
Refining Schaefer’s Theorem

Heribert Vollmer

Institut für Theoretische Informatik

Universität Hannover

Joint work with: E. Allender, M. Bauland, N. Immerman, H. Schnoor



Boolean Constraint Satisfaction Problems

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Γ – a finite set of Boolean constraint relations

CSP(Γ):

Input: a propositional Γ-formula F in CNF

Question: Is F satisfiable?

Basic Goal: Determine the computational complexity of CSP(Γ) as

a function of Γ!

Refining Schaefer’s Theorem



Boolean Constraint Satisfaction Problems

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Γ – a finite set of Boolean constraint relations

CSP(Γ):

Input: a propositional Γ-formula F in CNF

Question: Is F satisfiable?

Basic Goal: Determine the computational complexity of CSP(Γ) as

a function of Γ!

Refining Schaefer’s Theorem



The Galois Connection

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Pol(Γ) is the set of all polymorphisms of Γ, i.e., the set of all

Boolean functions that preserve every relation in Γ.

I Pol(Γ) is a clone, i.e., a set of Boolean functions that contains

all projections and is closed under composition (Post).

Inv(B) is the set of all invariants of B, i.e., the set of all Boolean

relations that are preserved by every function in B.

I Inv(B) is a relational clone, i.e., a set of Boolean relations that

contains the equality relation and is closed under primitive

positive definitions, i.e., if φ is an Inv(B)-formula and

R(x1, . . . , xn) ≡ ∃y1 . . . y` φ(x1, . . . , xn, y1, . . . , y`) then

R ∈ Inv(B).

Refining Schaefer’s Theorem



The Galois Connection

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Pol(Γ) is the set of all polymorphisms of Γ, i.e., the set of all

Boolean functions that preserve every relation in Γ.

I Pol(Γ) is a clone, i.e., a set of Boolean functions that contains

all projections and is closed under composition (Post).

Inv(B) is the set of all invariants of B, i.e., the set of all Boolean

relations that are preserved by every function in B.

I Inv(B) is a relational clone, i.e., a set of Boolean relations that

contains the equality relation and is closed under primitive

positive definitions, i.e., if φ is an Inv(B)-formula and

R(x1, . . . , xn) ≡ ∃y1 . . . y` φ(x1, . . . , xn, y1, . . . , y`) then

R ∈ Inv(B).

Refining Schaefer’s Theorem



Schaefer’s Theorem

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let 〈Γ〉 be the relational clone generated by Γ.

Inv
(
Pol(Γ)

)
= 〈Γ〉 (“expressive power”of Γ).

I If 〈Γ〉 = 〈Γ′〉, then CSP(Γ) ≡log
m CSP(Γ′),

i.e., the complexity of CSP(Γ) depends only on Pol(Γ).

We only have to study co-clones in order to obtain a full

classification.

I If 〈Γ〉 ⊇ Inv
(
N2

)
then CSP(Γ) is NP-complete, otherwise

CSP(Γ) is in P [Schaefer].

Refining Schaefer’s Theorem



Schaefer’s Theorem

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let 〈Γ〉 be the relational clone generated by Γ.

Inv
(
Pol(Γ)

)
= 〈Γ〉 (“expressive power”of Γ).

I If 〈Γ〉 = 〈Γ′〉, then CSP(Γ) ≡log
m CSP(Γ′),

i.e., the complexity of CSP(Γ) depends only on Pol(Γ).

We only have to study co-clones in order to obtain a full

classification.

I If 〈Γ〉 ⊇ Inv
(
N2

)
then CSP(Γ) is NP-complete, otherwise

CSP(Γ) is in P [Schaefer].

Refining Schaefer’s Theorem



Schaefer’s Theorem

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let 〈Γ〉 be the relational clone generated by Γ.

Inv
(
Pol(Γ)

)
= 〈Γ〉 (“expressive power”of Γ).

I If 〈Γ〉 = 〈Γ′〉, then CSP(Γ) ≡log
m CSP(Γ′),

i.e., the complexity of CSP(Γ) depends only on Pol(Γ).

