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Further reading…

• For more mathematics see:

• For more constraint satisfaction see:

Classifying the complexity of constraints using finite algebras
Andrei Bulatov, Peter Jeavons and Andrei Krokhin
Appears in: SIAM Journal on Computing 34, (2005), pp. 720-742

The Complexity of Constraint Languages
David Cohen and Peter Jeavons
To appear in: Handbook of Constraint Programming
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Question
What do these problems have in common?

– Drawing up a timetable for a conference
– Choosing frequencies for a mobile-phone network
– Checking the satisfiability of a logical formula
– Fitting a protein structure to measurements
– Laying out components on a circuit board
– Finding a DNA sequence from a set of contigs
– Scheduling a construction project
– Solving a system of linear equations                           



Answer
What do these problems have in common?

– Drawing up a timetable for a conference
– Choosing frequencies for a mobile-phone network
– Checking the satisfiability of a logical formula
– Fitting a protein structure to measurements
– Laying out components on a circuit board
– Finding a DNA sequence from a set of contigs
– Scheduling a construction project
– Solving a system of linear equations                           

They all involve searching 
for a solution which satisfies 

a set of constraints



What is a constraint?

• A constraint has two parts:
– A list of variables that are constrained,    

which we call the scope
– A relation

this relation specifies the 
allowed combinations of values
for the variables in the scope



Examples

“Variables X and Y   must be different colours”

Scope is <X,Y> Relation is =

“I fell asleep during  that tutorial”

Scope is <S,T> Relation is “during”



An Abstraction

Variables = Talks to be scheduled at conference
Transmitters to be assigned frequencies
Amino acids to be located in space
Circuit components to be placed on a chip



An Abstraction

Constraints = All talks on logic on different days
No interference between near transmitters
x + y + z > 0
Foundations dug before walls built



The CSP

A set of constraints defines an instance of       
a constraint satisfaction problem (CSP) 



General Question
• Having a general formulation for this kind 

of problem allows us to ask general 
structural questions:

When is the CSP
tractable?



Half of the Story...

• This picture illustrates the constraint scopes
• The set of scopes is sometimes called the 

constraint hypergraph, or the scheme
• A lot of work has been done on CSPs with 

restricted schemes (such as trees)



Half of the Story...

• This picture illustrates the constraint scopes
• The set of scopes is sometimes called the 

constraint hypergraph, or the scheme
• A lot of work has been done on CSPs with 

restricted schemes (such as trees)

For more on this see 
talks by Georg Gottlob

and Daniel Marx



...The Other Half

R1

R2
R3 R4

• The picture now emphasises the 
constraint relations

What do we call the set of constraint relations?



Constraint Languages

Definition: A constraint language is a 
set of relations over a finite set D.

For every constraint language, L, we have a 
corresponding class of problems, CSP(L)…



Definition of CSP(L)
Definition 1a:
• An instance of CSP(L) is a 3-tuple (V,D,C), where

– V is a set of variables
– D is a single domain of possible values 
– C is a set of constraints

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation from L defining the allowed          

combinations of values
• The question is whether each variable in V

can be assigned a value in D
so that all constraints in C are satisfied



Definition of CSP(L)
Definition 1a:
• An instance of CSP(L) is a 3-tuple (V,D,C), where

– V is a set of variables
– D is a single domain of possible values 
– C is a set of constraints

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation from L defining the allowed          

combinations of values
• The question is whether each variable in V

can be assigned a value in D
so that all constraints in C are satisfied

Γ

Γ
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Alternative Definition of CSP(L)
Definition 1b:
• An instance of CSP(L) is defined to be

a first order formula:

F = R1(s1) ∧ R2(s2) ∧ … ∧ Rm(sm)
where each Ri ∈ L

• The question is whether the formula can be satisfied    
by finding an assignment of values to the variables



Another Alternative View

R1

R2 R3 R4

(V,E1,E2,E3,E4) (D,R1,R2,R3,R4)

