if the arc (4, j)

belongs to the optimal TSP tour, 27; = 0 otherwise. Similarly, z7; represent

Algorithm 2 Lower bound for RCTSP

begin

lc — LBrsp(C)

l, + LBrsp(R)

linaz < —00

repeat
{ Compute §, and J. }
0c — c(ly) —c(le)
Op —r(le) —r(ly)

{ Scale ¢, and é. }
if [0.] > |9;| then
Op — Oppt/0c
Oc — |4
else
de « Ocpt /o
Op —
end if
if this (6., d,) pair has already been tried before, then
terminate and return I,

end if

{ Compute lower bound }
D — |6;C + .R]|

t — LBrsp(D)

I — (d(t) — 0cRmaz)/0r
if | > 1,4 then

—1

lmax

end if

{ Replace l. or I, }

if r(t) > Ryqz then
l. — 1

else
l, — t

end if

end repeat
end

an optimal solution of the unconstrained TSP defined by the resource matrix
[(rij)]-

In Equation (1), « is a parameter providing means for controlling tight-
ness of the resource constraint. It assumes values between 0 and 1: when
«a = 0, the resource constraint is very tight while still allowing for a feasible
solution; when o = 1, the resource constraint has no effect on the optimal
solution of the problem since the problem is effectively reduced to the un-
constrained TSP. We test the algorithm for the following values of a: 0.25,
0.5, 0.75 and 1.

We vary the size of the instances between 100 to 1000 cities, testing the
algorithm on instances of the following sizes: 100, 316, and 1000 cities. For
each value of a, we run the algorithm on ten different randomly generated
instances of size 100, ten instances of size 316, and three instances of size
1000.

We use the Concorde code [3] to solve instances of the unconstrained
Traveling Salesman Problem and to compute TSP lower bounds. Since
Concorde supports symmetric TSP instances only, we first apply a trans-
formation to convert an arbitrary TSP instance into a symmetric one. The
transformation starts by splitting each city v; into three, v? , vil and vf, and
connecting v{ to v} and v} to v? with undirected zero-cost edges. Each
directed arc (v;,vy) from the original problem is then replaced by an undi-
rected edge (UJZ, vY) of the same cost. Finally, the resulting graph is com-
plemented to a complete undirected graph by adding all missing edges and
setting their costs to some constant, large enough to ensure such edges are
never selected as part of a ”good” TSP tour.

The above transformation triples the size of the problem, and the largest
problems in our testbed have their size increased by the transformation to
3000 cities. In order to be able to deal with such large problems we have
modified the way Ry,q. is computed. We use the same formula as above, (1),
but substitute approximate TSP solutions instead of optima. Approximate
solutions are computed using Concorde’s implementation of the Chained
Lin-Kernighan algorithm which we run with default settings. We have used
this method to compute R,,q, for all instances in our testbed.

We have implemented the RCTSP algorithm in the C++ programming
language and used it to solve the instances of the testbed described above.
The computational study was performed on an Intel Celeron 550MHz PC
with 384 megabytes of RAM.

Table 1 shows the quality of the RCTSP solutions found by the algo-
rithm. This is measured as a percentage excess of the cost of the tour found
above the lower bound.

It can be seen from Table 1 that in all our tests the solutions found by
the algorithm are within 25% above the lower bound. It is unclear how
much of this gap is due to the approximate nature of the algorithm and how
much is due to the lower bound not being very tight. One observation that
can be made about the tightness of the lower bound is the following. When
a =1, the heuristic always finds an optimal solution (this is due to the fact
that the resource constraint is very loose when o = 1). However, the gap
between the (optimal) solution and the lower bound in some cases can be
as high as 13.5%.

Table 2 shows the running time of the algorithm in seconds. For ease
of implementation we run Concorde as a separate process. Each time a
TSP instance needs to be solved, it is written to file in a format compatible
with Concorde, and the Concorde executable is launched, which reads the
file in and solves the TSP instance. This approach clearly results in some
unnecessary overheads that can be avoided if the Concorde package is used
as a callable library and embedded directly into the RCTSP application.
Embedding Concorde into the RCTSP application will make the following
operations unnecessary: 1) writing TSP instance to a file; 2) launching new
process; 3) reading TSP instance from the file. We have measured the time
required to perform these operations (as a function of the problem size) and
computed estimated running time of the RCTSP algorithm if Concorde was
used as a callable library rather than a separate executable. The estimated
running times are presented in Table 3.

By comparing the data in Tables 2 and 3 it can be seen that the overheads
dominate the running time of the algorithm on small problems (n = 100), ac-
counting for up to 75% of the execution time of the algorithm. For medium-
size problems (n = 316), the overheads account for a much smaller part of
the running times, in the region of 15%. For large problems (n = 1000), the
overheads take very little relative time, accounting for approximately 3-4%
of the execution time.

