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Basic Concepts I

Definitions:

o Vocabulary o: aset o ={R},..., R, } of rela-

tion symbols of specified arities.

o o-structure A = (A, Ry,...,Rny):

a non-empty set A and relations on A such that
arity(R;) = arity(R;), 1 <i < m.

o [inite o-structure A: universe A is finite

Examples:
o Graph: G = (V, F), where E is binary.
o String: S = ({1,2,...,n}, P), where P is unary
m € P <= the m-th bit of the string is 1.

— string 10001 encoded as ({1,2,3,4,5},{1,5})



Basic Concepts I

Example: 3-CNF formulas as finite structures

Every 3-CNF formula can be viewed as a finite
structure of the form A = (A, Ry, R1, Rs, R3), where

each R; is a ternary relation.

e 3-CNF formula ¢ with variables x1,...,x,

o Structure A¥ = ({z1,..., 2.}, Ry, Ry, Ry, RY),

where

R = {(z,y,2):(zVyVz)is a clause of v}

RY = {(z,y,2):(—~xVyVz)is a clause of ¢}
Ry = {(z,y,2):(-xV -yV z)is a clause of ¢}
R = {(z,y,2):(—xV-yV-z)is a clause of ¢}



Queries I

Definitions:

o Class C of structures: a collection of relational

o-structures closed under isomorphisms.

o k-ary Query Q on C:
a mapping () with domain C and such that
— Q(A) is a k-ary relation on A, for A € C;

— (@ is preserved under isomorphisms, i.e.,

if h : A — B is an isomorphism, then

e Boolean Query Q on C:

a mapping @Q : C — {0,1} preserved under
isomorphisms. Thus, () can be identified with
the subclass C’ of C, where

C = {AeC: QA)=1}



Examples of Queries'

PATH OF LENGTH 2: P2

Binary query on graphs H = (V, E/) such that

P2(H) = {(a,b) € V?: there is a path of length 2 fr

s-T CONNECTIVITY: TC
Binary query on graphs H = (V| E/) such that
TC(H) = {(a,b) € V?: there is a path from s to t}.

CoNNEcCTIVITY CN:

Boolean query on graphs H = (V| E') such that

1 if H is connected
CNH) =

0 otherwise.

k-COLORABILITY k > 2

3-SAT (with formulas viewed as structures)



Definability of Queries'

Let L be a logic and C a class of structures

e A k-ary query Q on C is L-definable if there is
an L-formula p(xq,...,xr) with x1,..., 2 as

free variables and such that for every A € C

QA) = {(a1,...,ar) € A¥ : A = p(a1,...,ar)}.

e A Boolean query @) on C is L-definable if there
is an L-sentence 9 such that for every A € C

QA)=1 «— AL,



First-Order & Second-Order Logic'

First-Order Logic FO (on graphs):
— first-order vartables: x, vy, z, ...
— atomic formulas: E(x,y), T =1y

— formulas: atomic formulas + connectives +
first-order quantifiers dx, Vx, dy, Vy, ... that

range over the nodes of the graph.

Second-Order Logic SO:

First-order logic + second-order quantifiers
35, VS, IT, VT, ... ranging over relations of
specified arities on the universe of structures.

Existential Second-Order Logic ESO:

(3S1) - (3Spm) (T, S1,...,Sm), where ¢ is FO.

Universal Second-Order Logic USO:

(VS1) -+ - (VSm)e(T, S1,.-.,Sm), where ¢ is FO.



First-Order Definability I

Example: On the class G of finite graphs

e The query PATH OF LENGTH 2 is FO-definable
P2(H) = {(a,b) € V*:H = 32(E(a, 2)\E(2,b))}.

e The queries TRANSITIVE CLOSURE, CONNEC-
TIVITY, k-COLORABILITY, k > 2, are not FO-
definable.

Example: On the class of all finite structures with

4 ternary relations:

The query 3-SAT is not first-order definable.

Note: Results about non-definability in FO-logic
can be proved using Ehrenfeucht-Fraissé Games.



