Constraint Satisfaction

and

Graph Theory

How much is lost by focusing on graphs

How graphs help intuition

How graph theory gets used

Graph Colouring

- One of the most common illustrations of constrain satisfaction problems
- All variables have the same domain, consisting of k colours
- One binary constraint requires adjacent pairs of variables to obtain different colours

Exam Scheduling via Graph Colouring

G = courses and their conflicts Colours = examination times

A colouring of G = a schedule of exam periods in which conflicting courses are scheduled at different times

Monday 9am

Monday 1pm

Tuesday 9am

More realistic models

are possible with the full power of constraint satisfaction...

More realistic models

are possible with the full power of constraint satisfaction...

BUT

graph theory is not just colouring

Graph Homomorphisms

Suppose G and H are graphs.

A homomorphism of G to H is a mapping $f: V(G) \rightarrow V(H)$ such that $uv \in G$ implies $f(u)f(v) \in H$

Adjacent vertices have adjacent images

Exam Scheduling

Via Graph Homomorphisms

G = courses and their conflicts *H* = periods and their compatibility

A homomorphism of G to H =a schedule of exam periods so that conflicting courses are scheduled at compatible times

General CSP's

- Given a vocabulary (finite number of relation symbols, each of finite arity)
- and two structures G and H over the vocabulary, with ground sets V(G) and V(H), and interpretations of all the relation symbols, as relations over the set of the stated arities

Homomorphism of G to H

A mapping $f: V(G) \rightarrow V(H)$ such that

$(V_1,\ldots,V_r) \in R(G)$ implies $(f(V_1),\ldots,f(V_r)) \in R(H)$,

for all relation symbols R of the vocabulary

Graph Theory in CSP

Take the vocabulary to consist of

one binary relation symbol E

(possibly with restricted interpretations, to reflexive, symmetric, etc, relations)

V(G) = courses V(H) = times

 Conflicting courses at compatible times (*R(G)* and *R(H)* binary relations)

•At most three chemistry exams in one day (*R(G)* and *R(H)* quaternary relations)

•All physics exams on the first ten days (*R(G)* and *R(H)* unary relations)

• G changes every semester

• *H* tends to stay constant for a while

The Constraint Satisfaction Problem for a fixed a structure *H*:

CSP(H)

• Given a structure G (same vocabulary as H)

• Is there a homomorphism of G to H?

Dichotomy Conjecture [FV]

For each *H*, the problem CSP(*H*) is in *P* or is *NP*-complete

When *H* is a graph (one binary relation symbol *E*)

CSP(H) is called the H-colouring problem

graphs ... *E(G), E(H)* symmetric
digraphs ... unrestricted interpretations

Also denoted COL(H) and HOM(H)

 $CSP(K_n)$

(one binary relation, `distinct')

$CSP(K_n)$ is the *n*-colouring problem

DICHOTOMY

The *n*-colouring problem is
in *P* for *n* = 1, 2 *NP*-complete for all other *n*

The graph *H*-colouring problem is
in *P* for *H* bipartite or with a loop *NP*-complete for all other *H*

DICHOTOMY

The *H*-colouring problem is [HN]
in *P* for *H* bipartite or with a loop *NP*-complete for all other *H*

H-colouring

• May assume G is connected

• May assume *H* is connected

May assume H is a core
 (there is no homomorphism to a proper subgraph)

Polynomial cases

• *H* has a loop (some $vv \in E(H)$) All *G* admit a homomorphism to *H*

H is bipartite

 (V(H) = two independent sets)
 Thus we may assume H = K₂ (core)

Obvious algorithm

Algorithm succeeds

Obvious algorithm

Algorithm succeeds

No odd cycles

2-colouring exists

Algorithm succeeds

G has a 2-colouring (is bipartite)

if and only if it contains no induced

NP-complete cases

• Cliques K_n with $n \ge 3$ • Pentagon C_5

Reduce from 5-colourability:

Reduce from 5-colourability:

Reduce from 5-colourability:

G is 5-colourable if and only if G^* is C_5 -colourable

Reduce from *K*₅-colourability:

G is K_5 -colourable if and only if G^* is C_5 -colourable

From K_5 to C_5

Reduce from *K*₅-colourability:

G is K_5 -colourable if and only if G^* is C_5 -colourable

From K_5 to C_5 From denser to sparser...

From smaller to larger...

