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Basic Concepts

Definitions:

• Vocabulary σ: a set σ = {R′1, . . . , R′m} of rela-
tion symbols of specified arities.

• σ-structure A = (A, R1, . . . , Rm):

a non-empty set A and relations on A such that
arity(Ri) = arity(R′i), 1 ≤ i ≤ m.

• Finite σ-structure A: universe A is finite

Examples:

• Graph: G = (V,E), where E is binary.

• String: S = ({1, 2, . . . , n}, P ), where P is unary

m ∈ P ⇐⇒ the m-th bit of the string is 1.

– string 10001 encoded as ({1, 2, 3, 4, 5}, {1, 5})
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Basic Concepts

Example: 3-CNF formulas as finite structures

Every 3-CNF formula can be viewed as a finite
structure of the form A = (A, R0, R1, R2, R3), where
each Ri is a ternary relation.

• 3-CNF formula ϕ with variables x1, . . . , xn

• Structure Aϕ = ({x1, . . . , xn}, Rϕ
0 , Rϕ

1 , Rϕ
2 , Rϕ

3 ),
where

Rϕ
0 = {(x, y, z) : (x ∨ y ∨ z) is a clause of ϕ}

Rϕ
1 = {(x, y, z) : (¬x ∨ y ∨ z) is a clause of ϕ}

Rϕ
2 = {(x, y, z) : (¬x ∨ ¬y ∨ z) is a clause of ϕ}

Rϕ
3 = {(x, y, z) : (¬x ∨ ¬y ∨ ¬z) is a clause of ϕ}
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Queries

Definitions:

• Class C of structures: a collection of relational
σ-structures closed under isomorphisms.

• k-ary Query Q on C:
a mapping Q with domain C and such that

– Q(A) is a k-ary relation on A, for A ∈ C;
– Q is preserved under isomorphisms, i.e.,

if h : A → B is an isomorphism, then

Q(B) = h(Q(A)).

• Boolean Query Q on C:
a mapping Q : C → {0, 1} preserved under
isomorphisms. Thus, Q can be identified with
the subclass C′ of C, where

C′ = {A ∈ C : Q(A) = 1}.
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Examples of Queries

• Path of Length 2: P2

Binary query on graphs H = (V, E) such that

P2(H) = {(a, b) ∈ V 2: there is a path of length 2 from a to b}.

• s-t Connectivity: TC

Binary query on graphs H = (V, E) such that

TC(H) = {(a, b) ∈ V 2: there is a path from s to t}.

• Connectivity CN :

Boolean query on graphs H = (V, E) such that

CN(H) =





1 if H is connected

0 otherwise.

• k-Colorability k ≥ 2

• 3-Sat (with formulas viewed as structures)
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Definability of Queries

Let L be a logic and C a class of structures

• A k-ary query Q on C is L-definable if there is
an L-formula ϕ(x1, . . . , xk) with x1, . . . , xk as
free variables and such that for every A ∈ C

Q(A) = {(a1, . . . , ak) ∈ Ak : A |= ϕ(a1, . . . , ak)}.

• A Boolean query Q on C is L-definable if there
is an L-sentence ψ such that for every A ∈ C

Q(A) = 1 ⇐⇒ A |= ψ.
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First-Order & Second-Order Logic

• First-Order Logic FO (on graphs):

– first-order variables: x, y, z, . . .

– atomic formulas: E(x, y), x = y

– formulas: atomic formulas + connectives +
first-order quantifiers ∃x, ∀x, ∃y, ∀y, . . . that
range over the nodes of the graph.

• Second-Order Logic SO:

First-order logic + second-order quantifiers
∃S, ∀S, ∃T , ∀T , ... ranging over relations of
specified arities on the universe of structures.

• Existential Second-Order Logic ESO:

(∃S1) · · · (∃Sm)ϕ(x, S1, . . . , Sm), where ϕ is FO.

• Universal Second-Order Logic USO:

(∀S1) · · · (∀Sm)ϕ(x, S1, . . . , Sm), where ϕ is FO.
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First-Order Definability

Example: On the class G of finite graphs

• The query Path of Length 2 is FO-definable

P2(H) = {(a, b) ∈ V 2 : H |= ∃z(E(a, z)∧E(z, b))}.

• The queries Transitive Closure, Connec-

tivity, k-Colorability, k ≥ 2, are not FO-
definable.

Example: On the class of all finite structures with
4 ternary relations:

The query 3-Sat is not first-order definable.

Note: Results about non-definability in FO-logic
can be proved using Ehrenfeucht-Fräıssé Games.
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Second-Order Definability

Fact: The queries Disconnectivity, k-Colorability,
3-Sat are ESO-definable.