Second-Order Definability I

Fact: The queries DISCONNECTIVITY, k-COLORABILITY,
3-SAT are ESO-definable.

e DISCONNECTIVITY:
35 (3zS(x) A Jy—S(y)A

(V2Vw(S(2)A=S(w) — —E(z,w))).

o 2-COLORABILITY:

IRVaVy(E(z,y) — (R(r) < —R(y))).
® 3-SAT:
3SVaVyVz((Ro(z,y, z) — S(x)V.S(y)V.S(2))A

(R1(z,y,2) — 25(2)VS(y)VS(2))A

(Ra(z,y,2) — =5(x)V=5(y)vS(2))A
(R3(z,y,2) = 25(2)V=5(y)v-5(2)))-

|
s
<
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The Complexity of Logic.

Definition: (Vardi —1982) Let L be a logic.

e The combined complexity of L is the following
decision problem:

Given a finite structure A and an L-sentence

Y, does A = 7

(i.e., it is the model checking problem for L)

e The data complexity of L is the family of the
following decision problems P, one for each
fixed L-sentence :

Given a finite structure A, does A = 97

e The expression complexity of L is the family
of the following decision problems Pp, one for
each fixed finite structure A:

Given an L-sentence 1), does A = 97

11



The Complexity of Logic.

Definition: L a logic and C' a complexity class.

e The data complexity of L s in C if for each
L-sentence 1, the problem P, is in C.

o The data complexity of L is C-complete if it
is in C' and there is at least one L-sentence
such that P, is C-complete.

o The expression complexity of L is in C if for

each finite structure A, the problem Pa is in

C.

o The expression complexity of L 1s C-complete
if it is in C' and there is at least one finite
structure A such that Pp is C-complete.

12



The Complexity of First-Order Logic.

Theorem: The following hold for first-order logic:
e The data complexity of FO is in LOGSPACE

e The expression complexity of FO is PSPACE-

complete

e The combined complexity of FO is PSPACE-
complete.

Proof:

e Fix a first-order sentence 1. Given finite A:

Cycle through all possible instantiations of the
quantifiers of 1 in A, keeping track of the num-

ber of them using a counter in binary.

e QBF is PSPACE-complete (Stockmeyer - 1976).
QBF is the expression complexity of FO on a

structure with two distinct elements. |

13



The Complexity of ESO I

Theorem: The data complexity of ESO is NP-

complete.

Proof:

o [.et W be an ESO-sentence of the form
451 - - - dSm .

Given a finite structure A, to test that A = U,

1. “Guess” relations S7,...,S, on A;

2. Verify that (A, S],...,S5) ) = ¢, using the
fact that the data complexity of FO is in P.

e 3-COLORABILITY is definable by an ESO-sentence
and is NP-complete. |

Theorem Both the expression complexity and
the combined complexity of ESO are NEXPTIME-
complete.

14



Descriptive Complexity I

Note: Actually, a much stronger result holds for
the data complexity of ESO:

Theorem: Fagin — 1972

The following are equivalent for a Boolean query
() on the class F of all finite o-structures.

e () isin NP.

e () is ESO-definable on F.
In other words, NP = ESO on F. |

15
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Fragments of First-Order Logic'

e First-order logic FO has high expression and
combined complexity (PSPACE-complete).

e However, there are interesting fragments of FO
such that:

1. they have lower expression and combined
complexity;

2. they have been extensively studied in database
theory;

3. they are intimately connected to constraint
satisfaction.

17



Conjunctive Queries I

Definition: A conjunctive query is a query defin-
able by a FO-formula in prenex normal form built
from atomic formulas, A, and 3 only.

(Fz1 ... Fzpm)V(T1, oo Ty 21, -5 Zm),s
where 1) is a conjunction of atomic formulas.
Note: CQs can also be written as a rule:
Q(x1,...,xk) : — R(ys, x3,21),5(x1,93),...,5(y7, x32)
Examples:

e PATH OF LENGTH 2 (Binary query)
(F2)(E(xz1,2) AN E(z,x2)
P2(xq,22) : — E(x1,2), E(z,x2)

e CYCLE OF LENGTH 3 (Boolean query)
(Jx1FxoTzs) (E(z1, 22) NE (22, 23) NE(23,21))

Q - E(l’l,l’Q),E(ZE2,£U3),E(£U37QZ‘1)

18



Conjunctive Queries & Databases'

e Relational Joins
Database relations Ri(A, B,C), R2(B,C, D).
By definition,

R1 x Ry = {(a,b,c,d) : Ri(a,b,c) and Rs(b,c,d)}.
Clearly,
Ry ® Ry(x,y,z,w) :— Ri(x,y,2), Ra(y, 2z, w)

e Relational joins are precisely the CQs without

existential quantification.