Enough to prove for

(Monotonicity)

Digraph H-colouring

- Dichotomy not known
- No classification in terms of digraph properties proposed
- Each CSP(H) is polynomially equivalent to some digraph H'-colouring problem [FV]
- Monotonicity fails

Monotonicity fails

NP-complete

In P

CSP(H) as H'-COL

• We may assume that *H* is a core

• We may replace CSP(H) by RET(H)

(*H* is a substructure of *G* and we seek a homomorphism of *G* to *H* that keeps vertices of *H* fixed)

- **-** -

- **-** -

Retraction impossible

.

Retraction impossible, but homomorphism exists

If *H* is a core then CSP(*H*) and RET(*H*) are polynomially equivalent

Each CSP(*H*) is polynomially equivalent to some digraph *H*'-colouring problem

• Each RET(*H*) is polynomially equivalent to some bipartite graph retraction problem

 Each bipartite graph retraction problem is polynomially equivalent to some digraph H'-colouring problem

RET(H) as RET(H')

(*H* is an arbitrary structure, *H'* is a bip graph)

RET(H) as RET(H')

(*H* is an arbitrary structure, *H'* is a bip graph)

_From bip RET(H) to digraph H'-colouring

CSP(H) is polynomially equivalent

- to CSP(H') for some digraph H'
- to RET(H') for some digraph H'
- to RET(H') for some bipartite graph H'
- to RET(H') for some reflexive graph H'
- to RET(H') for some partial order H'

Monotonicity fails

NP-complete

In P

NP-completeness

Reduce ONE-IN-THREE-SAT

Polynomial algorithm

is in *P* iff

(and it is)

Obvious algorithm

Algorithm succeeds

Obvious algorithm

Obvious algorithm

Algorithm succeeds

A cycle is **good** if it has net length 3k

Algorithm succeeds

No bad cycles

 C_3 -colouring exists

Algorithm succeeds

G has a \vec{C}_k -colouring

if and only if

G contains no cycle of net length $\neq 0 \pmod{k}$

[BB]

Monotonicity fails

NP-complete

In P

Not hereditarily hard

(Polynomial extension) (irreflexive) Another perspective on the undirected dichotomy

• C_{odd} is hereditarily hard

enough to show

• C_3 is hereditarily hard

Few' directed cycles

 monotonicity fails (oscilation)
 unclear distinctions

NP-complete case

`Few' directed cycles monotonicity fails (oscilation) unclear distinctions BUT

NP-c P - extension

• `Few' directed cycles

NP-complete [BM] [GWW]

• `Few' directed cycles

– BUT

NP-complete

P - extension

`Many' directed cycles

`Many' directed cycles

Hereditarily hard

 H_0

(if H contains H_0 and H has no loops, then CSP(H) is NP-complete)

Classification Conjecture [BHM]

• If H^* (*H* with sources and sinks recursively removed) admits a homomorphism to some \vec{C}_k (*k*>1) then *H* has a polynomial extension (`few cycles')

 Otherwise, *H* is hereditarily hard (`many cycles')
Status of the conjecture

• True for several graph families

• Open for

Status of the conjecture

• True for several graph families

• Open for

Status of the conjecture

• True for several graph families

Open for

• True for

If the bi-directed edges of *H* form a nonbipartite graph, then CSP(*H*) is NPc

- Each v incident with a bi-directed edge
- Bi-directed edges between parts
- Uni-directed edges within parts

- Each v incident with a bi-directed edge
- Bi-directed edges between parts
- Uni-directed edges within parts

- Each v incident with a bi-directed edge
- Bi-directed edges between parts
- Uni-directed edges within parts

- Each v incident with a bi-directed edge
- Bi-directed edges between parts
- Uni-directed edges within parts ← ?

What algorithms?

. .

G has a \vec{C}_k -colouring

if and only if

G contains no cycle of net length $\neq 0 \pmod{k}$

G has a \vec{C}_k -colouring

if and only if

there is no homomorphism to G from a cycle of net length $\neq 0 \pmod{k}$

(obstacles are oriented cycles)

G has a \vec{P}_k -colouring

if and only if

there is no homomorphism to G from a path of net length > k [BB]

$$\bullet \rightarrow \bullet \rightarrow \bullet \cdots \rightarrow \bullet \quad \overrightarrow{P}_k$$

G has a P-colouring

if and only if

there is no homomorphism **to** *G* **from** a path *P'* which is bad

(does not admit a homomorphism to P)

[HZ] (cf also [GWW])

G has a \overline{T}_k -colouring

if and only if

there is no homomorphism to G from P_k

What algorithms?

• *H* has tree duality

 \exists a family \mathfrak{S}_H of oriented trees such that G admits an *H*-colouring iff there is no homomorphism **from** a $T \in \mathfrak{S}_H$ to G

(obstacles are oriented trees)

What algorithms?