Solution = Mapping from V to D such that 
the image of each tuple related by Ei is related by Ri



Alternative Definition of CSP(L)
Definition 1c:
• An instance of CSP(L) is defined to be               

a pair of similar relational structures:

(V,E1,…,Em) , (D,R1,…,Rm)
where each Ri ∈ L

• The question is whether there exists a 
homomorphism from V to D 



Example

• If L contains just the binary disequality 
relation, over the set D = {1,2,…,k}, then 
CSP(L) is the graph k-colouring problem

F = (v1≠ v2) ∧ (v2≠ v5) ∧ … ∧ (v4≠ v7)G
G Kk

(V,E) (D,≠) 
?



Example
• If L contains all Boolean relations defined 

by ternary clauses, then CSP(L) is the     
3-satisfiability problem

F = (v1∨v2∨¬v3) ∧ … ∧ (¬v3∨¬v4∨v7)

H C3
(V,E1,…,E8) (D,R1,…,R8) 

?

H



Examples

• If L contains all relations defined by linear 
equations over some field K, then CSP(L)
is the problem of solving simultaneous 
linear equations over K

• If L contains all relations R(t) over the 
reals, where R(t) = {(x,y)|x-y<t}, then 
CSP(L) is the problem of solving a   
“simple temporal problem”



Summary of Examples

Disequality Relation
{≠}

Graph Colouring 
Problem

Clauses Satisfiability

Affine relations Simultaneous 
Linear Equations

Temporal Relations
{ (x,y) | x-y<t }

Simple Temporal 
Problems

L CSP(L)

NP-complete

Tractable



Complexity of CSP(L)



Languages 

∅

RD

Tractable

NP-complete

Affine relations

Disequality



Complexity of CSP(L)
There have been a lot of papers investigating the 
complexity of CSP(L) for different sets of relations L:

– Schaefer, STOC’78, 2-valued domains
– Hell and Nesetril, JCTB, 1990, binary symmetric rels
– Feder and Vardi, STOC’93, 3 families – logic, groups
– Kirousis, AIJ, 1993, implicative constraints
– Cooper et al, AIJ, 1994, 0/1/all constraints
– Jeavons et al, JACM, 1997, algebraic theory
– Dalmau and Pearson, CP’99, set functions
– Cohen et al, JACM, 2000, disjunctive constraints
– Bulatov et al, STOC’01, maximal tractable sets
– Bulatov, FOCS’02, 3-valued domains



2-Valued Domain 

SAT x y z
0 0 0
0 0 1 X

0 1 0 X

0 1 1
1 0 0 X

1 0 1
1 1 0
1 1 1 X

x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡



Complexity – Boolean Case
Schaefer (1978) showed that when L is a set of Boolean relations, 

CSP(L) is tractable in exactly the following 6 cases:

• Every R in L contains (0,0,…,0)
• Every R in L is definable by a 

CNF formula in which each 
conjunct has at most one         
un-negated literal (Horn clauses)

• Every R in L is definable by a 
CNF formula in which each 
conjunct has at most 2 literals

• Every R in L contains (1,1,…,1)
• Every R in L is definable by a 

CNF formula in which each 
conjunct has at most one    
negated literal (dual Horn)

• Every R in L holds over an affine 
set in GF(2)



Complexity – Boolean Case
Schaefer (1978) showed that when L is a set of Boolean relations, 

CSP(L) is tractable in exactly the following 6 cases:

• Every R in L contains (0,0,…,0)
• Every R in L is definable by a 

CNF formula in which each 
conjunct has at most one         
un-negated literal (Horn clauses)

• Every R in L is definable by a 
CNF formula in which each 
conjunct has at most 2 literals

• Every R in L contains (1,1,…,1)
• Every R in L is definable by a 

CNF formula in which each 
conjunct has at most one    
negated literal (dual Horn)

• Every R in L holds over an affine 
set in GF(2)