e Conjunctive Queries are the most frequently

asked queries in databases (a.k.a. SPJ queries)
e The main construct of SQL expresses conjunc-

tive queries

SELECT R;.A, Ry.D

FROM Ry, R

WHERE R,.B = R;.B AND R;.C' = Ry.C

19



Conjunctive Query EvaluationI

A fundamental problem about conjunctive queries

Definition: CONJUNCTIVE QUERY EVALUATION

e Given a CQ ) and a structure A, find
Q(A) ={(a1,...a;) : A EQ(a1,...,ax)}

e For Boolean queries (), this becomes:

Given @ and A, does A = Q7 (is Q(A) = 17)

e Same problem as the

combined complexity of conjunctive queries

Examples:

e Given a graph H, find all pairs of nodes con-
nected by a path of length 4.

e Given a graph H, does it contain a triangle?

20



Conjunctive Query Containment'

A fundamental problem about conjunctive queries

Definition: CONJUNCTIVE QUERY CONTAINMENT

e Given two k-ary CQs (1 and ()o, is it true that

for every structure A,
Q1(A) C Q2(A)?

e For Boolean queries, this becomes:

Given two Boolean queries ()1 and ()5, does
Q1 E Q27 (does Q1 logically imply Q27)
Examples:

e [s it true that if two nodes of a graph H are
connected by a path of length 4, then they are
also connected by a path of length 37

e It is true that if a graph H contains a K4, then
it also contains a K3?

21



Conjunctive Queries and Homomorphisms'

e Chandra and Merlin (1977) showed that
CONJUNCTIVE QUERY EVALUATION
and
CONJUNCTIVE QUERY CONTAINMENT

are the same problem.

e The link is the

HoMOMORPHISM PROBLEM

22



Homomorphisms I

Definition: Consider two relational structures
A= (AR} ... R?) and B= (B,RB,...,RB).

h: A — B is a homomorphism if for every 1 < m

and every tuple (a1,...,a,) € A",

R™aq,...,a,) = RP(h(a1),...,h(ayn)).

Definition: The HOMOMORPHISM PROBLEM

Given two relational structures A and B, is there
a homomorphism h : A — B?

In symbols, does A — B?

Example: A graph H = (V, F) is 3-colorable
<

there is a homomorphism h : H — K3, where K3
is the 3-clique, i.e., K3 = ({R, G, B}, E3), where

E3 = {(Rv G)a (Gv R)? (Rv B)? (Bv R)v (Bv G)? (Gv B)}

23



Canonical CQs and Canonical Structures'

Definition: Clanonical Conjunctive Query

Given A = (A, R, ..., R®), the canonical CQ of
A is the Boolean CQ Q# with the elements of A
as variables and the “facts” of A as conjuncts:

Q* - /\ N\ RA(t)

Definition: Canonical Structure

Given a Boolean conjunctive query @, let A® be
the structure with the variables of () as elements
and the conjuncts of () as “facts”.

Example:

e A= ({CL, b, C}7 {(av b)? (b7 C)? (C7 CL)}
Q* :— E(z,y) AN E(y,2) A E(z, )

e ) : — E(z,y) N E(x, 2)
AQ — ({CL, bv C)v {(avb)v (CL,C)})

24



Homomorphisms, CQC and CQEI

Theorem: Chandra & Merlin — 1977
For relational structures A and B, TFAE

e There is a homomorphism h: A — B
e BEQ" (ie,Q2(B)=1)
¢ QP CQ*

Alternatively,

For conjunctive queries (1 and (Jo, TFAE
e 1 C Qo

e There is a homomorphism h : A®2 — A®@:

e A% Qs (ie, Q2(A9) =1)

25



Illustration: 3-COLORABILITY'

For a graph H, the following are equivalent:

1. There is a homomorphism A : H — K3

2. K3 = QH
3. QFs C QM
Proof:

(1) = (2): A hom. h: H — K3 provides wit-
nesses in K3 for the existential quantifiers in Q.

(2) = (3): If Kz = QY and A = Q¥3, then
there are witness functions h : H — K3 and
h* : Kg — A.

The composition h*oh : H — A provides witnesses
in A for the existential quantifiers in Q.