• Disconnectivity:

∃S(∃xS(x) ∧ ∃y¬S(y)∧

(∀z∀w(S(z)∧¬S(w) → ¬E(z, w))).

• 2-Colorability:

∃R∀x∀y(E(x, y) → (R(x) ↔ ¬R(y))).

• 3-Sat:

∃S∀x∀y∀z((R0(x, y, z) → S(x)∨S(y)∨S(z))∧

(R1(x, y, z) → ¬S(x)∨S(y)∨S(z))∧
(R2(x, y, z) → ¬S(x)∨¬S(y)∨S(z))∧
(R3(x, y, z) → ¬S(x)∨¬S(y)∨¬S(z))).
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The Complexity of Logic

Definition: (Vardi – 1982) Let L be a logic.

• The combined complexity of L is the following
decision problem:

Given a finite structure A and an L-sentence
ψ, does A |= ψ?

(i.e., it is the model checking problem for L)

• The data complexity of L is the family of the
following decision problems Pψ, one for each
fixed L-sentence ψ:

Given a finite structure A, does A |= ψ?

• The expression complexity of L is the family
of the following decision problems PA, one for
each fixed finite structure A:

Given an L-sentence ψ, does A |= ψ?
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The Complexity of Logic

Definition: L a logic and C a complexity class.

• The data complexity of L is in C if for each
L-sentence ψ, the problem Pψ is in C.

• The data complexity of L is C-complete if it
is in C and there is at least one L-sentence ψ

such that Pψ is C-complete.

• The expression complexity of L is in C if for
each finite structure A, the problem PA is in
C.

• The expression complexity of L is C-complete
if it is in C and there is at least one finite
structure A such that PA is C-complete.
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The Complexity of First-Order Logic

Theorem: The following hold for first-order logic:

• The data complexity of FO is in LOGSPACE

• The expression complexity of FO is PSPACE-
complete

• The combined complexity of FO is PSPACE-
complete.

Proof:

• Fix a first-order sentence ψ. Given finite A:

Cycle through all possible instantiations of the
quantifiers of ψ in A, keeping track of the num-
ber of them using a counter in binary.

• QBF is PSPACE-complete (Stockmeyer - 1976).

QBF is the expression complexity of FO on a
structure with two distinct elements.
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The Complexity of ESO

Theorem: The data complexity of ESO is NP-
complete.

Proof:

• Let Ψ be an ESO-sentence of the form

∃S1 · · · ∃Smϕ.

Given a finite structure A, to test that A |= Ψ,

1. “Guess” relations S′1, . . . , S
′
m on A;

2. Verify that (A, S′1, . . . , S
′
m) |= ϕ, using the

fact that the data complexity of FO is in P.

• 3-Colorability is definable by an ESO-sentence
and is NP-complete.

Theorem Both the expression complexity and
the combined complexity of ESO are NEXPTIME-
complete.
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Descriptive Complexity

Note: Actually, a much stronger result holds for
the data complexity of ESO:

Theorem: Fagin – 1972

The following are equivalent for a Boolean query
Q on the class F of all finite σ-structures.

• Q is in NP.

• Q is ESO-definable on F .

In other words, NP = ESO on F .
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Fragments of First-Order Logic

• First-order logic FO has high expression and
combined complexity (PSPACE-complete).

• However, there are interesting fragments of FO
such that:

1. they have lower expression and combined
complexity;

2. they have been extensively studied in database
theory ;

3. they are intimately connected to constraint
satisfaction.
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Conjunctive Queries

Definition: A conjunctive query is a query defin-
able by a FO-formula in prenex normal form built
from atomic formulas, ∧, and ∃ only.

(∃z1 . . . ∃zm)ψ(x1, . . . , xk, z1, . . . , zm),

where ψ is a conjunction of atomic formulas.

Note: CQs can also be written as a rule:

Q(x1, . . . , xk) : −R(y2, x3, x1), S(x1, y3), . . . , S(y7, x2)

Examples:

• Path of Length 2 (Binary query)

(∃z)(E(x1, z) ∧ E(z, x2)

P2(x1, x2) : − E(x1, z), E(z, x2)

• Cycle of Length 3 (Boolean query)

(∃x1∃x2∃x3)(E(x1, x2)∧E(x2, x3)∧E(x3, x1))

Q : − E(x1, x2), E(x2, x3), E(x3, x1)
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Conjunctive Queries & Databases

• Relational Joins

Database relations R1(A,B, C), R2(B,C, D).