For more on this see 
talks by Nadia Creignou
and Heribert Vollmer



Boolean Languages 

∅

R{0,1}

Tractable

NP-complete

Not-all-equal SAT

0…0 relations
1…1 relations
Horn relations

Dual Horn relations
2-decomposable relations

Affine relations



Expressive Power
• The idea of Schaefer’s proof was to consider what 

relations are “expressible” using relations from L
• This makes use of the fact that new constraints can 

be  derived from the combined effect of specified 
constraints 

derived constraint



Expressive Power

• If we can combine the relations 
R1,R2,…,Rk to obtain a derived constraint 
relation R0, then we say that R0 can be 
expressed using R1,R2,…,Rk

R1

R0

R2

R3 R4



Two (Binary) Constructions

x-y<1 y-z<1 z-w<1

x-w<3
Series

x y z w

x-y<1

y-x<1

|x-y|<1

Parallel

x y



Example

What is the
derived

constraint 
here?

• What constraints can be expressed using just the 
disequality relation on a 3 element domain?



General Constructions
• To include all possible constructions         

we need to allow arbitrary join operations, 
followed by a projection operation

• Then we can construct any derived 
constraint



Expressive Power 

Definition 2a:
The “expressive power” of a  constraint 
language L, denoted 〈L〉, is defined to be 
the set of relations that can be expressed 
using:
– Relations in L
– Relational join operations 
– Projection onto some subset of variables 



Expressive Power 

Definition 2b:
The “expressive power” of a  constraint 
language L, denoted 〈L〉, is defined to be 
the set of relations that can be expressed 
using:
– Relations in L
– The equality relation over the domain of L
– Conjunction
– Existential quantification



Properties of Languages

• If we have very few relations in our 
language, L, then it may be impossible to 
describe the problem we want to solve

• If we have too many relations in our 
language, L, then CSP(L) may be 
intractable

• There is a trade-off between expressive 
power and tractability



Expressive Power and Reduction

Theorem: For any constraint language L, 
and any finite constraint language L′, if  L′ ⊆ 〈L〉
then CSP(L′) is polynomial-time reducible to CSP(L)

CSP(L)

R1

CSP(L′)
R2

R3 R4



Expressive Power and Reduction

Theorem: For any constraint language L, 
and any finite constraint language L′, if  L′ ⊆ 〈L〉
then CSP(L′) is polynomial-time reducible to CSP(L)

Corollary: We can add any of the relations in 〈L〉 to
L without changing the complexity of CSP(L).

Corollary: If 〈L1〉 = 〈L2〉 then 
CSP(L1) is polynomial-time equivalent to CSP(L2) .



Expressive Power and Reduction

Theorem: For any constraint language L, 
and any finite constraint language L′, if  L′ ⊆ 〈L〉
then CSP(L′) is polynomial-time reducible to CSP(L)

〈L〉 is more important than L



Example
Consider the language consisting of 
a single binary relation ρ0 over D = {0,1,2,…,n}, 
where ρ0 contains the following tuples:

– (i,i+1)         for all 1 ≤ i ≤ n-1
– (0,i), (i,0)   for all 1 ≤ i ≤ n

It is known that 〈{ρ0}〉 contains all
possible relations over D

Hence CSP({ρ0}) is NP-complete

0

1

2

0

1

2



Closure 

∅

RD

{ρ0}



Calculating 〈L〉
• A relation is in 〈L〉 if and only if it can be 

expressed somehow using the relations in L
• For a given relation, how can we decide if it can 

or cannot be expressed in L?



Polymorphisms and Clones



Algebraic Invariance  

Definition: A relation R is invariant under a             
k-ary operation φ, if, for any tuples a1,a2,…,ak ∈ R, 
the tuple obtained by applying φ co-ordinatewise
is a member of R .

If R is invariant under φ, 
then φ is called a polymorphism of R.  