(3) = (1): Since K3 = Q¥3, we have K3 = QY.
The witnesses to the existential quantifiers give a

homomorphism from H to K3. |

26



Illustration: 3-SAT '

Let ¢ be a 3-CNF formula with variables z1, ..., x,:
o AY=({z1,...,xn}, Ry, Ry, Ry, RY), where

R = {(x,y,2):(xVyVz)is a clause of v}

RY = {(z,y,2):(—~xVyVz)is a clause of ¢}
RS = A(z,y,2):(-xV -yV z)is a clause of ¢}
R = {(z,y,2):(—xV-yV-z)is a clause of ¢}

= ({0, 1},R0,R1,R2,R3), Where
— {071}3_{(0707 0)} Ry = {071}3_{(17070)}
— {071}3_{(17170)} R3 = {071}3_{(17171>}

Corollary: The following are equivalent:
e ( is satisfiable.
e A - B
e BE QA
o QB C QM

27



CSP and Conjunctive Queries.

Conclusion 1:
e CONSTRAINT SATISFACTION
e THE HOMOMORPHISM PROBLEM
e CONJUNCTIVE QUERY EVALUATION

¢ CONJUNCTIVE QUERY CONTAINMENT

are the same problem.

Conclusion 2:

Both the combined complexity and the expression
complexity of conjunctive query evaluation are NP-
complete (contrast with FO-logic).

28



The Feder-Vardi Dichotomy Conjecture'

Definition: CSP(B) = {A: A — B}

Conjecture: Feder-Vardi, 1993

If B is a finite structure, then CSP(B) is in P or it
is NP-complete.

e NP-complete
CSP(B) NP — P, not NP-complete
AN P

Note: This amounts to a dichotomy conjecture
about the expression complexity of conjunctive queries

CSP(B) = {A:BE QA}
= {Q : Q is a conjunctive query and B = Q}

29



CSP and Data Complexity'

e We saw that CSP(B) is the same problem as

the expression complexity of conjunctive queries.

e The data complexity of conjunctive queries is
in LOGSPACE, so CSP(B) cannot be captured
by the data complexity of conjunctive queries.

e However, CSP(B) is intimately connected to
the data complexity of a fragment of existential

second-order logic, called monadic monotone
strict NP, and denoted by MMSNP.

30



Existential Monadic Second-Order Logic'

Definition: Existential Monadic SO-Logic

(also known as Monadic NP)
351355 - - - IS,

where S1,...,95,, are set variables and 1) is FO.

Fact: If B= (B, Ry,..., R,,) is a finite structure,
then CSP(B) is definable by a sentence of existen-
tial monadic second-order logic with a universal

first-order part, i.e., by a sentence of the form
3451 - - S, Vyq - - - Vy,0,
where 6 is quantifier-free.

Proof: Use one S; for each element of B = {1,...,n},
so that S; 1s the set of all elements of A that are
mapped to 7, for 1 <1 < n.

31



CSP and Monadic NP'

Example: 3-COLORABILITY
JRIGIBYxVy6l, where 0 asserts
e R, B, G form a partition
(R(x) V B(z) V G(x))A
~(R(2)AB(2))A~(B(z)AG(2) ) A (R(2)AG(2)) A

e If (z,y) is an edge, then x and y are in different

parts.
(E(z,y) — (R(z) — ~R(y))AN(B(z) — ~B(y))NG(z.

Characteristics:
e Monadic: SO-quantifiers over set variables only;
e Strict: only universal FO-quantifiers;

e Monotone: all occurrences of E are negated;

there are no #.

32



MMSNP - Monadic Monotone Strict NP'

Definition: Feder-Vardi, 1993
MMSNP is the class of all monadic ESO-formulas
(351 ---35,)(Yyy - - - Vys)0,

such that

e all relations in the vocabulary have only nega-

tive occurrences in 6;

e no inequalities # occur in 6.

Proposition: Feder-Vardi, 1993

For every structure B = (B, Ry, ..., R,,), there is
a MMNSP-formula ¥y that defines CSP(B).

Thus, each CSP(B) is a query about the data com-
plexity of MMSNP.

33



CSP wvs. MMSNP'

Question: What is the exact relationship be-
tween CSP and MMSNP?

Theorem: Feder-Vardi, 1993

Every MMSNP-query has a randomized polynomial-
time Turing reduction to finitely many CSP(B)
queries.