We only have to study co-clones in order to obtain a full

classification.

I If 〈Γ〉 ⊇ Inv
(
N2

)
then CSP(Γ) is NP-complete, otherwise

CSP(Γ) is in P [Schaefer].

Refining Schaefer’s Theorem



Schaefer’s Theorem

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

N2

I2

Refining Schaefer’s Theorem



Towards a Finer Classification

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Goal: Determine logspace-degree of CSP(Γ) for every constraint

language Γ!

Examples:

I If Γ ⊆ Inv(L2), then CSP(Γ) ∈ ⊕L.

(Inv(L2) = Inv
(
{x ⊕ y ⊕ z}

)
: “affine”constraints)

I If 〈Γ〉 ⊇ Inv(L3) then CSP(Γ) is hard for ⊕L.

(Inv(L3) = 〈x ⊕ y ⊕ z ⊕ w〉, Reduction from circuit value

problem for ⊕-circuits)

Thus:

I If Inv(L3) ⊆ 〈Γ〉 ⊆ Inv(L2), then CSP(Γ) is ⊕L-complete.

Refining Schaefer’s Theorem



Towards a Finer Classification

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Goal: Determine logspace-degree of CSP(Γ) for every constraint

language Γ!

Examples:

I If Γ ⊆ Inv(L2), then CSP(Γ) ∈ ⊕L.

(Inv(L2) = Inv
(
{x ⊕ y ⊕ z}

)
: “affine”constraints)

I If 〈Γ〉 ⊇ Inv(L3) then CSP(Γ) is hard for ⊕L.

(Inv(L3) = 〈x ⊕ y ⊕ z ⊕ w〉, Reduction from circuit value

problem for ⊕-circuits)

Thus:

I If Inv(L3) ⊆ 〈Γ〉 ⊆ Inv(L2), then CSP(Γ) is ⊕L-complete.

Refining Schaefer’s Theorem



Towards a Finer Classification

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Goal: Determine logspace-degree of CSP(Γ) for every constraint

language Γ!

Examples:

I If Γ ⊆ Inv(L2), then CSP(Γ) ∈ ⊕L.

(Inv(L2) = Inv
(
{x ⊕ y ⊕ z}

)
: “affine”constraints)

I If 〈Γ〉 ⊇ Inv(L3) then CSP(Γ) is hard for ⊕L.

(Inv(L3) = 〈x ⊕ y ⊕ z ⊕ w〉, Reduction from circuit value

problem for ⊕-circuits)

Thus:

I If Inv(L3) ⊆ 〈Γ〉 ⊆ Inv(L2), then CSP(Γ) is ⊕L-complete.

Refining Schaefer’s Theorem



Towards a Finer Classification

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Goal: Determine logspace-degree of CSP(Γ) for every constraint

language Γ!

Examples:

I If Γ ⊆ Inv(L2), then CSP(Γ) ∈ ⊕L.

(Inv(L2) = Inv
(
{x ⊕ y ⊕ z}

)
: “affine”constraints)

I If 〈Γ〉 ⊇ Inv(L3) then CSP(Γ) is hard for ⊕L.

(Inv(L3) = 〈x ⊕ y ⊕ z ⊕ w〉, Reduction from circuit value

problem for ⊕-circuits)

Thus:

I If Inv(L3) ⊆ 〈Γ〉 ⊆ Inv(L2), then CSP(Γ) is ⊕L-complete.

Refining Schaefer’s Theorem



Towards a Finer Classification

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

I If I0 ⊆ Pol(Γ) or I1 ⊆ Pol(Γ), then every constraint formula

over Γ is satisfiable, and therefore CSP(Γ) is trivial.

I If Pol(Γ) ∈ {I2,N2}, then CSP(Γ) is NP-complete.

I If Pol(Γ) ∈ {V2,E2}, then CSP(Γ) is P-complete.

I If Pol(Γ) ∈ {L2, L3}, then CSP(Γ) is ⊕L-complete.