By definition,

R1 on R2 = {(a, b, c, d) : R1(a, b, c) and R2(b, c, d)}.
Clearly,

R1 on R2(x, y, z, w) : − R1(x, y, z), R2(y, z, w)

• Relational joins are precisely the CQs without
existential quantification.

• Conjunctive Queries are the most frequently
asked queries in databases (a.k.a. SPJ queries)

• The main construct of SQL expresses conjunc-
tive queries

SELECT R1.A,R2.D

FROM R1, R2

WHERE R1.B = R2.B AND R1.C = R2.C
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Conjunctive Query Evaluation

A fundamental problem about conjunctive queries

Definition: Conjunctive Query Evaluation

• Given a CQ Q and a structure A, find

Q(A) = {(a1, . . . ak) : A |= Q(a1, . . . , ak)}

• For Boolean queries Q, this becomes:

Given Q and A, does A |= Q? (is Q(A) = 1?)

• Same problem as the
combined complexity of conjunctive queries

Examples:

• Given a graph H, find all pairs of nodes con-
nected by a path of length 4.

• Given a graph H, does it contain a triangle?
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Conjunctive Query Containment

A fundamental problem about conjunctive queries

Definition: Conjunctive Query Containment

• Given two k-ary CQs Q1 and Q2, is it true that
for every structure A,

Q1(A) ⊆ Q2(A)?

• For Boolean queries, this becomes:

Given two Boolean queries Q1 and Q2, does
Q1 |= Q2? (does Q1 logically imply Q2?)

Examples:

• Is it true that if two nodes of a graph H are
connected by a path of length 4, then they are
also connected by a path of length 3?

• It is true that if a graph H contains a K4, then
it also contains a K3?
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Conjunctive Queries and Homomorphisms

• Chandra and Merlin (1977) showed that

Conjunctive Query Evaluation

and

Conjunctive Query Containment

are the same problem.

• The link is the

Homomorphism Problem
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Homomorphisms

Definition: Consider two relational structures
A = (A,RA

1 , . . . , RA
m) and B = (B, RB

1 , . . . , RB
m).

h : A → B is a homomorphism if for every i ≤ m

and every tuple (a1, . . . , an) ∈ An,

RA
i (a1, . . . , an) =⇒ RB

i (h(a1), . . . , h(an)).

Definition: The Homomorphism Problem

Given two relational structures A and B, is there
a homomorphism h : A → B?

In symbols, does A → B?

Example: A graph H = (V,E) is 3-colorable
⇐⇒

there is a homomorphism h : H → K3, where K3

is the 3-clique, i.e., K3 = ({R, G, B}, E3), where

E3 = {(R, G), (G, R), (R, B), (B, R), (B,G), (G,B)}.

23



Canonical CQs and Canonical Structures

Definition: Canonical Conjunctive Query

Given A = (A,RA
1 , . . . , RA

m), the canonical CQ of
A is the Boolean CQ QA with the elements of A

as variables and the “facts” of A as conjuncts:

QA : −
m∧

i=1

∧
t

RA
i (t)

Definition: Canonical Structure

Given a Boolean conjunctive query Q, let AQ be
the structure with the variables of Q as elements
and the conjuncts of Q as “facts”.

Example:

• A = ({a, b, c}, {(a, b), (b, c), (c, a)}
QA : − E(x, y) ∧ E(y, z) ∧ E(z, x)

• Q : − E(x, y) ∧ E(x, z)

AQ = ({a, b, c), {(a, b), (a, c)})
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Homomorphisms, CQC and CQE

Theorem: Chandra & Merlin – 1977

For relational structures A and B, TFAE

• There is a homomorphism h : A → B

• B |= QA (i.e., QA(B) = 1)

• QB ⊆ QA

Alternatively,

For conjunctive queries Q1 and Q2, TFAE

• Q1 ⊆ Q2

• There is a homomorphism h : AQ2 → AQ1

• AQ1 |= Q2 (i.e., Q2(AQ1) = 1)
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Illustration: 3-COLORABILITY

For a graph H, the following are equivalent:

1. There is a homomorphism h : H → K3

2. K3 |= QH

3. QK3 ⊆ QH

Proof:

(1) =⇒ (2): A hom. h : H → K3 provides wit-
nesses in K3 for the existential quantifiers in QH.

(2) =⇒ (3): If K3 |= QH and A |= QK3 , then
there are witness functions h : H → K3 and
h∗ : K3 → A.

The composition h∗◦h : H → A provides witnesses
in A for the existential quantifiers in QH.

