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a schedule of exam periods so that 
conflicting courses are scheduled 
at compatible times
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at compatible times
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General CSP’sGeneral CSP’s

• Given a vocabulary (finite number 
of relation symbols, each of finite 
arity)

• and two structures G and H over the 
vocabulary, with ground sets V(G)
and V(H), and interpretations of all 
the relation symbols, as relations 
over the set of the stated arities
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•At most three chemistry exams in one day
(R(G) and R(H) quaternary relations)
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(R(G) and R(H) unary relations)
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• G changes every semester
• H tends to stay constant for a while

The Constraint Satisfaction Problem
for a fixed a structure H:

CSP(H)

• Given a structure G (same vocabulary as H)

• Is there a homomorphism of G to H ?
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For each H, the problem CSP(H) is in P
or is NP-complete
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CSP(H) is called the H-colouring problem

• graphs … E(G), E(H) symmetric
• digraphs … unrestricted interpretations

Also denoted COL(H) and HOM(H)
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• H has a loop (some vv ∈ E(H))
All G admit a homomorphism to H

• H is bipartite
(V(H) = two independent sets)
Thus we may assume H = K2 (core)
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Thus we may assume H = K2 (core)
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Deciding if a 2-colouring 
exists
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exists

Algorithm succeeds

No odd cycles 2-colouring exists



G has a 2-colouring
(is bipartite)

G has a 2-colouring
(is bipartite)

if and only if it contains no inducedif and only if it contains no induced

3
5 7   . . .



NP-complete casesNP-complete cases

• Cliques Kn with n ≥ 3
• Pentagon C5

• Cliques Kn with n ≥ 3
• Pentagon C5
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Enough to prove forEnough to prove for

…

…

[HN] 1988
[B] 2005 (Monotonicity)



Digraph H-colouringDigraph H-colouring

• Dichotomy not known

• No classification in terms of digraph 
properties proposed

• Each CSP(H) is polynomially equivalent to 
some digraph H’-colouring problem [FV]
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NP-complete In P
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CSP(H) as H’-COLCSP(H) as H’-COL

• We may assume that H is a core

• We may replace CSP(H) by RET(H)

(H is a substructure of G and we seek a 
homomorphism of G to H that keeps 
vertices of H fixed)
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vertices of H fixed)



RET(H)RET(H)

H



RET(H)RET(H)

H

G
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G

Retraction impossible



RET(H)RET(H)

a

a

a

b

b

a a
H

b b

G

Retraction impossible, but homomorphism exists



RET(H)RET(H)

If H is a core then CSP(H) and RET(H)
are polynomially equivalent
If H is a core then CSP(H) and RET(H)
are polynomially equivalent



Each CSP(H) is polynomially equivalent to
some digraph H’-colouring problem

• Each RET(H) is polynomially equivalent to 
some bipartite graph retraction problem

• Each bipartite graph retraction problem 
is polynomially equivalent to some 
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some bipartite graph retraction problem
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From bip RET(H) to digraph 
H’-colouring
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NP-completenessNP-completeness

Reduce ONE-IN-THREE-SATReduce ONE-IN-THREE-SAT
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(and it is)

is in P iff is

(and it is)
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if and only if

G contains no cycle of net length ≠0(mod k)

if and only if

G contains no cycle of net length ≠0(mod k)

0 1

2

…

k
Ck

[BB]



Monotonicity failsMonotonicity fails

NP-complete In P

(Polynomial extension)
(irreflexive)

Not hereditarily hard
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undirected dichotomy

Another perspective on the 
undirected dichotomy

• Codd is hereditarily hard

enough to show

• C3 is hereditarily hard

• Codd is hereditarily hard

enough to show

• C3 is hereditarily hard



Two kinds of difficultyTwo kinds of difficulty

• `Few’ directed cycles
– monotonicity fails (oscilation)
– unclear distinctions
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– monotonicity fails (oscilation)
– unclear distinctions

In P NP-complete
[HNZ] [GWW]
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Two kinds of difficultyTwo kinds of difficulty

• `Many’ directed cycles• `Many’ directed cycles

Hereditarily hard

(if H contains H0 and H has no loops, 
then CSP(H) is NP-complete)

H0

[BHM]



Classification Conjecture   [BHM]Classification Conjecture   [BHM]

• If H* (H with sources and sinks recursively removed)
admits a homomorphism to some Ck (k>1)
then H has a polynomial extension

(`few cycles’)

• Otherwise, H is hereditarily hard
(`many cycles’)

• If H* (H with sources and sinks recursively removed)
admits a homomorphism to some Ck (k>1)
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• Otherwise, H is hereditarily hard
(`many cycles’)
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True for partitionable graphsTrue for partitionable graphs

If the bi-directed edges of H form a 
nonbipartite graph, then CSP(H) is NPc
If the bi-directed edges of H form a 
nonbipartite graph, then CSP(H) is NPc
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• Each v incident with a bi-directed edge
• Bi-directed edges between parts
• Uni-directed edges within parts

• Each v incident with a bi-directed edge
• Bi-directed edges between parts
• Uni-directed edges within parts
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G has a Ck-colouringG has a Ck-colouring

if and only if 

there is no homomorphism to G from a 
cycle of net length ≠0 (mod k)

if and only if 
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cycle of net length ≠0 (mod k)

… (obstacles are oriented cycles)



G has a Pk-colouringG has a Pk-colouring

if and only if 

there is no homomorphism to G from a 
path of net length > k [BB]

if and only if 
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G has a P-colouringG has a P-colouring

if and only if 

there is no homomorphism to G from a 
path P’ which is bad

(does not admit a homomorphism to P)

if and only if 

there is no homomorphism to G from a 
path P’ which is bad

(does not admit a homomorphism to P)

(obstacles are oriented paths)

[HZ] (cf also [GWW])
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(obstacles are oriented paths)

… Tk



What algorithms?What algorithms?