5 Conclusion

In this paper we have studied a heuristic for the Resource-Constrained Trav-
eling Salesman Problem (RCTSP), which is a modification of a Lagrangian
relaxation scheme for certain NP-hard optimization problems. Our com-
putational experiments show that the heuristic is very useful when a fast
suboptimal solution is required. Fast suboptimal solutions can be used when
computation time is restricted, as upper bounds for exact algorithms, and as

a=0.25
size trials avg excess max excess
over LB over LB
100 10 10.55% 22.54%
316 10 13.90% 23.04%
1000 3 13.28% 23.68%
a=0.5
size trials avg excess max excess
over LB over LB
100 10 6.74% 11.01%
316 10 8.59% 17.65%
1000 3 10.30% 14.37%
a=0.75
size trials avg excess max excess
over LB over LB
100 10 10.10% 19.69%
316 10 8.41% 14.31%
1000 3 9.36% 9.60%
a=1
size trials avg excess max excess
over LB over LB
100 10 3.59% 6.14%
316 10 7.50% 9.70%
1000 3 12.65% 13.53%

Table 1: Effectiveness of the algorithm

a=0.25

size trials avg time, s max time, s
100 10 12.844 18.688
316 10 118.805 217.140
1000 3 1158.453 1601.579
a=0.5
size trials avg time, s max time, s
100 10 14.170 26.734
316 10 119.149 271.547
1000 3 1819.547 2451.828
a=0.75
size trials avg time, s max time, s
100 10 10.764 15.391
316 10 151.059 263.656
1000 3 1161.406 1388.079
a=1
size trials avg time, s max time, s
100 10 0.745 0.844
316 10 4.224 4.453
1000 3 42.063 43.954
Table 2: Algorithm running time

10

a=0.25

size trials avg time, s max time, s
100 10 3.122 4.509
316 10 101.557 184.800
1000 3 1111.341 1534.988
a=0.5
size trials avg time, s max time, s
100 10 3.822 8.366
316 10 101.901 232.347
1000 3 1744.349 2349.903
a=0.75
size trials avg time, s max time, s
100 10 2.790 4.196
316 10 128.960 223.476
1000 3 1113.841 1331.001
a=1
size trials avg time, s max time, s
100 10 0.297 0.396
316 10 3.734 3.963
1000 3 40.704 42.595

Table 3: Adjusted algorithm running time

11

good initial solutions for metaheuristics. It makes sense to restrict ourselves
to suboptimal solutions also when the RCTSP data is not exact as it often
happens in real world problems.

Acknowledgement

The research of GG has been partially supported by an EPSRC grant.

References

1]

2]

V. Aggarwal, Y. Aneja, and K.P.K. Nair. Minimal spanning tree subject
to a side constraint. Comput. Operations Res., 9:287-296, 1982.

Y.P. Aneja, V. Aggarwal, and K.P.K Nair. Shortest chain subject to
side constraints. Networks, 13:295-302, 1983.

D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde: A code
for solving Traveling Salesman Problems. Available for download at
http://www.math.princeton.edu/tsp/concorde.html.

E. Balas. The Prize Collecting Traveling Salesman Problem and its
applications. In Gutin and Punnen [10].

D. Blokh and G. Gutin. An approximate algorithm for combinatorial
optimization problems with two parameters. Ausralasian J. Combin.,
14:157-164, 1996.

M.W. Carter and C.C. Price. Oprations Research: A Practical Intro-
duction. CRC Press, Boca Raton, 2001.

S.-J. Chung, S.-P. Hong, and H.-S. Huh. A fast algorithm for stereo
matching. Information Processing Letters, 63:57-61, 1997.

M. Fischetti, J.J. Salazar, and P. Toth. The generalized traveling sales-
man and orienteering problem. In Gutin and Punnen [10].

D. Golenko-Ginzburg, D. Blokh, and G. Gutin. A two-parametric ap-
proximate method to optimize alternative activity network models. Part

1: The general approach and the algorithm. Communications in De-
pendability and Quality Management, 3:18-24, 2000.

G. Gutin and A.P. Punnen, editors. Traveling Salesman Problem and
its Variations. Kluwer, 2002.

12

[11]

[12]

[13]

[14]

[15]

[16]

[17]

G.Y. Handler and I. Zang. A dual algorithm for constrained shortest
path problem. Networks, 10:293-310, 1980.

M. Held and R. Karp. The Traveling Salesman Problem and Minimum
Spanning Trees. Operations Research, 18:1138-1162, 1970.

M. Held and R. Karp. The traveling salesman problem and minimum
spanning trees: Part II. Mathematical Programming, 1:6-25, 1971.

A. Juttner, B. Szviatovszki, I. Mecs, and Z. Rajko. Largrange re-
laxation based method for the QoS routing problem. In IEEE IN-
FOCOM 2001, pages 100-109, 2001. Available for download at
http://www.ieee-infocom.org/2001/.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys, edi-
tors. The Traveling Salesman Problem: A Guided Tour of Combinato-
rial Optimization. John Wiley & Sons, 1985.

S. Lin and B.W. Kernighan. An effective heuristic algorithm for the
traveling salesman problem. Operations Research, 21:498-516, 1973.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number genera-
tor. ACM Trans. on Modeling and Computer Simulation, 8(1):3-30,
January 1998.

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley, New York, 1988.

J. F. Pekny and D.L. Miller. An Exact Parallel Alorithm for the Re-
source Constrained Traveling Salesman Problem with Application to
Scheduling with an Aggregate Deadline. Technical Report EDRC 05-
44-89, Institute for Complex Engineered Systems, Carnegie Mellon Uni-
versity, 1989.

13

