
International Workshop on
Mathematics of Constraint Satisfaction:

Algebra, Logic and Graph Theory
20-24 March 2006 St Anne's College, University of Oxford

www.comlab.ox.ac.uk/mathscsp

http://www.comlab.ox.ac.uk/mathscsp
http://www.comlab.ox.ac.uk/mathscsp

Constraints & Algebra
What’s the connection?

Peter Jeavons
Oxford University Computing Laboratory

Outline
• Constraint satisfaction problems
• Constraint languages
• Complexity of different languages
• Algebraic properties of constraint languages
• Polymorphisms and clones
• Clones and complexity
• Soft constraints and their complexity

Further reading…

• For more mathematics see:

• For more constraint satisfaction see:

Classifying the complexity of constraints using finite algebras
Andrei Bulatov, Peter Jeavons and Andrei Krokhin
Appears in: SIAM Journal on Computing 34, (2005), pp. 720-742

The Complexity of Constraint Languages
David Cohen and Peter Jeavons
To appear in: Handbook of Constraint Programming

http://web.comlab.ox.ac.uk/oucl/research/areas/constraints/publications

http://web.comlab.ox.ac.uk/oucl/research/areas/constraints/publications/SIAMclassifying.pdf
http://epubs.siam.org/sam-bin/dbq/article/37667
http://web.comlab.ox.ac.uk/oucl/research/areas/constraints/publications/ComplexityLanguages.pdf
http://ai.uwaterloo.ca/~vanbeek/cphandbook.html
http://web.comlab.ox.ac.uk/oucl/research/areas/constraints/publications/index.html
http://web.comlab.ox.ac.uk/oucl/research/areas/constraints/publications/index.html

Question
What do these problems have in common?

– Drawing up a timetable for a conference
– Choosing frequencies for a mobile-phone network
– Checking the satisfiability of a logical formula
– Fitting a protein structure to measurements
– Laying out components on a circuit board
– Finding a DNA sequence from a set of contigs
– Scheduling a construction project
– Solving a system of linear equations

Answer
What do these problems have in common?

– Drawing up a timetable for a conference
– Choosing frequencies for a mobile-phone network
– Checking the satisfiability of a logical formula
– Fitting a protein structure to measurements
– Laying out components on a circuit board
– Finding a DNA sequence from a set of contigs
– Scheduling a construction project
– Solving a system of linear equations

They all involve searching
for a solution which satisfies

a set of constraints

What is a constraint?

• A constraint has two parts:
– A list of variables that are constrained,

which we call the scope
– A relation

this relation specifies the
allowed combinations of values
for the variables in the scope

Examples

“Variables X and Y must be different colours”

Scope is <X,Y> Relation is =

“I fell asleep during that tutorial”

Scope is <S,T> Relation is “during”

An Abstraction

Variables = Talks to be scheduled at conference
Transmitters to be assigned frequencies
Amino acids to be located in space
Circuit components to be placed on a chip

An Abstraction

Constraints = All talks on logic on different days
No interference between near transmitters
x + y + z > 0
Foundations dug before walls built

The CSP

A set of constraints defines an instance of
a constraint satisfaction problem (CSP)

General Question
• Having a general formulation for this kind

of problem allows us to ask general
structural questions:

When is the CSP
tractable?

Half of the Story...

• This picture illustrates the constraint scopes
• The set of scopes is sometimes called the

constraint hypergraph, or the scheme
• A lot of work has been done on CSPs with

restricted schemes (such as trees)

Half of the Story...

• This picture illustrates the constraint scopes
• The set of scopes is sometimes called the

constraint hypergraph, or the scheme
• A lot of work has been done on CSPs with

restricted schemes (such as trees)

For more on this see
talks by Georg Gottlob

and Daniel Marx

...The Other Half

R1

R2
R3 R4

• The picture now emphasises the
constraint relations

What do we call the set of constraint relations?

Constraint Languages

Definition: A constraint language is a
set of relations over a finite set D.