I If S00 ⊆ Pol(Γ) ⊆ S2
00 or S10 ⊆ Pol(Γ) ⊆ S2

10 or

Pol(Γ) ∈ {D2,M2}, then CSP(Γ) is NL-complete.

I If Pol(Γ) ∈ {D1,D} or S02 ⊆ Pol(Γ) ⊆ R2 or

S12 ⊆ Pol(Γ) ⊆ R2, then CSP(Γ) is in L.

Refining Schaefer’s Theorem



Classification of CSP-Satisfiability

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

NP complete

P complete

NL complete

⊕L complete

L complete

L complete / coNLOGTIME

Refining Schaefer’s Theorem



If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤log
m CSP(Γ)

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let F be a Γ′-formula. Construct F ′ as follows:

I Replace every constraint from 〈Γ〉 by its defining existentially

quantified
(
Γ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Question: Stricter reductions?

Refining Schaefer’s Theorem



If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤log
m CSP(Γ)

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let F be a Γ′-formula. Construct F ′ as follows:

I Replace every constraint from 〈Γ〉 by its defining existentially

quantified
(
Γ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Question: Stricter reductions?

Refining Schaefer’s Theorem



If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤log
m CSP(Γ)

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let F be a Γ′-formula. Construct F ′ as follows:

I Replace every constraint from 〈Γ〉 by its defining existentially

quantified
(
Γ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Question: Stricter reductions?

Refining Schaefer’s Theorem



If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤log
m CSP(Γ)

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let F be a Γ′-formula. Construct F ′ as follows:

I Replace every constraint from 〈Γ〉 by its defining existentially

quantified
(
Γ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Question: Stricter reductions?

Refining Schaefer’s Theorem



If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤log
m CSP(Γ)

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let F be a Γ′-formula. Construct F ′ as follows:

I Replace every constraint from 〈Γ〉 by its defining existentially

quantified
(
Γ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Question: Stricter reductions?

Refining Schaefer’s Theorem



If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤log
m CSP(Γ)

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let F be a Γ′-formula. Construct F ′ as follows:

I Replace every constraint from 〈Γ〉 by its defining existentially

quantified
(
Γ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Question: Stricter reductions?

Refining Schaefer’s Theorem



Within LOGSPACE

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Example 1: Γ1 = {x , x}:
A Γ1-formula F is unsatisfiable iff it contains clauses x and x for

some x , hence CSP(Γ1) ∈ coNLOGTIME.

Example 2: Γ2 = {x , x ,=}:
Then CSP(Γ2) can express undirected graph reachability as follows:

Given G , s, t, construct F to consist of clauses s, t, and u = v for

every edge (u, v) ∈ G .

Then t is reachable in G from s iff F is unsatisfiable, hence

CSP(Γ2) is hard for L (under AC0-reductions/FO-reductions).

Thus: Provably different complexity: CSP(Γ2) 6≤AC0

m CSP(Γ1),

but Pol(Γ1) = Pol(Γ2) (= R2).

Refining Schaefer’s Theorem



Within LOGSPACE

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Example 1: Γ1 = {x , x}:
A Γ1-formula F is unsatisfiable iff it contains clauses x and x for

some x , hence CSP(Γ1) ∈ coNLOGTIME.

Example 2: Γ2 = {x , x ,=}:
Then CSP(Γ2) can express undirected graph reachability as follows:

Given G , s, t, construct F to consist of clauses s, t, and u = v for

every edge (u, v) ∈ G .

Then t is reachable in G from s iff F is unsatisfiable,

hence

CSP(Γ2) is hard for L (under AC0-reductions/FO-reductions).

Thus: Provably different complexity: CSP(Γ2) 6≤AC0

m CSP(Γ1),

but Pol(Γ1) = Pol(Γ2) (= R2).

Refining Schaefer’s Theorem



Within LOGSPACE

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Example 1: Γ1 = {x , x}:
A Γ1-formula F is unsatisfiable iff it contains clauses x and x for

some x , hence CSP(Γ1) ∈ coNLOGTIME.