(3) =⇒ (1): Since K3 |= QK3 , we have K3 |= QH.
The witnesses to the existential quantifiers give a
homomorphism from H to K3.
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Illustration: 3-SAT

Let ϕ be a 3-CNF formula with variables x1, . . . , xn:

• Aϕ = ({x1, . . . , xn}, Rϕ
0 , Rϕ

1 , Rϕ
2 , Rϕ

3 ), where

Rϕ
0 = {(x, y, z) : (x ∨ y ∨ z) is a clause of ϕ}

Rϕ
1 = {(x, y, z) : (¬x ∨ y ∨ z) is a clause of ϕ}

Rϕ
2 = {(x, y, z) : (¬x ∨ ¬y ∨ z) is a clause of ϕ}

Rϕ
3 = {(x, y, z) : (¬x ∨ ¬y ∨ ¬z) is a clause of ϕ}

• B = ({0, 1}, R0, R1, R2, R3), where

R0 = {0, 1}3−{(0, 0, 0)} R1 = {0, 1}3−{(1, 0, 0)}

R2 = {0, 1}3−{(1, 1, 0)} R3 = {0, 1}3−{(1, 1, 1)}
Corollary: The following are equivalent:

• ϕ is satisfiable.

• Aϕ → B

• B |= QAϕ

• QB ⊆ QAϕ
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CSP and Conjunctive Queries

Conclusion 1:

• Constraint Satisfaction

• The Homomorphism Problem

• Conjunctive Query Evaluation

• Conjunctive Query Containment

are the same problem.

Conclusion 2:

Both the combined complexity and the expression
complexity of conjunctive query evaluation are NP-
complete (contrast with FO-logic).

28



The Feder-Vardi Dichotomy Conjecture

Definition: CSP(B) = {A : A → B}

Conjecture: Feder-Vardi, 1993

If B is a finite structure, then CSP(B) is in P or it
is NP-complete.

↗ NP-complete

CSP(B) NP− P, not NP-complete

↘ P

Note: This amounts to a dichotomy conjecture
about the expression complexity of conjunctive queries

CSP(B) = {A : B |= QA}
= {Q : Q is a conjunctive query and B |= Q}.
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CSP and Data Complexity

• We saw that CSP(B) is the same problem as
the expression complexity of conjunctive queries.

• The data complexity of conjunctive queries is
in LOGSPACE, so CSP(B) cannot be captured
by the data complexity of conjunctive queries.

• However, CSP(B) is intimately connected to
the data complexity of a fragment of existential
second-order logic, called monadic monotone
strict NP, and denoted by MMSNP.
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Existential Monadic Second-Order Logic

Definition: Existential Monadic SO-Logic

(also known as Monadic NP)

∃S1∃S2 · · · ∃Smψ,

where S1, . . . , Sm are set variables and ψ is FO.

Fact: If B = (B,R1, . . . , Rm) is a finite structure,
then CSP(B) is definable by a sentence of existen-
tial monadic second-order logic with a universal
first-order part, i.e., by a sentence of the form

∃S1 · · · ∃Sn∀y1 · · · ∀ysθ,

where θ is quantifier-free.

Proof: Use one Si for each element of B = {1, . . . , n},
so that Si is the set of all elements of A that are
mapped to i, for 1 ≤ i ≤ n.
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CSP and Monadic NP

Example: 3-Colorability

∃R∃G∃B∀x∀yθ, where θ asserts

• R, B, G form a partition

(R(x) ∨B(x) ∨G(x))∧

¬(R(x)∧B(x))∧¬(B(x)∧G(x))∧¬(R(x)∧G(x))∧
• If (x, y) is an edge, then x and y are in different

parts.

(E(x, y) → (R(x) → ¬R(y))∧(B(x) → ¬B(y))∧(G(x) → ¬G(y)))

Characteristics:

• Monadic: SO-quantifiers over set variables only;

• Strict : only universal FO-quantifiers;

• Monotone: all occurrences of E are negated;
there are no 6=.
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MMSNP - Monadic Monotone Strict NP

Definition: Feder-Vardi, 1993

MMSNP is the class of all monadic ESO-formulas

(∃S1 · · · ∃Sn)(∀y1 · · · ∀ys)θ,

such that

• all relations in the vocabulary have only nega-
tive occurrences in θ;

• no inequalities 6= occur in θ.

Proposition: Feder-Vardi, 1993

For every structure B = (B,R1, . . . , Rm), there is
a MMNSP-formula ΨB that defines CSP(B).

Thus, each CSP(B) is a query about the data com-
plexity of MMSNP.
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CSP vs. MMSNP

Question: What is the exact relationship be-
tween CSP and MMSNP?

Theorem: Feder-Vardi, 1993

Every MMSNP-query has a randomized polynomial-
time Turing reduction to finitely many CSP(B)
queries.