• *H* has treewidth *k* duality

 \exists a family \mathfrak{S}_H of digraphs of treewidth ksuch that G admits an *H*-colouring iff there is no homomorphism **from** a $T \in \mathfrak{S}_H$ to G

(obstacles are digraphs of small treewidth)

Bounded treewidth duality

∃ k such that obstacles are graphs of treewidth k

If *H* has bounded treewidth duality, then CSP(*H*) is in *P*

[HNZ] [FV] width, datalog

What algorithms?

- Tree duality (obstacles are oriented trees)
- Treewidth two duality (obstacles are graphs of treewidth 2)
- Bounded treewidth duality
- There exist H without bounded treewidth duality but with CSP(H) in P [A]

G has a \overline{T}_k -colouring

if and only if

there is no homomorphism to G from P_k

Finitary dualities

- If H has finitary duality, then H has tree duality [NT]
- This happens if and only if H-colourability is first-order definable [A]

Also follows from [R]

Add unary relations (still graph theory)

Fix a graph *H* with *k* vertices.

Vocabulary has one binary relation name *E* and a set of unary relation names $U_1, U_2, ..., U_{2^{k}-1}$

Interpret *H* with *U_i(H)* the subsets of *V(H)* (conservative structure *H*) List homomorphism problem

Fixed graph H

Given an input graph G, with lists $L(v) \subseteq V(H), v \in V(G)$

Is there a homomorphism f of G to H with all $f(v) \in L(v)$?

RET(H)

LHOM(*H*) restricted to inputs *G* containing *H* with $L(v) = \{v\}$ for all vertices *v* of *H*

List homomorphism problem

Assume *E(H)* is reflexive

If H is an interval graph, then
LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete

[FH]

Interval graphs

. .

(reflexive)

Interval graphs

have conservative majority polymorphisms

Interval graphs

conservative majority polymorphisms m(a,b,c) = a, b, or c

Structural characterization

 H is an interval graph if and only if it does not have an induced cycle of length >3, or an asteroidal triple of vertices

List homomorphism problem

Assume *E(H)* is reflexive

If H is an interval graph, then
LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete

[FH]

Conservative majority polymorphisms

Reflexive interval graphs have them

• They imply polynomiality of LHOM(H)

 LHOM(H) is NP-complete for other reflexive graphs

Predicted theorem

A reflexive graph H has a conservative majority function iff it is an interval graph

[BFHHM]

Predicted theorem

A reflexive graph H has a conservative majority function iff it is an interval graph [BFHHM]

A reflexive graph H has a majority function if and only if it is a retract of a product of interval graphs [JMP] [HR]

Absolute retracts

• A reflexive graph *H* is a retract of every *G* which contains *H* as an isometric subgraph **iff** *H* has a majority polymorphism [JMP] [HR]

Absolute retracts

• A reflexive graph *H* is a retract of every *G* which contains *H* as an isometric subgraph **iff** *H* has a majority polymorphism [JMP] [HR]

 But RET(H) is polynomial in other cases

List homomorphism problem

In general

• If H is a **bi-arc** graph, then LHOM(H) is in P

• Otherwise, LHOM(*H*) is *NP*-complete [FHH]

G has cons. majority **iff** it is a bi-arc graph

List homomorphism problem

In general

• If H is a **bi-arc** graph, then LHOM(H) is in P

• Otherwise, LHOM(*H*) is *NP*-complete [FHH]

G has cons. near un. iff it is a bi-arc graph
Dichotomy for conservative H

(not graph theory)

CSP(H) is in P or is NP-complete [B]

Digraphs H

- Conjecture 1 [FH]
 For reflexive digraphs, LHOM(H) ∈ P when H has the X-underbar property and is NP-complete otherwise
- Conjecture 2 [FH]
 For irreflexive digraphs, LHOM(H) ∈ P when H has a majority function, and is NP-complete otherwise

Restricted lists

Suppose each list induces a connected subgraph of *H*

- If H is chordal CLHOM(H) $\in P$

- Otherwise CLHOM(*H*) is NP-complete

Chordal graph

- Intersection graph of subtrees in a tree
- No induced cycle of length > 3
- Perfect elimination ordering of vertices
- Have near unanimity polymorphisms [вгннм]

Minimum Cost Homomorphisms

• Let $c_v(w)$ = the cost of mapping $V \in V(G)$ to $W \in V(H)$

• Compute $\min_{f \ge v} c_v(f(v))$

MCHOM(H) (*H* is fixed, input is *G* and *c*)