Theorem: Kun, 2006
The reduction of MMSNP to CSP can be de-randomized.

Corollary:
(1) CSP and MMSNP are polynomially equivalent.

(2) The Dichotomy Conjecture for CSP is the same
as a Dichotomy Conjecture for MMSNP.

34



CSP vs. Monadic NP '

Theorem: Feder-Vardi, 1993

Every problem in NP is polynomially equivalent to
e a problem in strict, monotone, ESO:;

e a problem in monadic, monotone, strict ESO
with =#£;

e a problem in monadic, strict, #-free ESO.

Corollary: Assuming P # NP, the Dichotomy
Conjecture fails for all extensions of MMSNP.

35



Summary I

e The HOMOMORPHISM PROBLEM is the same as
the combined complexity of conjunctive queries

(a fragment of first-order logic)
A—-B < BEQ*

e CSP(B) is the same problem as the
expression complexity of conjunctive queries
(a fragment of FO-logic):
Given a structure A, does B = Q47

Q* is the canonical conjunctive query of A.

e CSP(B) is polynomially equivalent to the
data complexity of MMSNP
(a fragment of ESO-logic):

Given a structure A, does B = ¥g?
Vg is a MMSNP-sentence obtained from B.
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Complexity of CSP I

Uniform CSP: THE HOMOMORPHISM PROBLEM
CSP ={(A,B): A — B}
e Combined complexity of conjunctive queries

e NP-complete.

Non-Uniform CSP: For every structure B,
CSP(B) ={A: A — B}
e Expression complexity of conjunctive queries;

e Data complexity of MMSNP:;

e It is in NP; can be NP-complete.

Research Program: Identify all tractable cases

of CSP.
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Islands of Tractability of CSP I

Definition: Let C be a class of pairs (A,B) of

structures.
e CSP(C) = {(A,B)e(C: A — B}
e We say that C is an island of tractability of
CSP if CSP(C) is in P.

Research Program: Identify all islands of tractabil-
ity of CSP.

Fact: So far, the main focus has been on islands
of tractability C of the form C = A x B, where A

and B are two classes of finite structures.

CSP(A,B) = {(A,B)c AxB: A — B}

Note: CSP(B) = CSP(All, {B})
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Logic and Tractability of Non-Uniform CSP I

Research Program: Identify all islands of tractabil-

ity of non-uniform CSP, that is, all structures B
such that CSP(B) is in P.

Approach through Logic:

e Use logics with tractable data complexity to

identify tractable cases of non-uniform CSP.

o If L is a logic whose data complexity is in P
and if B is such that CSP(B) is definable by
an L-formula, then CSP(B) is in P.
Case Study: First-Order Logic

e The data complexity of FO is in P (in fact, in
LOGSPACE).

e When is CSP(B) FO-definable?

40



First-Order Logic and Non-Uniform CSP I

Theorem: Atserias - 2005

The following are equivalent for a structure B:

e CSP(B) FO-definable.

e CSP(B) = {A : A /4 B} is definable by a

finite union of conjunctive queries.

Note: Follows also from Rossman’s Theorem (2005)

about preservation under homomorphisms.

Theorem: Larose, Loten, and Tardif - 2006

The problem of deciding, given B, whether CSP(B)
is FO-definable is NP-complete.

Note: Membership in NP is non-trivial.

41



Datalog I

Note: Recall that CQs can be written as rules:
P2(£L‘1,£E2) . — E(ZEl, Z),E(Z,CEQ)
Definition:

e Datalog = Conjunctive Queries + Recursion

Function, negation and #-free logic programs

e A Datalog program is a finite set of rules given

by conjunctive queries

T(@) : = 5@ Sr(¥r).

— Some relation symbols may occur both in
the heads and the bodies of rules.

These are the recursive relation symbols or

intensional database predicates (IDBs).

— The remaining relation symbols are the

extensional database predicates (EDBs).

42



Datalog Examples I

Definition: TRANSITIVE CLOSURE Query 1T'C

Given graph H = (V. F),

TC(H) = {(a,b) € V? : there is a path from a to b}.

Example 1: Datalog program for 7T'C’

e F is the EDB.
e S is the IDB; it defines T'C'.

43



Datalog Examples I

Definition: S. Cook — 1974
PATH SYSTEMS S = (F, A, R)

Given a finite set of formulas F', a set of axioms
A C F, and a rule of inference R C F3, compute

the theorems of this system.