Theorem: Kun, 2006

The reduction of MMSNP to CSP can be de-randomized.

Corollary:

(1) CSP and MMSNP are polynomially equivalent.

(2) The Dichotomy Conjecture for CSP is the same
as a Dichotomy Conjecture for MMSNP.
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CSP vs. Monadic NP

Theorem: Feder-Vardi, 1993

Every problem in NP is polynomially equivalent to

• a problem in strict, monotone, ESO;

• a problem in monadic, monotone, strict ESO
with 6=;

• a problem in monadic, strict, 6=-free ESO.

Corollary: Assuming P 6= NP, the Dichotomy
Conjecture fails for all extensions of MMSNP.
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Summary

• The Homomorphism Problem is the same as
the combined complexity of conjunctive queries
(a fragment of first-order logic)

A → B ⇐⇒ B |= QA

• CSP(B) is the same problem as the
expression complexity of conjunctive queries

(a fragment of FO-logic):

Given a structure A, does B |= QA?

QA is the canonical conjunctive query of A.

• CSP(B) is polynomially equivalent to the
data complexity of MMSNP
(a fragment of ESO-logic):

Given a structure A, does B |= ΨB?

ΨB is a MMSNP-sentence obtained from B.
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Complexity of CSP

Uniform CSP: The Homomorphism Problem

CSP = {(A,B) : A → B}

• Combined complexity of conjunctive queries

• NP-complete.

Non-Uniform CSP: For every structure B,

CSP(B) = {A : A → B}

• Expression complexity of conjunctive queries;

• Data complexity of MMSNP;

• It is in NP; can be NP-complete.

Research Program: Identify all tractable cases
of CSP.

38



Islands of Tractability of CSP

Definition: Let C be a class of pairs (A,B) of
structures.

• CSP(C) = {(A,B) ∈ C : A → B}
• We say that C is an island of tractability of

CSP if CSP(C) is in P.

Research Program: Identify all islands of tractabil-
ity of CSP.

Fact: So far, the main focus has been on islands
of tractability C of the form C = A × B, where A
and B are two classes of finite structures.

CSP(A,B) = {(A,B) ∈ A× B : A → B}

Note: CSP(B) = CSP(All, {B})
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Logic and Tractability of Non-Uniform CSP

Research Program: Identify all islands of tractabil-
ity of non-uniform CSP, that is, all structures B
such that CSP(B) is in P.

Approach through Logic:

• Use logics with tractable data complexity to
identify tractable cases of non-uniform CSP.

• If L is a logic whose data complexity is in P
and if B is such that CSP(B) is definable by
an L-formula, then CSP(B) is in P.

Case Study: First-Order Logic

• The data complexity of FO is in P (in fact, in
LOGSPACE).

• When is CSP(B) FO-definable?
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First-Order Logic and Non-Uniform CSP

Theorem: Atserias - 2005

The following are equivalent for a structure B:

• CSP(B) FO-definable.

• CSP(B) = {A : A 6→ B} is definable by a
finite union of conjunctive queries.

Note: Follows also from Rossman’s Theorem (2005)
about preservation under homomorphisms.

Theorem: Larose, Loten, and Tardif - 2006

The problem of deciding, given B, whether CSP(B)
is FO-definable is NP-complete.

Note: Membership in NP is non-trivial.
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Datalog

Note: Recall that CQs can be written as rules:

P2(x1, x2) : − E(x1, z), E(z, x2)

Definition:

• Datalog = Conjunctive Queries + Recursion

Function, negation and 6=-free logic programs

• A Datalog program is a finite set of rules given
by conjunctive queries

T (x) : − S1(y1), . . . , Sr(yr).

– Some relation symbols may occur both in
the heads and the bodies of rules.
These are the recursive relation symbols or
intensional database predicates (IDBs).

– The remaining relation symbols are the
extensional database predicates (EDBs).
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Datalog Examples

Definition: Transitive Closure Query TC

Given graph H = (V,E),

TC(H) = {(a, b) ∈ V 2 : there is a path from a to b}.

Example 1: Datalog program for TC
∣∣∣∣∣∣

S(x, y) : − E(x, y)

S(x, y) : − E(x, z) ∧ S(z, y)

Example 2: Another Datalog program for TC
∣∣∣∣∣∣

S(x, y) : − E(x, y)

S(x, y) : − S(x, z) ∧ S(z, y)

• E is the EDB.

• S is the IDB; it defines TC.
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Datalog Examples

Definition: S. Cook – 1974

Path Systems S = (F, A,R)

Given a finite set of formulas F , a set of axioms
A ⊆ F , and a rule of inference R ⊆ F 3, compute
the theorems of this system.