For every constraint language, L, we have a
corresponding class of problems, CSP(L)…

Definition of CSP(L)
Definition 1a:
• An instance of CSP(L) is a 3-tuple (V,D,C), where

– V is a set of variables
– D is a single domain of possible values
– C is a set of constraints

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation from L defining the allowed

combinations of values
• The question is whether each variable in V

can be assigned a value in D
so that all constraints in C are satisfied

Definition of CSP(L)
Definition 1a:
• An instance of CSP(L) is a 3-tuple (V,D,C), where

– V is a set of variables
– D is a single domain of possible values
– C is a set of constraints

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation from L defining the allowed

combinations of values
• The question is whether each variable in V

can be assigned a value in D
so that all constraints in C are satisfied

Γ

Γ

Γ

Alternative Definition of CSP(L)
Definition 1b:
• An instance of CSP(L) is defined to be

a first order formula:

F = R1(s1) ∧ R2(s2) ∧ … ∧ Rm(sm)
where each Ri ∈ L

• The question is whether the formula can be satisfied
by finding an assignment of values to the variables

Another Alternative View

R1

R2 R3 R4

(V,E1,E2,E3,E4) (D,R1,R2,R3,R4)

Solution = Mapping from V to D such that
the image of each tuple related by Ei is related by Ri

Alternative Definition of CSP(L)
Definition 1c:
• An instance of CSP(L) is defined to be

a pair of similar relational structures:

(V,E1,…,Em) , (D,R1,…,Rm)
where each Ri ∈ L

• The question is whether there exists a
homomorphism from V to D

Example

• If L contains just the binary disequality
relation, over the set D = {1,2,…,k}, then
CSP(L) is the graph k-colouring problem

F = (v1≠ v2) ∧ (v2≠ v5) ∧ … ∧ (v4≠ v7)G
G Kk

(V,E) (D,≠)
?

Example
• If L contains all Boolean relations defined

by ternary clauses, then CSP(L) is the
3-satisfiability problem

F = (v1∨v2∨¬v3) ∧ … ∧ (¬v3∨¬v4∨v7)

H C3
(V,E1,…,E8) (D,R1,…,R8)

?

H

Examples

• If L contains all relations defined by linear
equations over some field K, then CSP(L)
is the problem of solving simultaneous
linear equations over K

• If L contains all relations R(t) over the
reals, where R(t) = {(x,y)|x-y<t}, then
CSP(L) is the problem of solving a
“simple temporal problem”

Summary of Examples

Disequality Relation
{≠}

Graph Colouring
Problem

Clauses Satisfiability

Affine relations Simultaneous
Linear Equations

Temporal Relations
{ (x,y) | x-y<t }

Simple Temporal
Problems

L CSP(L)

NP-complete

Tractable

Complexity of CSP(L)

Languages

∅

RD

Tractable

NP-complete

Affine relations

Disequality

Complexity of CSP(L)
There have been a lot of papers investigating the
complexity of CSP(L) for different sets of relations L:

– Schaefer, STOC’78, 2-valued domains
– Hell and Nesetril, JCTB, 1990, binary symmetric rels
– Feder and Vardi, STOC’93, 3 families – logic, groups
– Kirousis, AIJ, 1993, implicative constraints
– Cooper et al, AIJ, 1994, 0/1/all constraints
– Jeavons et al, JACM, 1997, algebraic theory
– Dalmau and Pearson, CP’99, set functions
– Cohen et al, JACM, 2000, disjunctive constraints
– Bulatov et al, STOC’01, maximal tractable sets
– Bulatov, FOCS’02, 3-valued domains

2-Valued Domain

SAT x y z
0 0 0
0 0 1 X

0 1 0 X

0 1 1
1 0 0 X

1 0 1
1 1 0
1 1 1 X

x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡

Complexity – Boolean Case
Schaefer (1978) showed that when L is a set of Boolean relations,

CSP(L) is tractable in exactly the following 6 cases:

• Every R in L contains (0,0,…,0)
• Every R in L is definable by a

CNF formula in which each
conjunct has at most one
un-negated literal (Horn clauses)

• Every R in L is definable by a
CNF formula in which each
conjunct has at most 2 literals

• Every R in L contains (1,1,…,1)
• Every R in L is definable by a

CNF formula in which each
conjunct has at most one
negated literal (dual Horn)

• Every R in L holds over an affine
set in GF(2)

Complexity – Boolean Case
Schaefer (1978) showed that when L is a set of Boolean relations,

CSP(L) is tractable in exactly the following 6 cases:

• Every R in L contains (0,0,…,0)
• Every R in L is definable by a

CNF formula in which each
conjunct has at most one
un-negated literal (Horn clauses)

• Every R in L is definable by a
CNF formula in which each
conjunct has at most 2 literals

• Every R in L contains (1,1,…,1)
• Every R in L is definable by a

CNF formula in which each
conjunct has at most one
negated literal (dual Horn)

• Every R in L holds over an affine
set in GF(2)

For more on this see
talks by Nadia Creignou
and Heribert Vollmer

Boolean Languages

∅

R{0,1}

Tractable

NP-complete

Not-all-equal SAT

0…0 relations
1…1 relations
Horn relations

Dual Horn relations
2-decomposable relations

Affine relations

Expressive Power
• The idea of Schaefer’s proof was to consider what

relations are “expressible” using relations from L
• This makes use of the fact that new constraints can

be derived from the combined effect of specified
constraints

derived constraint

Expressive Power

• If we can combine the relations
R1,R2,…,Rk to obtain a derived constraint
relation R0, then we say that R0 can be
expressed using R1,R2,…,Rk

R1

R0

R2

R3 R4

Two (Binary) Constructions

x-y<1 y-z<1 z-w<1

x-w<3
Series

x y z w

x-y<1

y-x<1

|x-y|<1

Parallel

x y

Example

What is the
derived

constraint
here?

• What constraints can be expressed using just the
disequality relation on a 3 element domain?

General Constructions
• To include all possible constructions

we need to allow arbitrary join operations,
followed by a projection operation

• Then we can construct any derived
constraint

Expressive Power

Definition 2a:
The “expressive power” of a constraint
language L, denoted 〈L〉, is defined to be
the set of relations that can be expressed
using:
– Relations in L
– Relational join operations
– Projection onto some subset of variables

Expressive Power

Definition 2b:
The “expressive power” of a constraint
language L, denoted 〈L〉, is defined to be
the set of relations that can be expressed
using:
– Relations in L
– The equality relation over the domain of L
– Conjunction
– Existential quantification

Properties of Languages

• If we have very few relations in our
language, L, then it may be impossible to
describe the problem we want to solve

• If we have too many relations in our
language, L, then CSP(L) may be
intractable

• There is a trade-off between expressive
power and tractability

Expressive Power and Reduction

Theorem: For any constraint language L,
and any finite constraint language L′, if L′ ⊆ 〈L〉
then CSP(L′) is polynomial-time reducible to CSP(L)

CSP(L)

R1

CSP(L′)
R2

R3 R4

Expressive Power and Reduction

Theorem: For any constraint language L,
and any finite constraint language L′, if L′ ⊆ 〈L〉
then CSP(L′) is polynomial-time reducible to CSP(L)

Corollary: We can add any of the relations in 〈L〉 to
L without changing the complexity of CSP(L).

Corollary: If 〈L1〉 = 〈L2〉 then
CSP(L1) is polynomial-time equivalent to CSP(L2) .

Expressive Power and Reduction

Theorem: For any constraint language L,
and any finite constraint language L′, if L′ ⊆ 〈L〉
then CSP(L′) is polynomial-time reducible to CSP(L)

〈L〉 is more important than L

Example
Consider the language consisting of
a single binary relation ρ0 over D = {0,1,2,…,n},
where ρ0 contains the following tuples:

– (i,i+1) for all 1 ≤ i ≤ n-1
– (0,i), (i,0) for all 1 ≤ i ≤ n

It is known that 〈{ρ0}〉 contains all
possible relations over D

Hence CSP({ρ0}) is NP-complete

0

1

2

0

1

2

Closure

∅

RD

{ρ0}

Calculating 〈L〉
• A relation is in 〈L〉 if and only if it can be

expressed somehow using the relations in L
• For a given relation, how can we decide if it can

or cannot be expressed in L?

Polymorphisms and Clones

Algebraic Invariance

Definition: A relation R is invariant under a
k-ary operation φ, if, for any tuples a1,a2,…,ak ∈ R,
the tuple obtained by applying φ co-ordinatewise
is a member of R .

If R is invariant under φ,
then φ is called a polymorphism of R.