Example of Polymorphism
∀s,t if s and t are in R, then Max(s,t) is in R 

x y z
0 0 0
0 1 0
1 1 0
2 1 0
2 0 1
2 1 1

We say that 
this relation R
has the 
polymorphism
Maximum

s

2 0 1

0 1 0

t Maximum

2 1 1R



Example of non-Polymorphism

x y z
0 0 0
0 1 0
1 1 0
2 1 0
2 0 1
2 1 1

We say that this 
relation R
doesn’t have the 
polymorphism
Minimum

2 0 0

s
t 2 0 1

2 1 0

R

Minimum



Pol and Inv

∅

RD

L

Sets of 
relations

Pol(L)

Compute the 
polymorphisms

of L 

Compute the 
invariant relations

of Pol(L) 

Inv(Pol(L))
=〈L〉



Expressive Power 

Theorem (Geiger): For any constraint language L,     
over a finite domain,     〈L〉 = Inv(Pol(L))

and independently by Bodnarchuk, Kaluzhnin, Kotov and Romov

Corollary: For any finite constraint language L,   
over a finite domain, the complexity of CSP(L)
is determined by Pol(L) 



Galois Connection

∅

RD

L

Sets of 
relations

Sets of 
operations

Pol(L)

Inv(Pol(L))
=〈L〉



Galois Connection

Pol(Inv(Φ))

Inv(Pol(L))

Sets of 
relations

Sets of 
operations

∅

RD



Clones

∅

RD

Pol(Inv(Φ))

Inv(Pol(L))

Definition: A 
relational clone is a 
set of relations which 
is closed under 
relational join and 
projection.

Every relational clone is 
of the form Inv(Ф) for 
some Ф

Definition: A clone is 
a set of operations 
which is closed under 
composition and 
contains all projection 
operations.

Every clone is of the 
form Pol(L) for some L



Boolean Operations

Relational
Clones

Clones of 
Operations

Constant 0

Max

Majority
Min

Minority

Constant 1

PermutationSchaefers 6 maximal
tractable classes

Not-all-equal
satisfiability



Boolean Operations

Post’s
Lattice

Clones of 
Operations

Boolean
Relational

Clones

Dichotomy Theorem
for Boolean CSP

Relational
Clones



General Case 
For domains larger than 2, the lattice of clones is 
uncountable, and not yet fully characterised…

Theorem (Rosenberg): Every minimal clone over a 
finite set is generated by one of the following:

A constant operation; 
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.



Constant Operations 
What kinds of relations 
are invariant under

e.g. c(x,y,z) = 2 ?

Theorem (Rosenberg): Every minimal clone over a 
finite set is generated by one of the following:

A constant operation; 
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

A constant operation { (3, 1),
(2, 3),
(2, 2),
(2, 1) }

c     c

1

2

3

1

2

3
{ (3, 1),
(2, 3),
(2, 2),
(2, 1) }

(2, 2)

Such relations are tractable – just assign constant value to all variables



Affine Operations 
What kinds of relations 
are invariant under

e.g. f(x,y,z) = x-y+z ?

Theorem (Rosenberg): Every minimal clone over a 
finite set is generated by one of the following:

A constant operation; 
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

{ (2, 0),
(1, 2),
(0, 1)}

f     f
{ (2, 0),
(1, 2),
(0, 1)}

(1, 2)

A ternary affine operation

Such relations are tractable – use Gaussian elimination on linear equations

0

1

2

0

1

2

y = x+1
(mod 3)

(mod 3)



Majority Operations 
What kinds of relations 
are invariant under

e.g. m(x,y,z) = ?x   if x = y
z   otherwise

Theorem (Rosenberg): Every minimal clone over a 
finite set is generated by one of the following:

A constant operation; 
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

{ (2, 0),
(1, 0),
(1, 2)}

m  m 
{ (2, 0),
(1, 0),
(1, 2)}

(1, 0)

Such relations are tractable – use local consistency techniques

0

1

2

0

1

2

0/1/all

A ternary majority operation



Galois Connection

Relational
Clones

Clones of 
OperationsConstants

Affine
Majority



Unary Operations 
What kinds of relations 
are invariant under

e.g. h(x) = 4 - x ?