Example: Datalog program for Path Systems:
∣∣∣∣∣∣

T (x) : − A(x)

T (x) : − T (y), T (z), R(x, y, z)

• A and R are the EDBs.

• T is the IDB; it defines the theorems of S.

Theorem: Cook - 1974

Path Systems is a P-complete query.
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Data Complexity of Datalog

Theorem:

• Every Datalog query is definable by an “effec-
tive and uniform” union of conjunctive queries.

• Every Datalog query is in P.

• The data complexity of Datalog is P-complete.

Proof:

• Datalog programs can be evaluated “bottom-
up” in a polynomial number of iterations.

• Each iteration is definable by a finite union of
conjunctive queries.

• Path Systems is a P-complete problem.
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Evaluation of Datalog Programs

Example : Datalog program for TC
∣∣∣∣∣∣

S(x, y) : − E(x, y)

S(x, y) : − E(x, z) ∧ S(z, y)

Bottom-up Evaluation
∣∣∣∣∣∣

S0 = ∅
Sm+1 = {(a, b)) : ∃z(E(a, z) ∧ Sm(z, b))}

Fact:

Sm = {(a.b) : there is a path of length ≤ m from a to b}
TC =

⋃
m Sm

TC = S|V |.
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Preservation Properties

Fact: Preservation Properties of Datalog.

• Datalog queries are preserved under
homomorphisms:

Let Q be a Datalog query. If A |= Q and
A → B, then B |= Q.

• Similarly, Datalog queries are monotone, i.e.,
they query is preserved if new tuples are added
to the EDBs.

Reason: Unions of conjunctive queries have these
preservation properties.
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Datalog and CSP

Fact: Let B = (B,RB
1 , . . . , RB

m).

• In general, CSP(B) is not monotone.

• Hence, CSP(B) is not expressible in Datalog.

However,

• CSP(B) is monotone, where

CSP(B) = {A : A 6→ B}.

• Hence, it is conceivable that CSP(B) is
expressible in Datalog (and, thus, it is in P).
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Datalog and CSP

Fact: Feder & Vardi – 1993

Definability of CSP(B) in Datalog is a unifying ex-
planation for many tractability results about CSP(B).

Example: 2-Colorability = CSP(K2)

Datalog program for Non 2-Colorability

∣∣∣∣∣∣∣∣

O(X, Y ) : − E(X,Y )

O(X, Y ) : − O(X, Z), E(Z, W ), E(W,Y )

Q : − O(X, X)
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Datalog and CSP

Theorem: Feder & Vardi – 1993

• If B = (B,R1, . . . , Rk) is such that
Pol({R1, . . . , Rk}) contains a near-unanimity
function, then CSP(B) is definable in Datalog.

Special Case: 2-Sat

• If B = (B,R1, . . . , Rk) is such that
Pol({R1, . . . , Rk}) contains a semi-lattice func-
tion, then CSP(B) is definable in Datalog.

Special Cases:

Horn k-Sat, Dual Horn k-Sat, k ≥ 2.

• There are affine Boolean structures B such that
CSP(B) is not definable in Datalog.
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Horn 3-SAT and Datalog

Horn 3-CNF formula ϕ viewed as a finite structure

Aϕ = ({x1, . . . , xn}), U, P, N), where

• U is the set of unit clauses x

• P is the set of clauses (¬x ∨ ¬y ∨ z)

• N is the set of clauses (¬x ∨ ¬y ∨ ¬z)

Datalog program for Horn 3-UNsat

Unit Propagation Algorithm
∣∣∣∣∣∣∣∣

T (z) : − U(z)

T (z) : − P (x, y, z), T (x), T (y)

Q : − N(x, y, z), T (x), T (y), T (z)
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CSP and Datalog

Fact: Expressibility in Datalog is a unifying ex-
planation for many, but not all, tractability results
about CSP(B).

Open Problem: Is there an algorithm to decide
whether, given B, we have that CSP(B) is express-
ible in Datalog?

Note: It follows from the work of Larose, Loten,
and Tardif that this problem is NP-hard.
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Datalog and CSP

Question: Fix B = (B, R1, . . . , Rm).

When is CSP(B) expressible in Datalog?

Answer:

Feder & Vardi – 1993, K . . . & Vardi – 1998, 2000

Expressibility of CSP(B) in Datalog can be
characterized in terms of

• Finite-Variable Logics

• Pebble Games

• Consistency Properties.
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Existential k-Pebble Games

Spoiler and Duplicator play on two structures A
and B. Each player uses k pebbles. In each move,

• Spoiler places a pebble on or removes a pebble
from an element of A.