Example: Datalog program for PATH SYSTEMS:

e A and R are the EDBs.
e 7' is the IDB; it defines the theorems of S.

Theorem: Cook - 1974

PATH SYSTEMS is a P-complete query.
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Data Complexity of Datalog.

Theorem:

e Every Datalog query is definable by an “effec-

tive and uniform” union of conjunctive queries.
e Every Datalog query is in P.
e The data complexity of Datalog is P-complete.

Proof:

e Datalog programs can be evaluated “bottom-

up” in a polynomial number of iterations.

e Each iteration is definable by a finite union of

conjunctive queries.

e PATH SYSTEMS is a P-complete problem.
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Evaluation of Datalog Programs'

Example : Datalog program for T'C

Bottom-up Evaluation

SY =
ST = {(a,b)) : 32(E(a, z) A S™(2,D))}
Fact:
S™ = {(a.b) : there is a path of length < m from a t
TC = U,,95™
TC = SV

46



Preservation Properties I

Fact: Preservation Properties of Datalog.

e Datalog queries are preserved under

homomorphisms:

Let (Q be a Datalog query. If A = @ and
A — B, then B = Q.

e Similarly, Datalog queries are monotone, i.e.,

they query is preserved if new tuples are added
to the EDDBs.

Reason: Unions of conjunctive queries have these

preservation properties.
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Datalog and CSP I

Fact: Let B= (B,RB,... ,RB).

e In general, CSP(B) is not monotone.
e Hence, CSP(B) is not expressible in Datalog.

However,

e CSP(B) is monotone, where

CSP(B)={A: A 4 B.

e Hence, it is conceivable that CSP(B) is
expressible in Datalog (and, thus, it is in P).
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Datalog and CSP I

Fact: Feder & Vardi — 1993

Definability of CSP(B) in Datalog is a unifying ex-
planation for many tractability results about CSP(B).

Example: 2-COLORABILITY = CSP(K3)

Datalog program for NON 2-COLORABILITY

49



Datalog and CSP I

Theorem: Feder & Vardi — 1993

e If B=(B,Ry,...,Ry) is such that
Pol({R1, ..., Rr}) contains a near-unanimity
function, then CSP(B) is definable in Datalog.

Special Case: 2-SAT

e If B=(B,Ry,...,R) is such that
Pol({R1, ..., Rx}) contains a semi-lattice func-
tion, then CSP(B) is definable in Datalog.

Special Cases:

HORN k-SAT, DUAL HORN k-SAT, k > 2.

e There are affine Boolean structures B such that
CSP(B) is not definable in Datalog.
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Horn 3-SAT and Datalog'

Horn 3-CNF formula ¢ viewed as a finite structure
A¥Y = ({x1,...,2,}),U, P,N), where
e U is the set of unit clauses x

e P is the set of clauses (-x V -y V 2)

e N is the set of clauses (- V =y V —2)

Datalog program for HORN 3-UNSAT

Unit Propagation Algorithm

T(z) :— U(z)
T(Z) o P(xvya Z),T(ZIZ’),T(y)
Q - N(z,y,2),T(2), T(y), T(2)
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CSP and Datalog.

Fact: Expressibility in Datalog is a unifying ex-
planation for many, but not all, tractability results
about CSP(B).

Open Problem: Is there an algorithm to decide

whether, given B, we have that CSP(B) is express-
ible in Datalog?

Note: It follows from the work of Larose, Loten,
and Tardif that this problem is NP-hard.
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Datalog and CSP I

Question: Fix B = (B, Ry,...,Rn).

When is CSP(B) expressible in Datalog?

Answer:

Feder & Vardi — 1993, K ... & Vardi — 1998, 2000

Expressibility of CSP(B) in Datalog can be
characterized in terms of

e Finite-Variable Logics
e Pebble Games

e Consistency Properties.
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Existential k-Pebble Games'

Spoiler and Duplicator play on two structures A
and B. Each player uses k£ pebbles. In each move,

e Spoiler places a pebble on or removes a pebble

from an element of A.

e Duplicator tries to duplicate the move on B.