Dichotomy

 If each component of *H* is a reflexive interval graph or an irreflexive interval bigraph, then MCHOM(*H*) ∈ *P*

Otherwise, MCHOM(H) is NP-complete
 [GHRY]

Relation to Soft Constraints

• Unary constraints (lists) are soft

• Binary constraint (edges) are crisp

Proper interval graphs

 Representable by an inclusion-free family of intervals

 A reflexive graph G is a proper interval graph iff it has no induced

Proper interval graphs

 Representable by an inclusion-free family of intervals

 A reflexive graph G is a proper interval graph iff it has a Min-Max polymorphism Reflexive graphs H

- HOM(H) (=CSP(H)) always easy
- RET(H) dichotomy open
- LHOM(H) easy just for interval graphs
- MCHOM(H) easy just for proper interval graphs

How much is lost by focusing on graphs

How graphs help intuition

How graph theory gets used

Overviews

- G. Hahn, G. MacGillivray, Graph homomorphisms: computational aspects and infinite graphs, 2006
- P. Hell, J. Nesetril, Graph Homomorphisms, OUP, 2004
- P.Hell, From graph colouring to constraint satisfaction: there and back again, 2006
- P. Hell, Algorithmic aspects of graph homomorphisms, Surveys in Combinatorics 2003, LMS Lecture Note Series 307

Sources

- A. Atserias, On digraph coloring problems and treewidth duality, LICS 2005
- J. Bang-Jensen, P. Hell, On the effect of two cycles on the complexity of colouring, DAM 26 (1990)
- J. Bang Jensen, G. MacGillivray, On the complexity of colouring by digraphs with at most one directed cycle, Ars Combin. 35A (1993)
- J. Bang Jensen, P. Hell, G. MacGillivray, Hereditarily hard H-colouring problems, DM 138 (1995)
- J. Bang Jensen, P. Hell, G. MacGillivray, On the complexity of colouring by superdigraphs of bipartite graphs, DM 109 (1992)
- A. Bulatov, Tractable conservative constraint satisfaction problems, ACM TCL, to appear
- A. Bulatov, H-coloring dichotomy revisited, manuscript 2005
- A. Bulatov, A. Krokhin, P. Jeavons, Constraint satisfaction problems and finite algebras, ICALP 2000

- G. Bloom, S. Burr, On unavoidable digraphs in orientations of graphs, JGT 11 (1987)
- R. Brewster, T. Feder, P. Hell, J. Huang, G. MacGillivray, NUF's, 2004
- D. Cohen, M. Cooper, P. Jeavons, A. Krokhin, A maximal tractable class of soft constraints, JAIR 22 (2004)G. Bloom, S. Burr, On unavoidable digraphs in orientations of graphs, JGT 11 (1987)
- R. Brewster, T. Feder, P. Hell, J. Huang, G. MacGillivray, NUF's, 2004
- D. Cohen, M. Cooper, P. Jeavons, A. Krokhin, A maximal tractable class of soft constraints, JAIR 22 (2004)T. Feder, P. Hell, J. Huang, Biarc graphs and the complexity of list homomorphisms, JGT 42 (2003)
- T. Feder, P. Hell, List homomorphisms to reflexive graphs, JCT B 72 (1998)
- T. Feder, P. Hell, J. Huang, List homomorphisms to reflexive digraphs, manuscript 2003
- T. Feder, M. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction, SICOMP 28 (1998)
- G. Gutin, A. Rafei, P. Hell, A. Yeo, Minimum cost homomorphisms, manuscript 2005

- W. Gutjahr, E. Welzl, G. Woeginger, Polynomial graph-colorings, DAM 35 (1992)
- P. Hell, J. Huang, Interval bigraphs and circular arc graphs, JGT 46 (2004)
- P. Hell, J. Nesetril, On the complexity of H-colouring, JCT B 48 (1990)
- P. Hell, J. Nesetril, X. Zhu, Duality and polynomial testing of tree homomorphisms, TAMS 348 (1996)
- P. Hell, J. Nesetril, X. Zhu, Complexity of tree homomorphisms, DAM 70 (1996)
- P. Hell, I. Rival, Retracts in graphs, Canad. J. Math. 39 (1987)
- P. Hell, X. Zhu, Homomorphisms to oriented paths, DM 132 (1994)
- E.M. Jawhari, D. Misane, M. Pouzet, Contemp. Math. 57 (1986)
- J. Nesetril, C. Tardif, Duality theorems for finite structures, JCT B 80 (2000)
- B. Rossman, Existential positive types and preservation under homomorphisms, LICS 2005