Example of Polymorphism
∀s,t if s and t are in R, then Max(s,t) is in R

x y z
0 0 0
0 1 0
1 1 0
2 1 0
2 0 1
2 1 1

We say that
this relation R
has the
polymorphism
Maximum

s

2 0 1

0 1 0

t Maximum

2 1 1R

Example of non-Polymorphism

x y z
0 0 0
0 1 0
1 1 0
2 1 0
2 0 1
2 1 1

We say that this
relation R
doesn’t have the
polymorphism
Minimum

2 0 0

s
t 2 0 1

2 1 0

R

Minimum

Pol and Inv

∅

RD

L

Sets of
relations

Pol(L)

Compute the
polymorphisms

of L

Compute the
invariant relations

of Pol(L)

Inv(Pol(L))
=〈L〉

Expressive Power

Theorem (Geiger): For any constraint language L,
over a finite domain, 〈L〉 = Inv(Pol(L))

and independently by Bodnarchuk, Kaluzhnin, Kotov and Romov

Corollary: For any finite constraint language L,
over a finite domain, the complexity of CSP(L)
is determined by Pol(L)

Galois Connection

∅

RD

L

Sets of
relations

Sets of
operations

Pol(L)

Inv(Pol(L))
=〈L〉

Galois Connection

Pol(Inv(Φ))

Inv(Pol(L))

Sets of
relations

Sets of
operations

∅

RD

Clones

∅

RD

Pol(Inv(Φ))

Inv(Pol(L))

Definition: A
relational clone is a
set of relations which
is closed under
relational join and
projection.

Every relational clone is
of the form Inv(Ф) for
some Ф

Definition: A clone is
a set of operations
which is closed under
composition and
contains all projection
operations.

Every clone is of the
form Pol(L) for some L

Boolean Operations

Relational
Clones

Clones of
Operations

Constant 0

Max

Majority
Min

Minority

Constant 1

PermutationSchaefers 6 maximal
tractable classes

Not-all-equal
satisfiability

Boolean Operations

Post’s
Lattice

Clones of
Operations

Boolean
Relational

Clones

Dichotomy Theorem
for Boolean CSP

Relational
Clones

General Case
For domains larger than 2, the lattice of clones is
uncountable, and not yet fully characterised…

Theorem (Rosenberg): Every minimal clone over a
finite set is generated by one of the following:

A constant operation;
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

Constant Operations
What kinds of relations
are invariant under

e.g. c(x,y,z) = 2 ?

Theorem (Rosenberg): Every minimal clone over a
finite set is generated by one of the following:

A constant operation;
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

A constant operation { (3, 1),
(2, 3),
(2, 2),
(2, 1) }

c c

1

2

3

1

2

3
{ (3, 1),
(2, 3),
(2, 2),
(2, 1) }

(2, 2)

Such relations are tractable – just assign constant value to all variables

Affine Operations
What kinds of relations
are invariant under

e.g. f(x,y,z) = x-y+z ?

Theorem (Rosenberg): Every minimal clone over a
finite set is generated by one of the following:

A constant operation;
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

{ (2, 0),
(1, 2),
(0, 1)}

f f
{ (2, 0),
(1, 2),
(0, 1)}

(1, 2)

A ternary affine operation

Such relations are tractable – use Gaussian elimination on linear equations

0

1

2

0

1

2

y = x+1
(mod 3)

(mod 3)

Majority Operations
What kinds of relations
are invariant under

e.g. m(x,y,z) = ?x if x = y
z otherwise

Theorem (Rosenberg): Every minimal clone over a
finite set is generated by one of the following:

A constant operation;
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

{ (2, 0),
(1, 0),
(1, 2)}

m m
{ (2, 0),
(1, 0),
(1, 2)}

(1, 0)

Such relations are tractable – use local consistency techniques

0

1

2

0

1

2

0/1/all

A ternary majority operation

Galois Connection

Relational
Clones

Clones of
OperationsConstants

Affine
Majority

Unary Operations
What kinds of relations
are invariant under

e.g. h(x) = 4 - x ?