Example 2: Γ2 = {x , x ,=}:
Then CSP(Γ2) can express undirected graph reachability as follows:

Given G , s, t, construct F to consist of clauses s, t, and u = v for

every edge (u, v) ∈ G .

Then t is reachable in G from s iff F is unsatisfiable, hence

CSP(Γ2) is hard for L (under AC0-reductions/FO-reductions).

Thus: Provably different complexity: CSP(Γ2) 6≤AC0

m CSP(Γ1),

but Pol(Γ1) = Pol(Γ2) (= R2).

Refining Schaefer’s Theorem



Within LOGSPACE

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Example 1: Γ1 = {x , x}:
A Γ1-formula F is unsatisfiable iff it contains clauses x and x for

some x , hence CSP(Γ1) ∈ coNLOGTIME.

Example 2: Γ2 = {x , x ,=}:
Then CSP(Γ2) can express undirected graph reachability as follows:

Given G , s, t, construct F to consist of clauses s, t, and u = v for

every edge (u, v) ∈ G .

Then t is reachable in G from s iff F is unsatisfiable, hence

CSP(Γ2) is hard for L (under AC0-reductions/FO-reductions).

Thus: Provably different complexity: CSP(Γ2) 6≤AC0

m CSP(Γ1),

but Pol(Γ1) = Pol(Γ2) (= R2).

Refining Schaefer’s Theorem



The Equality Constraint

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

I If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤AC0

m CSP
(
Γ ∪ {=}

)
≤log

m CSP(Γ).

Say that Γ can express equality if equality constraint can be

defined by an existentially quantified Γ-formula.

I If Γ can express equality then CSP
(
Γ ∪ {=}

)
≤AC0

m CSP(Γ).

There is an algorithm that detects if Γ can express equality.

I If Γ can express equality then CSP(Γ) is hard for L, otherwise

CSP(Γ) ∈ coNLOGTIME.

Refining Schaefer’s Theorem



The Equality Constraint

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

I If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤AC0

m CSP
(
Γ ∪ {=}

)
≤log

m CSP(Γ).

Say that Γ can express equality if equality constraint can be

defined by an existentially quantified Γ-formula.

I If Γ can express equality then CSP
(
Γ ∪ {=}

)
≤AC0

m CSP(Γ).

There is an algorithm that detects if Γ can express equality.

I If Γ can express equality then CSP(Γ) is hard for L, otherwise

CSP(Γ) ∈ coNLOGTIME.

Refining Schaefer’s Theorem



The Equality Constraint

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

I If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤AC0

m CSP
(
Γ ∪ {=}

)
≤log

m CSP(Γ).

Say that Γ can express equality if equality constraint can be

defined by an existentially quantified Γ-formula.

I If Γ can express equality then CSP
(
Γ ∪ {=}

)
≤AC0

m CSP(Γ).

There is an algorithm that detects if Γ can express equality.

I If Γ can express equality then CSP(Γ) is hard for L, otherwise

CSP(Γ) ∈ coNLOGTIME.

Refining Schaefer’s Theorem



LOGSPACE-Cases

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

I If Pol(Γ) ∈ {D1,D}, then CSP(Γ) is L-complete.

I If S02 ⊆ Pol(Γ) ⊆ R2 or S12 ⊆ Pol(Γ) ⊆ R2, then either CSP(Γ)

is in coNLOGTIME, or CSP(Γ) is L-complete. There is an

algorithm deciding which case occurs.

Refining Schaefer’s Theorem



Classification of CSP-Satisfiability

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

NP complete

P complete

NL complete

⊕L complete

L complete

L complete / coNLOGTIME

Refining Schaefer’s Theorem



The Power of ⊕L

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Post’s lattice: L2 ⊆ R2, hence Inv(R2) ⊆ Inv(L2).

Hence:

I Undirected graph accessibility is in ⊕L, in other words:

SL ⊆ ⊕L [Karchmer, Wigderson, 1993].

(Today we even know SL ⊆ L.)

Refining Schaefer’s Theorem



The Power of ⊕L

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Post’s lattice: L2 ⊆ R2, hence Inv(R2) ⊆ Inv(L2).