A a1 a9 aj
[ |
B b1 bs b [ <k

e Spoiler wins the (3, k)-pebble game if at some
point the mapping a; — b;, 1 <1 <,

is not a partial homomorphism.

e Duplicator wins the (3, k)-pebble game if the

above never happens.
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Example I

Cliques of Different Size

Fact: Let K be the k-clique

e Duplicator wins the (3, k)-pebble game on Kj
and Kk.|.1.

e Spoiler wins the (3, k)-pebble game on K; and
Kr_1.
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Paths of Different Size'

® ®
® ®
® ®
® ®
® ®
® o
o

L, Ly,

e Spoiler wins the (3, 3)-pebble game
on L,, and L,,, where m > n.

e Duplicator wins the (3, 3)-pebble game
on L, and L,,, where m > n.
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Winning Strategies in the (3, k)-Pebble Game

Definition: A winning strateqy for the Duplicator
in the (3, k)-pebble game is a non-empty family [
of partial homomorphisms from A to B such that

e If feland hC f,then hel

(I is closed under subfunctions).

o If f € I and |f| < k, then for every a € A,
there is g € I so that f C g and a € dom(g).

(I has the forth property up to k)

Fact: If A — B, then the Duplicator wins the
(3, k)-pebble game on A and B for every k.
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k-Datalog I

Definition: A k-Datalog program is a Datalog

program in which each rule
t() . tl,...,tm

has at most k distinct variables.

Example: NON 2-COLORABILITY revisited

OX,Y) :— EX)Y)
oX,Y) :— OX,2),EZ W), E(W,Y)
Q o O(XvX)

Therefore,

NON 2-COLORABILITY is definable in 4-Datalog.
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k-Datalog and (3, k)-Pebble Games

Theorem: K ... & Vardi

e Let () be a query definable by a k-Datalog pro-
gram. If A satisfies ) and the Duplicator wins
the (3, k)-pebble game on A and B, then also
B satisfies Q.

e There is a polynomial-time algorithm to decide
whether, given two finite structures A and B,
the Spoiler or the Duplicator wins the (3, k)-
pebble game on A and B.

e For every fixed finite structure B, there is a
k-Datalog program that expresses the query:
given a finite structure A, does the Spoiler win
the (3, k)-game on A and B?
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Datalog and Non-Uniform CSP I

Theorem: K ... & Vardi
Let k£ be a positive integer and B a finite structure.

Then the following are equivalent:

e CSP(B) is definable in k-Datalog

e CSP(B) = {A : Duplicator wins the
(3, k)-pebble game on A and B}.

e For every finite structure A, establishing strong
k-consistency for A and B implies that there

is a homomorphism from A to B.
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The Complexity of Existential k-Pebble Games.

Theorem: K ... and Panttaja - 2003

e (Also implicit in Kasif - 1986)
For every k > 2, the following problem is P-

complete:

Given two finite structures A and B, does the
Duplicator win the (3, k)-pebble game on A
and B?

e The following problem is EXPTIME-complete:

Given a positive integer k£ and two finite struc-
tures A and B, does the Duplicator win the
(3, k)-pebble game on A and B?

Corollary:
The following problem is EXPTIME-complete:

Given a positive integer £ and two finite structures

A, B, can strong k-consistency be established for
(the CSP instance encoded by) A and B?
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Datalog and Tractability of CSP I

Summary:

e Definability of CSP(B) in k-Datalog is a suffi-
cient condition for tractability of CSP(B).

e Single canonical polynomial-time algorithm:

determine who wins the (3, k)-pebble game.

Open Problem:

Fix a positive integer k > 2. Is there an algorithm
to decide whether, given B, we have that CSP(B)
is expressible in k-Datalog?
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Tractability of Non-Uniform CSP I

e Thus far, we have concentrated on tractability

results for non-uniform CSP.
e What about tractability results for uniform CSP?

e Does logic help to discover islands of tractabil-
ity for uniform CSP?
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Tractability of Uniform CSP I

Recall that if A and B are classes of finite struc-
tures, then

CSP(A,B) = {A,B)c AxB: A — B}

Theorem: Dechter & Pearl — 1989

Let o be a fixed vocabulary, let &k > 2 be a positive
integer, and let 7 (k) be the class of all o-structures
of treewidth less than k.

Then CSP(7 (k), All) is in P.

Question:

e Can this result be explained in terms of defin-

ability in Datalog?

e Can this result be explained in terms of the
(3, k)-pebble game?
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Bounded Treewidth & Finite-Variable Logics.