Theorem (Rosenberg): Every minimal clone over a 
finite set is generated by one of the following:

A constant operation; 
A ternary affine operation;
A ternary majority operation;
A non-identical unary operation;
A semiprojection;
A binary idempotent operation.

{(3, 2),
(3, 1),
(2, 3),
(2, 1),
(1, 3),
(1, 2) }

h    h

Such relations are NP-complete – equivalent to graph colouring

A non-identical unary operation1

2

3

1

2

3
{(3, 2),
(3, 1),
(2, 3),
(2, 1),
(1, 3),
(1, 2) }

(2, 1)



Galois Connection

Relational
Clones

Clones of 
OperationsConstants

Affine

Unary 
operations

Semiprojections

Majority

Binary
Idempotent
Operations

Semilattice operations:
Associative f(x,f(y,z)) = f(f(x,y),z)
Commutative f(x,y) = f(y,x)
Idempotent f(x,x) = x



Examples
Any constraint language (over a finite ordered set) whose 
relations can be expressed as a conjunction of pairwise
disjunctions of upper/lower bounds is invariant under a 
majority operation (median), and hence tractable.
For example,     ρ2 = { (x,y,z) | (x<3)∨(y>5) ∧ (x>2)∨(z<4) }

Any constraint language (over a finite ordered set) whose 
relations can be expressed as a disjunction of upper bounds 
together with at most one lower bound is invariant under a 
semilattice operation (maximum), and hence tractable.
For example,     ρ3 = { (x,y,z) | (x<3)∨(y<5)∨(z>4) }



Islands of tractability

Constant

Majority

Affine

Semilattice

• In the Boolean case this is a complete description
(2 constants, 1 majority, 2 semilattice, 1 affine)

• For larger domains this is not a complete description…



Islands of tractability
Majority operations have been generalised to
near-unanimity operations where
m(x,x,…,x,y) = m(x,…x,y,x) = … = m(y,x,…x) = x

Affine operations have 
been generalised to
Mal’tsev operations where 
f(y, y, x) = f(x, y, y) = x

Semilattice operations
have been 
generalised to
set functions and
2-semilattices

Near-unanimity operations 
and Mal’tsev operations
have both been generalised further to 
majority/minority operations where 
on each 2-element subset the 
operation is either
majority or Mal’tsev (Dalmau, LICS 2005)

http://eprints.pascal-network.org/archive/00001827/01/gmm.ps


Islands of tractability
Majority operations have been generalised to
near-unanimity operations where
m(x,x,…,x,y) = m(x,…x,y,x) = … = m(y,x,…x) = x

Affine operations have 
been generalised to
Mal’tsev operations where 
f(y, y, x) = f(x, y, y) = x

Semilattice operations
have been 
generalised to
set functions and
2-semilattices

Near-unanimity operations 
and Mal’tsev operations
have both been generalised further to 
majority/minority operations where 
on each 2-element subset the 
operation is either
majority or Mal’tsev (Dalmau, LICS 2005)

For more on this see 
talk by Benoit Larose

http://eprints.pascal-network.org/archive/00001827/01/gmm.ps


From Clones to Algebras



From Clones to Algebras
For every constraint language L over D there is an 
associated algebra 

A = (D,Pol(L))

For every algebra A = (D,Ф) there is an associated 
constraint problem 

CSP(A) = CSP(Inv(Ф))

Hence we can classify constraint problems by 
classifying algebras…



Unary Relations and Subalgebras
Let L be a constraint language over a set D, 
and let AL be the algebra (D,Pol(L)) .