Hence:

I Undirected graph accessibility is in ⊕L, in other words:

SL ⊆ ⊕L [Karchmer, Wigderson, 1993].

(Today we even know SL ⊆ L.)

Refining Schaefer’s Theorem



Isomorphism

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Myhill’s Isomorphism Theorem:

I If A ≤1 B and B ≤1 A then A and B are isomorphic via a

recursive bijection.

In the polynomial time setting:

Isomorphism conjecture/Berman-Hartmanis-Conjecture:

I If A ≤p
m B and B ≤p

m A then A and B are isomorphic via a

polynomial-time computable bijection.

Implies P 6= NP.

Refining Schaefer’s Theorem



Isomorphism

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Myhill’s Isomorphism Theorem:

I If A ≤1 B and B ≤1 A then A and B are isomorphic via a

recursive bijection.

In the polynomial time setting:

Isomorphism conjecture/Berman-Hartmanis-Conjecture:

I If A ≤p
m B and B ≤p

m A then A and B are isomorphic via a

polynomial-time computable bijection.

Implies P 6= NP.

Refining Schaefer’s Theorem



Isomorphism

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Isomorphism Theorem holds for ≤AC0

m -reducibility:

I For every constraint language Γ, CSP(Γ) is AC0-isomorphic

either to 0Σ? or to the standard complete set for one of the

complexity classes NP, P, ⊕L, NL, or L.

There are only six different CSP-problems!

Refining Schaefer’s Theorem



Isomorphism

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Isomorphism Theorem holds for ≤AC0

m -reducibility:

I For every constraint language Γ, CSP(Γ) is AC0-isomorphic

either to 0Σ? or to the standard complete set for one of the

complexity classes NP, P, ⊕L, NL, or L.

There are only six different CSP-problems!

Refining Schaefer’s Theorem



Why study Boolean CSP?

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Provide a reasonably accurate bird’s eye view of complexity theory

[Creignou, Khanna, Sudan]:

– inclusions among complexity classes

– relations among reducibility notions

– structure of complete problems

– playground for the study of many issues related to counting

classes

– CSP isomorphism problems yield good candidates for

“intermediate problems”

Refining Schaefer’s Theorem



Why study Boolean CSP?

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Provide a reasonably accurate bird’s eye view of complexity theory

[Creignou, Khanna, Sudan]:

– inclusions among complexity classes

– relations among reducibility notions

– structure of complete problems

– playground for the study of many issues related to counting

classes

– CSP isomorphism problems yield good candidates for

“intermediate problems”

Refining Schaefer’s Theorem



References

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

The classification presented in this talk is given in

I E. Allender, M. Bauland, N. Immerman, H. Schnoor, H.

Vollmer. The complexity of satisfiability problems: refining

Schaefer’s theorem; Proceedings 30th Mathematical

Foundations of Computer Science, Springer Lecture Notes in

Computer Science Vol. 3618, pp. 71–82, 2005.

Refining Schaefer’s Theorem



References

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

More on counting for Boolean CSP:

I M. Bauland, E. Böhler, N. Creignou, S. Reith, H. Schnoor, H.

Vollmer. Quantified constraints: the complexity of decision and

counting for bounded alternation; Electronic Colloqium on

Computational Complexity, TR05-024, 2005.

More on isomorphism for Boolean CSP:

I E. Böhler, E. Hemaspaandra, S. Reith, H. Vollmer. The

complexity of Boolean constraint isomorphism; Proceedings

21st Symposium on Theoretical Aspects of Computer Science,

Springer Lecture Notes in Computer Science Vol. 2996,

pp. 164–175, 2004.

Refining Schaefer’s Theorem



Open Questions for Boolean CSP

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

– Fine classification for Boolean counting problem

– Infinite constraint languages?

– Uniform Boolean CSP?

Refining Schaefer’s Theorem


	CSP
	Galois
	Schaefer
	Classification I
	Logspace
	Equality
	Classification II
	Applications
	Résumé