Fact: Having tw(A) < k turns out to be tightly
connected to the canonical query Q® being defin-
able in a fragment of FO with k variables.

Definition: Fix an integer k£ > 2.

e FOF is the collection of all first-order formulas

with k distinct variables.

e CQF is the collection of all FO*-formulas built

using atomic formulas, A, and 3 only.

Example: Let C,, be the n-element cycle, n > 3.
The canonical CQ Q€ is expressible in CQ®.

For instance, Q%* is logically equivalent to

Sa3y32(E(e, y) AE(y, 2) A (By)(E(z,9) AE(y, 2)).
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Bounded Treewidth & Finite-Variable Logics'

Question: When is Q? definable in CQ"*?

Definition: A and B are homomorphically equiv-

alent, denoted A ~; B, if there are homomor-
phisms h: A - Band /' : B — A.

Theorem: Dalmau, K ..., Vardi - 2002
Fix a k£ and a finite structure A.

Then the following are equivalent:

e QA is definable in CQF.
e There is some B € 7 (k) such that A ~j, B.

e core(A) € T(k).
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Cores '

Definition: We say that a structure B is the core
of a structure A if

e B is a submodel of A.

e There is a homomorphism from A to B
(thus, A =5, B).

e There is no homomorphism h : B — B’ from
B to a proper submodel B’ of B.

Examples:
o core(Ky) =Ky
e If H is 2-colorable, then core(H) = K.

o If H is 3-colorable and contains a K3, then
core(H) = K.

Note: Cores play an important role in database

query processing and optimization.
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Beyond Bounded Treewidth'

Definition: Fix a vocabulary o and a k£ > 2.

H(7 (k)) is the class of all o-structures that are

homomorphically equivalent to a structure in 7 (k).

Fact: H(7 (k)) is the class of all o-structures A
such that core(A) has treewidth less than k.

Example: Every 2-colorable graph is in H(7 (2)).

Fact: 7 (k) is properly contained in H(7 (k))

Proof: There are 2-colorable graphs of arbitrarily
large treewidth (for instance, m x m-grids)
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Islands of Tractability of Uniform CSP I

Theorem : Dalmau, K ..., Vardi — 2002

Fix a vocabulary o and an integer k£ > 2.

e For every structure A € H(7 (k)) and for every
structure B, the following are equivalent:

1. A—B

2. The Duplicator wins the (3, k)-pebble game
on A and B.

e If B is a fixed o-structure, then CSP(H(7 (k)), {B})
is definable in k-Datalog.

o CSP(H(7Z(k)),All) is in P.
Actually, it is definable in least fixed-point logic
LFP.

Algorithm:

Determine the winner in the (3, k)-pebble game.
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Classification Theorem '

Theorem: Grohe — 2003
Assume that FPT £ W|1].

If A is a r.e. class of finite structures over some
fixed vocabulary o such that CSP(A, All) is in P,
then there is a k > 2 such that A C H(7 (k)).

Note: FPT # W/|1] is the analog of P # NP for

parametrized complexity.

Conclusion: For every fixed vocabulary o, the
classes H(7 (k)) constitute the largest islands of
tractability of the form CSP (A, All) among all classes

A of o-structures.
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Summary I

e The combinatorial concept of bounded treewidth
has a logical reconstruction via definability in
finite-variable logics.

o CSP(H(7Z (k)), All), k > 2, are large islands of
tractability of uniform CSP.

e Determining the winner in the (3, k)-pebble
game is a polynomial-time algorithm for
CSP(H(7 (k)), All)

(hence, also for CSP(7 (k)), All)).
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Logic and CSP I

UNIFORM CSP is the same problem as the

combined complexity of conjunctive queries

NON-UNIFORM CSP

— 1is the same problem as the expression com-

plexity of conjunctive queries

— is polynomially equivalent to the data com-
plexity of MMSNP

Datalog and (3, k)-pebble games provide a uni-
fying explanation for many, but not all, tractabil-
ity results for NON-UNIFORM CSP

(3, k)-pebble games give rise to large islands of
tractability for UNIFORM CSP.
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Concluding Remarks I

e Constraint Satisfaction is a meeting point of
— Computational Complexity
— Database Theory
— Logic
— Universal Algebra
— Graph Theory.

e The quest for islands of tractability of CSP
goes on through the synergy and interaction

of all these areas.
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