• Duplicator tries to duplicate the move on B.

A : a1 a2 . . . al

↓ ↓ · · · ↓
B : b1 b2 . . . bl l ≤ k

• Spoiler wins the (∃, k)-pebble game if at some
point the mapping ai 7→ bi, 1 ≤ i ≤ l,
is not a partial homomorphism.

• Duplicator wins the (∃, k)-pebble game if the
above never happens.
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Example

Cliques of Different Size
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Fact: Let Kk be the k-clique

• Duplicator wins the (∃, k)-pebble game on Kk

and Kk+1.

• Spoiler wins the (∃, k)-pebble game on Kk and
Kk−1.
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Paths of Different Size
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• Spoiler wins the (∃, 3)-pebble game
on Lm and Ln, where m > n.

• Duplicator wins the (∃, 3)-pebble game
on Ln and Lm, where m > n.
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Winning Strategies in the (∃, k)-Pebble Game

Definition: A winning strategy for the Duplicator
in the (∃, k)-pebble game is a non-empty family I

of partial homomorphisms from A to B such that

• If f ∈ I and h ⊆ f , then h ∈ I

(I is closed under subfunctions).

• If f ∈ I and |f | < k, then for every a ∈ A,
there is g ∈ I so that f ⊆ g and a ∈ dom(g).

(I has the forth property up to k)

Fact: If A → B, then the Duplicator wins the
(∃, k)-pebble game on A and B for every k.
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k-Datalog

Definition: A k-Datalog program is a Datalog
program in which each rule

t0 : − t1, . . . , tm

has at most k distinct variables.

Example: Non 2-Colorability revisited

∣∣∣∣∣∣∣∣

O(X, Y ) : − E(X,Y )

O(X, Y ) : − O(X, Z), E(Z, W ), E(W,Y )

Q : − O(X, X)

Therefore,

Non 2-Colorability is definable in 4-Datalog.
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k-Datalog and (∃, k)-Pebble Games

Theorem: K . . . & Vardi

• Let Q be a query definable by a k-Datalog pro-
gram. If A satisfies Q and the Duplicator wins
the (∃, k)-pebble game on A and B, then also
B satisfies Q.

• There is a polynomial-time algorithm to decide
whether, given two finite structures A and B,
the Spoiler or the Duplicator wins the (∃, k)-
pebble game on A and B.

• For every fixed finite structure B, there is a
k-Datalog program that expresses the query:
given a finite structure A, does the Spoiler win
the (∃, k)-game on A and B?
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Datalog and Non-Uniform CSP

Theorem: K . . . & Vardi

Let k be a positive integer and B a finite structure.

Then the following are equivalent:

• CSP(B) is definable in k-Datalog

• CSP(B) = {A : Duplicator wins the

(∃, k)-pebble game on A and B}.

• For every finite structure A, establishing strong
k-consistency for A and B implies that there
is a homomorphism from A to B.
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The Complexity of Existential k-Pebble Games

Theorem: K ... and Panttaja - 2003

• (Also implicit in Kasif - 1986)

For every k ≥ 2, the following problem is P-
complete:

Given two finite structures A and B, does the
Duplicator win the (∃, k)-pebble game on A
and B?

• The following problem is EXPTIME-complete:

Given a positive integer k and two finite struc-
tures A and B, does the Duplicator win the
(∃, k)-pebble game on A and B?

Corollary:

The following problem is EXPTIME-complete:

Given a positive integer k and two finite structures
A, B, can strong k-consistency be established for
(the CSP instance encoded by) A and B?
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Datalog and Tractability of CSP

Summary:

• Definability of CSP(B) in k-Datalog is a suffi-
cient condition for tractability of CSP(B).

• Single canonical polynomial-time algorithm:
determine who wins the (∃, k)-pebble game.

Open Problem:

Fix a positive integer k ≥ 2. Is there an algorithm
to decide whether, given B, we have that CSP(B)
is expressible in k-Datalog?
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Tractability of Non-Uniform CSP

• Thus far, we have concentrated on tractability
results for non-uniform CSP.

• What about tractability results for uniform CSP?

• Does logic help to discover islands of tractabil-
ity for uniform CSP?

63



Tractability of Uniform CSP

Recall that if A and B are classes of finite struc-
tures, then

CSP(A,B) = {A,B) ∈ A× B : A → B}

Theorem: Dechter & Pearl – 1989

Let σ be a fixed vocabulary, let k ≥ 2 be a positive
integer, and let T (k) be the class of all σ-structures
of treewidth less than k.