The following are equivalent:
• The unary relation R is invariant under Pol(L);
• The unary relation R belongs to 〈L〉;
• The set of elements of R is a subalgebra of AL

If L contains all unary relations, then AL has every 
subset as a subalgebra and is called conservative



Conservative Algebras
Bulatov (2003) showed that when L is a set of relations 

containing all unary relations, then CSP(L) is tractable 
precisely when every 2-element subalgebra of                        
AL = (D,Pol(L)) is tractable.

Theorem (Bulatov): A conservative algebra A = (D, Ф)
is tractable if and only if, for every 2-element subset B of D, 
there exists f in Pol(Inv(Ф)) such that f|B is either:

A semilattice operation; 
A ternary affine operation;
A ternary majority operation.

http://web.comlab.ox.ac.uk/oucl/work/andrei.bulatov/consshort.ps


Classifying Algebras
Theorem: Tractability of an algebra A is preserved by:

taking subalgebras
taking homomorphic images
taking finite powers

( By reduction to CSP(A) )

} taking factors

Every finite algebra whose operations are permutations
is NP-complete.                  ( By reduction from COLOURING )

Corollary: An idempotent algebra is NP-complete if it has a 
factor containing only permutations. 
Conjecture: An idempotent algebra is NP-complete if it has a 
factor containing only permutations.  Otherwise it is tractable.



Classifying Algebras
Theorem: Tractability of an algebra A is preserved by:

taking subalgebras
taking homomorphic images
taking finite direct products

( By reduction to CSP(A) )

Every finite algebra whose operations are permutations
is NP-complete.                  ( By reduction from COLOURING )

} taking factors

For more on this see 
talk by Andrei Bulatov

Corollary: An algebra is NP-complete if it has a factor
containing only permutations. 

Conjecture: An algebra is NP-complete if it has a factor
containing only permutations.Otherwise it is tractable.



Complexity of Languages

Max variables per constraint

Domain
size

3-SAT

33--ColouringColouring

Tractable

2-SAT

NP-complete4

11 2 53 4 6

3

2



Complexity of Languages

Max variables per constraint

Domain
size

3-SAT

LinearLinear

Language
structure

3

4

2

Tractable

HORNHORN

33--ColouringColouring

2-SAT

2 53 411

0/1/all0/1/all

NP-complete

6



Constraints & Algebra

What are the advantages of this approach?

• Gives a unified way to characterise               
sets of structures/classes of problems

• Links each efficient algorithm to a          
structural property/polymorphism

• Gives hardness proofs without reductions
• Brings a rich algebraic theory to bear
• Suggests new approaches for infinite 

domains and soft constraints…



Soft Constraints



Definition of VCSP(L)
Definition 1a:
• An instance of VCSP(L) is a 3-tuple (V,D,C,Ω), 

where
– V is a set of variables
– D is a single domain of possible values 
– C is a set of constraints
� is a set of costs 

Each constraint in C is a pair (s,R) where
• s is a list of variables defining the scope
• R is a relation from L defining the allowed          

combinations of values



Definition of VCSP(L)
Definition 1a:
• An instance of VCSP(L) is a 4-tuple (V,D,C,Ω), 

where
– V is a set of variables
– D is a single domain of possible values 
– C is a set of constraints
– Ω is a set of costs

Each constraint in C is a pair (s,φ) where
• s is a list of variables defining the scope
• φ is a function from L defining the cost              

__associated with each combination of values



x y z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

x y z
0 0 0
0 0 1 X

0 1 0 X

0 1 1
1 0 0 X

1 0 1
1 1 0
1 1 1 X

SAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡

valued Boolean constraints valued



x y z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

MAX-SAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)

valued Boolean constraints valued

≡



x y z
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

MAX-SAT
x + y + z = 0x + y + z = 0

(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z)
(x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧

(¬ x ∨ y ∨ z) ∧ (¬ x ∨ ¬ y ∨ ¬ z) ≡

valued Boolean constraints valued

For more on this see 
talk by Peter Jonsson



x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

VSAT

valued Boolean constraints valued

Very general discrete
optimization problem

NP-hard



Tractable cases

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 � Maximum



Tractable cases
∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t) 