• H has tree duality

∃ a family ℑH of oriented trees 
such that G admits an H-colouring
iff there is no homomorphism from
a T ∈ ℑH to G

(obstacles are oriented trees)
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• H has treewidth k duality

∃ a family ℑH of digraphs of treewidth k
such that G admits an H-colouring
iff there is no homomorphism from
a T ∈ ℑH to G

(obstacles are digraphs of small treewidth)
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such that G admits an H-colouring
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(obstacles are digraphs of small treewidth)



Bounded treewidth dualityBounded treewidth duality

∃ k such that obstacles are graphs of 
treewidth k

If H has bounded treewidth duality,
then CSP(H) is in P
[HNZ] 
[FV] width, datalog

∃ k such that obstacles are graphs of 
treewidth k

If H has bounded treewidth duality,
then CSP(H) is in P
[HNZ] 
[FV] width, datalog
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• Treewidth two duality 

(obstacles are graphs of treewidth 2)
• Bounded treewidth duality

• There exist H without bounded treewidth
duality but with CSP(H) in P [A]
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Finitary dualitiesFinitary dualities

• If H has finitary duality, then H has tree 
duality   [NT]

• This happens if and only if 
H-colourability is first-order definable   [A]

Also follows from [R]

• If H has finitary duality, then H has tree 
duality   [NT]

• This happens if and only if 
H-colourability is first-order definable   [A]

Also follows from [R]



Add unary relationsAdd unary relations
(still graph theory)

Fix a graph H with k vertices.

Vocabulary has one binary relation 
name E and a set of unary relation 
names  U1, U2,…, U2k-1

Interpret H with Ui(H) the subsets of V(H)
(conservative structure H)

(still graph theory)
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Vocabulary has one binary relation 
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Interpret H with Ui(H) the subsets of V(H)
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List homomorphism problemList homomorphism problem
LHOM(H) CSP(H*)

Fixed graph H

Given an input graph G, with lists 
L(v) ⊆ V(H), v ∈ V(G)

Is there a homomorphism f of G to H 
with all f(v) ∈ L(v) ?

LHOM(H) CSP(H*)

Fixed graph H

Given an input graph G, with lists 
L(v) ⊆ V(H), v ∈ V(G)

Is there a homomorphism f of G to H 
with all f(v) ∈ L(v) ?



RET(H)RET(H)

LHOM(H) restricted to inputs G containing 
H with L(v)={v} for all vertices v of H
LHOM(H) restricted to inputs G containing 
H with L(v)={v} for all vertices v of H

u u

v v

w w x yx y

u,v,w,x,y u,v,w,x,yu,v,w,x,y



List homomorphism problemList homomorphism problem

Assume E(H) is reflexive

• If H is an interval graph, then
LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete
[FH]

Assume E(H) is reflexive

• If H is an interval graph, then
LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete
[FH]
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a
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dc e

b a

conservative majority polymorphisms

m(a,b,c) = a, b, or c



Structural characterizationStructural characterization

• H is an interval graph if and only if it 
does not have an induced cycle of 
length >3, or an asteroidal triple of 
vertices [LB]

• H is an interval graph if and only if it 
does not have an induced cycle of 
length >3, or an asteroidal triple of 
vertices [LB]



List homomorphism problemList homomorphism problem

Assume E(H) is reflexive

• If H is an interval graph, then
LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete
[FH]

Assume E(H) is reflexive

• If H is an interval graph, then
LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete
[FH]



Conservative majority polymorphismsConservative majority polymorphisms

• Reflexive interval graphs have them

• They imply polynomiality of LHOM(H)

• LHOM(H) is NP-complete for other 
reflexive graphs

• Reflexive interval graphs have them

• They imply polynomiality of LHOM(H)

• LHOM(H) is NP-complete for other 
reflexive graphs
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A reflexive graph H has a conservative 
majority function iff it is an interval graph

[BFHHM]
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A reflexive graph H has a majority function 
if and only if it is a retract of a product of 
interval graphs [JMP] [HR]

A reflexive graph H has a conservative 
majority function iff it is an interval graph

[BFHHM]

A reflexive graph H has a majority function 
if and only if it is a retract of a product of 
interval graphs [JMP] [HR]
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every G which contains H as an 
isometric subgraph iff H has a 
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• A reflexive graph H is a retract of 
every G which contains H as an 
isometric subgraph iff H has a 
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• But RET(H) is polynomial in other 
cases

• A reflexive graph H is a retract of 
every G which contains H as an 
isometric subgraph iff H has a 
majority polymorphism [JMP] [HR]

• But RET(H) is polynomial in other 
cases



List homomorphism problemList homomorphism problem

In general

• If H is a bi-arc graph, then LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete
[FHH]

G has cons. majority iff it is a bi-arc graph
[BFHHM]

In general

• If H is a bi-arc graph, then LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete
[FHH]

G has cons. majority iff it is a bi-arc graph
[BFHHM]



List homomorphism problemList homomorphism problem

In general

• If H is a bi-arc graph, then LHOM(H) is in P

• Otherwise, LHOM(H) is NP-complete
[FHH]

G has cons. near un. iff it is a bi-arc graph
[BFHHM]

In general

• If H is a bi-arc graph, then LHOM(H) is in P
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• If each component of H is a reflexive 
interval graph or an irreflexive interval 
bigraph, then MCHOM(H) ∈ P 

[GHRY,CCJK]
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