Then CSP(T (k), All) is in P.

Question:

• Can this result be explained in terms of defin-
ability in Datalog?

• Can this result be explained in terms of the
(∃, k)-pebble game?
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Bounded Treewidth & Finite-Variable Logics

Fact: Having tw(A) < k turns out to be tightly
connected to the canonical query QA being defin-
able in a fragment of FO with k variables.

Definition: Fix an integer k ≥ 2.

• FOk is the collection of all first-order formulas
with k distinct variables.

• CQk is the collection of all FOk-formulas built
using atomic formulas, ∧, and ∃ only.

Example: Let Cn be the n-element cycle, n ≥ 3.

The canonical CQ QCn is expressible in CQ3.

For instance, QC4 is logically equivalent to

∃x∃y∃z(E(x, y)∧E(y, z)∧(∃y)(E(z, y)∧E(y, x))).

65



Bounded Treewidth & Finite-Variable Logics

Question: When is QA definable in CQk?

Definition: A and B are homomorphically equiv-
alent , denoted A ∼h B, if there are homomor-
phisms h : A → B and h′ : B → A.

Theorem: Dalmau, K ..., Vardi - 2002

Fix a k and a finite structure A.

Then the following are equivalent:

• QA is definable in CQk.

• There is some B ∈ T (k) such that A ∼h B.

• core(A) ∈ T (k).
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Cores

Definition: We say that a structure B is the core
of a structure A if

• B is a submodel of A.

• There is a homomorphism from A to B
(thus, A ≡h B).

• There is no homomorphism h : B → B′ from
B to a proper submodel B′ of B.

Examples:

• core(Kk) = Kk

• If H is 2-colorable, then core(H) = K2.

• If H is 3-colorable and contains a K3, then
core(H) = K3.

Note: Cores play an important role in database
query processing and optimization.
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Beyond Bounded Treewidth

Definition: Fix a vocabulary σ and a k ≥ 2.

H(T (k)) is the class of all σ-structures that are
homomorphically equivalent to a structure in T (k).

Fact: H(T (k)) is the class of all σ-structures A
such that core(A) has treewidth less than k.

Example: Every 2-colorable graph is in H(T (2)).

Fact: T (k) is properly contained in H(T (k))

Proof: There are 2-colorable graphs of arbitrarily
large treewidth (for instance, m×m-grids)
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Islands of Tractability of Uniform CSP

Theorem : Dalmau, K ..., Vardi – 2002

Fix a vocabulary σ and an integer k ≥ 2.

• For every structure A ∈ H(T (k)) and for every
structure B, the following are equivalent:

1. A → B

2. The Duplicator wins the (∃, k)-pebble game
on A and B.

• If B is a fixed σ-structure, then CSP(H(T (k)), {B})
is definable in k-Datalog.

• CSP(H(T (k)), All) is in P.

Actually, it is definable in least fixed-point logic
LFP.

Algorithm:

Determine the winner in the (∃, k)-pebble game.
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Classification Theorem

Theorem: Grohe – 2003

Assume that FPT 6= W [1].

If A is a r.e. class of finite structures over some
fixed vocabulary σ such that CSP(A, All) is in P,
then there is a k ≥ 2 such that A ⊆ H(T (k)).

Note: FPT 6= W [1] is the analog of P 6= NP for
parametrized complexity.

Conclusion: For every fixed vocabulary σ, the
classes H(T (k)) constitute the largest islands of
tractability of the form CSP(A, All) among all classes
A of σ-structures.
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Summary

• The combinatorial concept of bounded treewidth
has a logical reconstruction via definability in
finite-variable logics.

• CSP(H(T (k)), All), k ≥ 2, are large islands of
tractability of uniform CSP.

• Determining the winner in the (∃, k)-pebble
game is a polynomial-time algorithm for
CSP(H(T (k)), All)
(hence, also for CSP(T (k)), All)).
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Logic and CSP

• Uniform CSP is the same problem as the
combined complexity of conjunctive queries

• Non-Uniform CSP

– is the same problem as the expression com-
plexity of conjunctive queries

– is polynomially equivalent to the data com-
plexity of MMSNP

• Datalog and (∃, k)-pebble games provide a uni-
fying explanation for many, but not all, tractabil-
ity results for Non-Uniform CSP

• (∃, k)-pebble games give rise to large islands of
tractability for Uniform CSP.
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Concluding Remarks

• Constraint Satisfaction is a meeting point of

– Computational Complexity

– Database Theory

– Logic

– Universal Algebra

– Graph Theory.

• The quest for islands of tractability of CSP
goes on through the synergy and interaction
of all these areas.
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