Theorem (Rosenberg): Every minimal clone over a
finite set is generated by one of the following:

A constant operation;
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

{(3, 2),
(3, 1),
(2, 3),
(2, 1),
(1, 3),
(1, 2) }

h h

Such relations are NP-complete – equivalent to graph colouring

A non-identical unary operation1

2

3

1

2

3
{(3, 2),
(3, 1),
(2, 3),
(2, 1),
(1, 3),
(1, 2) }

(2, 1)

Galois Connection

Relational
Clones

Clones of
OperationsConstants

Affine

Unary
operations

Semiprojections

Majority

Binary
Idempotent
Operations

Semilattice operations:
Associative f(x,f(y,z)) = f(f(x,y),z)
Commutative f(x,y) = f(y,x)
Idempotent f(x,x) = x

Examples
Any constraint language (over a finite ordered set) whose
relations can be expressed as a conjunction of pairwise
disjunctions of upper/lower bounds is invariant under a
majority operation (median), and hence tractable.
For example, ρ2 = { (x,y,z) | (x<3)∨(y>5) ∧ (x>2)∨(z<4) }

Any constraint language (over a finite ordered set) whose
relations can be expressed as a disjunction of upper bounds
together with at most one lower bound is invariant under a
semilattice operation (maximum), and hence tractable.
For example, ρ3 = { (x,y,z) | (x<3)∨(y<5)∨(z>4) }

Islands of tractability

Constant

Majority

Affine

Semilattice

• In the Boolean case this is a complete description
(2 constants, 1 majority, 2 semilattice, 1 affine)

• For larger domains this is not a complete description…

Islands of tractability
Majority operations have been generalised to
near-unanimity operations where
m(x,x,…,x,y) = m(x,…x,y,x) = … = m(y,x,…x) = x

Affine operations have
been generalised to
Mal’tsev operations where
f(y, y, x) = f(x, y, y) = x

Semilattice operations
have been
generalised to
set functions and
2-semilattices

Near-unanimity operations
and Mal’tsev operations
have both been generalised further to
majority/minority operations where
on each 2-element subset the
operation is either
majority or Mal’tsev (Dalmau, LICS 2005)

http://eprints.pascal-network.org/archive/00001827/01/gmm.ps

Islands of tractability
Majority operations have been generalised to
near-unanimity operations where
m(x,x,…,x,y) = m(x,…x,y,x) = … = m(y,x,…x) = x

Affine operations have
been generalised to
Mal’tsev operations where
f(y, y, x) = f(x, y, y) = x

Semilattice operations
have been
generalised to
set functions and
2-semilattices

Near-unanimity operations
and Mal’tsev operations
have both been generalised further to
majority/minority operations where
on each 2-element subset the
operation is either
majority or Mal’tsev (Dalmau, LICS 2005)

For more on this see
talk by Benoit Larose

http://eprints.pascal-network.org/archive/00001827/01/gmm.ps

From Clones to Algebras

From Clones to Algebras
For every constraint language L over D there is an
associated algebra

A = (D,Pol(L))

For every algebra A = (D,Ф) there is an associated
constraint problem

CSP(A) = CSP(Inv(Ф))

Hence we can classify constraint problems by
classifying algebras…

Unary Relations and Subalgebras
Let L be a constraint language over a set D,
and let AL be the algebra (D,Pol(L)) .

The following are equivalent:
• The unary relation R is invariant under Pol(L);
• The unary relation R belongs to 〈L〉;
• The set of elements of R is a subalgebra of AL

If L contains all unary relations, then AL has every
subset as a subalgebra and is called conservative

Conservative Algebras
Bulatov (2003) showed that when L is a set of relations

containing all unary relations, then CSP(L) is tractable
precisely when every 2-element subalgebra of
AL = (D,Pol(L)) is tractable.

Theorem (Bulatov): A conservative algebra A = (D, Ф)
is tractable if and only if, for every 2-element subset B of D,
there exists f in Pol(Inv(Ф)) such that f|B is either:

A semilattice operation;
A ternary affine operation;
A ternary majority operation.

http://web.comlab.ox.ac.uk/oucl/work/andrei.bulatov/consshort.ps

Classifying Algebras
Theorem: Tractability of an algebra A is preserved by:

taking subalgebras
taking homomorphic images
taking finite powers

(By reduction to CSP(A))

} taking factors

Every finite algebra whose operations are permutations
is NP-complete. (By reduction from COLOURING)

Corollary: An idempotent algebra is NP-complete if it has a
factor containing only permutations.
Conjecture: An idempotent algebra is NP-complete if it has a
factor containing only permutations. Otherwise it is tractable.