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 3 Maximum

0 0 0 0 Minimum
+        = 3

+        = ∞



Tractable cases

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t) 

We say that the cost function has 
the multimorphism (Min,Max)

Any cost function with this property 
is called submodular

If all cost functions are submodular
the problem is tractable



Tractable cases

x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

∀s,t Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t) 

Any cost function with this property 
is called submodular

We say that the cost function has 
the multimorphism (Min,Max)

If all cost functions are submodular
the problem is tractable

For 
more on 
this see 
talk by 
Dave 
Cohen



Tractable cases

1) (Min,Max)
2) (Max,Max)
3) (Min,Min)
4) (Majority,Majority,Majority)
5) (Minority,Minority,Minority)
6) (Majority,Majority,Minority)
7) (Constant 0)
8) (Constant 1)

Note: These are tractable 
cases for all 
finite domains 

Cohen et al CP’03

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:



Tractable cases

Constant

Majority
Affine

Semilattice



Tractable cases

〈Min,Max〉

〈Constant〉

Essentially 
Crisp 
Languages

〈Mjrty,Mjrty,Mjrty〉
〈Mnrty,Mnrty,Mnrty〉

〈Max,Max〉

〈Mjrty,Mjrty,Mnrty〉



Intractable cases

MAX-SAT

x y
0 0 1
0 1 0
1 0 0
1 1 1

x ≠ yx ≠ y
(x ∧ y) ∨ (¬ x ∧ ¬ y)(x ∧ y) ∨ (¬ x ∧ ¬ y) ≡

This constraint is known to be NP-hard



Intractable cases

0 1 0
1 0 0

1 1 1 Maximum

x y
0 0 1
0 1 0
1 0 0
1 1 1



Intractable cases
This cost function does not have the multimorphism (Min,Max)This cost function has no significant multimorphisms

1 1 1

x y
0 0 1
0 1 0
1 0 0
1 1 1

0 1 0

1 0 0
0+        =

0 0 1 Minimum
2

Maximum
+        =



Intractable cases
This cost function has no significant multimorphisms

x y
0 0 1
0 1 0
1 0 0
1 1 1

b
a
a
b

Any set of Boolean cost functions
which doesn’t have a multimorphism

from the list of 8
can be combined to express 

this form of cost function

For some 
a < b < ∞

and hence is NP-hard

Cohen, Cooper, Jeavons CP’04

http://web.comlab.ox.ac.uk/oucl/research/areas/constraints/publications/CP04vsatdichotomy.ps


Dichotomy Theorem

In all other (Boolean) cases 
the cost functions have 
no significant common 
multimorphisms and the 
problem is NP-hard.

1) (Min,Max)
2) (Max,Max)
3) (Min,Min)
4) (Majority,Majority,Majority)
5) (Minority,Minority,Minority)
6) (Majority,Majority,Minority)
7) (Constant 0)
8) (Constant 1)

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:



Summary on soft constraints

• Valued constraints are a general 
framework for discrete optimization 
including SAT, MAX-SAT and VSAT.

• These problems are NP-hard in general.
• In the Boolean case: 

– there are exactly 8 tractable cases, each 
characterized by a multimorphism.

– Any set of cost functions which doesn’t have  
one of  these 8 has no significant 
multimorphisms and is NP-hard.



Current challenges/Open problems

• Complete the classification of constraint 
languages over a finite domain 

• Combine analysis of constraint languages with  
structural aspects of constraint problems to 
identify broader tractable classes

• Extend the algebraic theory to infinite domains 
• Show that the expressive power of valued 

constraints is determined by their multimorphisms
• Link to practical constraint programming systems      

(“global constraints”) 



Complexity of CSP

Restricted
Structure

Trees

Hypertrees

Grids

? ?
?? ?

Restricted
Language

3-SAT
33--ColCol

2-SAT

Linear Linear 
EquationsEquations

CSP
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