Classifying Algebras
Theorem: Tractability of an algebra A is preserved by:

taking subalgebras
taking homomorphic images
taking finite direct products

(By reduction to CSP(A))

Every finite algebra whose operations are permutations
is NP-complete. (By reduction from COLOURING)

} taking factors

For more on this see
talk by Andrei Bulatov

Corollary: An algebra is NP-complete if it has a factor
containing only permutations.

Conjecture: An algebra is NP-complete if it has a factor
containing only permutations.Otherwise it is tractable.

Complexity of Languages

Max variables per constraint

Domain
size

3-SAT

33--ColouringColouring

Tractable

2-SAT

NP-complete4

11 2 53 4 6

3

2

Complexity of Languages

Max variables per constraint

Domain
size

3-SAT

LinearLinear

Language
structure

3

4

2

Tractable

HORNHORN

33--ColouringColouring

2-SAT

2 53 411

0/1/all0/1/all

NP-complete

6

Constraints & Algebra

What are the advantages of this approach?

• Gives a unified way to characterise
sets of structures/classes of problems

• Links each efficient algorithm to a
structural property/polymorphism

• Gives hardness proofs without reductions
• Brings a rich algebraic theory to bear
• Suggests new approaches for infinite

domains and soft constraints…

Soft Constraints

Definition of VCSP(L)
Definition 1a:
• An instance of VCSP(L) is a 3-tuple (V,D,C,Ω),

where
– V is a set of variables
– D is a single domain of possible values
– C is a set of constraints
� is a set of costs

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation from L defining the allowed

combinations of values

Definition of VCSP(L)
Definition 1a:
• An instance of VCSP(L) is a 4-tuple (V,D,C,Ω),

where
– V is a set of variables
– D is a single domain of possible values
– C is a set of constraints
– Ω is a set of costs

Each constraint in C is a pair (s,φ) where
• s is a list of variables defining the scope
• φ is a function from L defining the cost

__associated with each combination of values

x y z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

x y z
0 0 0
0 0 1 X

0 1 0 X

0 1 1
1 0 0 X

1 0 1
1 1 0
1 1 1 X

SAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡

valued Boolean constraints valued

x y z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

MAX-SAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)

valued Boolean constraints valued

≡

x y z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

MAX-SAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡

valued Boolean constraints valued

For more on this see
talk by Peter Jonsson

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

VSAT

valued Boolean constraints valued

Very general discrete
optimization problem

NP-hard

Tractable cases

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 � Maximum

Tractable cases
∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 3 Maximum

0 0 0 0 Minimum
+ = 3

+ = ∞

Tractable cases

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

We say that the cost function has
the multimorphism (Min,Max)

Any cost function with this property
is called submodular

If all cost functions are submodular
the problem is tractable

Tractable cases

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t)

Any cost function with this property
is called submodular

We say that the cost function has
the multimorphism (Min,Max)

If all cost functions are submodular
the problem is tractable

For
more on
this see
talk by
Dave
Cohen

Tractable cases

1) (Min,Max)
2) (Max,Max)
3) (Min,Min)
4) (Majority,Majority,Majority)
5) (Minority,Minority,Minority)
6) (Majority,Majority,Minority)
7) (Constant 0)
8) (Constant 1)

Note: These are tractable
cases for all
finite domains

Cohen et al CP’03

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

Tractable cases

Constant

Majority
Affine

Semilattice

Tractable cases

〈Min,Max〉

〈Constant〉

Essentially
Crisp
Languages

〈Mjrty,Mjrty,Mjrty〉
〈Mnrty,Mnrty,Mnrty〉

〈Max,Max〉

〈Mjrty,Mjrty,Mnrty〉

Intractable cases

MAX-SAT

x y
0 0 1
0 1 0
1 0 0
1 1 1

x ≠ yx ≠ y
(x ∧ y) ∨ (¬ x ∧ ¬ y)(x ∧ y) ∨ (¬ x ∧ ¬ y) ≡

This constraint is known to be NP-hard

Intractable cases

0 1 0
1 0 0

1 1 1 Maximum

x y
0 0 1
0 1 0
1 0 0
1 1 1

Intractable cases
This cost function does not have the multimorphism (Min,Max)This cost function has no significant multimorphisms

1 1 1

x y
0 0 1
0 1 0
1 0 0
1 1 1

0 1 0

1 0 0
0+ =

0 0 1 Minimum
2

Maximum
+ =

Intractable cases
This cost function has no significant multimorphisms

x y
0 0 1
0 1 0
1 0 0
1 1 1

b
a
a
b

Any set of Boolean cost functions
which doesn’t have a multimorphism

from the list of 8
can be combined to express

this form of cost function

For some
a < b < ∞

and hence is NP-hard

Cohen, Cooper, Jeavons CP’04

http://web.comlab.ox.ac.uk/oucl/research/areas/constraints/publications/CP04vsatdichotomy.ps

Dichotomy Theorem

In all other (Boolean) cases
the cost functions have
no significant common
multimorphisms and the
problem is NP-hard.

1) (Min,Max)
2) (Max,Max)
3) (Min,Min)
4) (Majority,Majority,Majority)
5) (Minority,Minority,Minority)
6) (Majority,Majority,Minority)
7) (Constant 0)
8) (Constant 1)

If the cost functions all have
one of these eight
multimorphisms, then the
problem is tractable:

Summary on soft constraints

• Valued constraints are a general
framework for discrete optimization
including SAT, MAX-SAT and VSAT.

• These problems are NP-hard in general.
• In the Boolean case:

– there are exactly 8 tractable cases, each
characterized by a multimorphism.

– Any set of cost functions which doesn’t have
one of these 8 has no significant
multimorphisms and is NP-hard.

Current challenges/Open problems

• Complete the classification of constraint
languages over a finite domain

• Combine analysis of constraint languages with
structural aspects of constraint problems to
identify broader tractable classes

• Extend the algebraic theory to infinite domains
• Show that the expressive power of valued

constraints is determined by their multimorphisms
• Link to practical constraint programming systems

(“global constraints”)

Complexity of CSP

Restricted
Structure

Trees

Hypertrees

Grids

? ?
?? ?

Restricted
Language

3-SAT
33--ColCol

2-SAT

Linear Linear
EquationsEquations

CSP

	Constraints & Algebra What’s the connection?
	Outline
	Further reading…
	Question
	Answer
	What is a constraint?
	Examples
	An Abstraction
	An Abstraction
	The CSP
	General Question
	Half of the Story...
	Half of the Story...
	...The Other Half
	Constraint Languages
	Definition of CSP(L)
	Definition of CSP(L)
	Alternative Definition of CSP(L)
	Another Alternative View
	Alternative Definition of CSP(L)
	Example
	Example
	Examples
	Summary of Examples
	Complexity of CSP(L)
	Languages
	Complexity of CSP(L)
	2-Valued Domain
	Complexity – Boolean Case
	Complexity – Boolean Case
	Boolean Languages
	Expressive Power
	Expressive Power
	Two (Binary) Constructions
	Example
	General Constructions
	Expressive Power
	Expressive Power
	Properties of Languages
	Expressive Power and Reduction
	Expressive Power and Reduction
	Expressive Power and Reduction
	Example
	Closure
	Calculating L
	Polymorphisms and Clones
	Algebraic Invariance
	Example of Polymorphism
	Example of non-Polymorphism
	Pol and Inv
	Expressive Power
	Galois Connection
	Galois Connection
	Clones
	Boolean Operations
	Boolean Operations
	General Case
	Constant Operations
	Affine Operations
	Majority Operations
	Galois Connection
	Unary Operations
	Galois Connection
	Examples
	Islands of tractability
	Islands of tractability
	Islands of tractability
	From Clones to Algebras
	From Clones to Algebras
	Unary Relations and Subalgebras
	Conservative Algebras
	Classifying Algebras
	Classifying Algebras
	Complexity of Languages
	Complexity of Languages
	Constraints & Algebra
	Soft Constraints
	Definition of VCSP(L)
	Definition of VCSP(L)
	valued Boolean constraints valued
	valued Boolean constraints valued
	valued Boolean constraints valued
	valued Boolean constraints valued
	Tractable cases
	Tractable cases
	Tractable cases
	Tractable cases
	Tractable cases
	Tractable cases
	Tractable cases
	Intractable cases
	Intractable cases
	Intractable cases
	Intractable cases
	Dichotomy Theorem
	Summary on soft constraints
	Current challenges/Open problems
	Complexity of CSP

