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Boolean Constraint Satisfaction Problems

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Γ – a finite set of Boolean constraint relations

CSP(Γ):

Input: a propositional Γ-formula F in CNF

Question: Is F satisfiable?

Basic Goal: Determine the computational complexity of CSP(Γ) as

a function of Γ!
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The Galois Connection
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Pol(Γ) is the set of all polymorphisms of Γ, i.e., the set of all

Boolean functions that preserve every relation in Γ.

I Pol(Γ) is a clone, i.e., a set of Boolean functions that contains

all projections and is closed under composition (Post).

Inv(B) is the set of all invariants of B, i.e., the set of all Boolean

relations that are preserved by every function in B.

I Inv(B) is a relational clone, i.e., a set of Boolean relations that

contains the equality relation and is closed under primitive

positive definitions, i.e., if φ is an Inv(B)-formula and

R(x1, . . . , xn) ≡ ∃y1 . . . y` φ(x1, . . . , xn, y1, . . . , y`) then

R ∈ Inv(B).
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Let 〈Γ〉 be the relational clone generated by Γ.

Inv
(
Pol(Γ)

)
= 〈Γ〉 (“expressive power”of Γ).

I If 〈Γ〉 = 〈Γ′〉, then CSP(Γ) ≡log
m CSP(Γ′),

i.e., the complexity of CSP(Γ) depends only on Pol(Γ).

We only have to study co-clones in order to obtain a full

classification.

I If 〈Γ〉 ⊇ Inv
(
N2

)
then CSP(Γ) is NP-complete, otherwise

CSP(Γ) is in P [Schaefer].
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Towards a Finer Classification
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Goal: Determine logspace-degree of CSP(Γ) for every constraint

language Γ!

Examples:

I If Γ ⊆ Inv(L2), then CSP(Γ) ∈ ⊕L.

(Inv(L2) = Inv
(
{x ⊕ y ⊕ z}

)
: “affine”constraints)

I If 〈Γ〉 ⊇ Inv(L3) then CSP(Γ) is hard for ⊕L.

(Inv(L3) = 〈x ⊕ y ⊕ z ⊕ w〉, Reduction from circuit value

problem for ⊕-circuits)

Thus:

I If Inv(L3) ⊆ 〈Γ〉 ⊆ Inv(L2), then CSP(Γ) is ⊕L-complete.
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I If I0 ⊆ Pol(Γ) or I1 ⊆ Pol(Γ), then every constraint formula

over Γ is satisfiable, and therefore CSP(Γ) is trivial.

I If Pol(Γ) ∈ {I2,N2}, then CSP(Γ) is NP-complete.

I If Pol(Γ) ∈ {V2,E2}, then CSP(Γ) is P-complete.

I If Pol(Γ) ∈ {L2, L3}, then CSP(Γ) is ⊕L-complete.

I If S00 ⊆ Pol(Γ) ⊆ S2
00 or S10 ⊆ Pol(Γ) ⊆ S2

10 or

Pol(Γ) ∈ {D2,M2}, then CSP(Γ) is NL-complete.

I If Pol(Γ) ∈ {D1,D} or S02 ⊆ Pol(Γ) ⊆ R2 or

S12 ⊆ Pol(Γ) ⊆ R2, then CSP(Γ) is in L.
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If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤log
m CSP(Γ)

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé

Let F be a Γ′-formula. Construct F ′ as follows:

I Replace every constraint from 〈Γ〉 by its defining existentially

quantified
(
Γ ∪ {=}

)
-formula.

I Delete existential quantifiers.

I Delete equality clauses and replace all variables that are

connected via a chain of equality constraints by a common new

variable (undirected graph accessibility problem).

F ′ is a Γ-formula.

Then: F is satisfiable iff F ′ is satisfiable.

Question: Stricter reductions?
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Within LOGSPACE
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Example 1: Γ1 = {x , x}:
A Γ1-formula F is unsatisfiable iff it contains clauses x and x for

some x , hence CSP(Γ1) ∈ coNLOGTIME.

Example 2: Γ2 = {x , x ,=}:
Then CSP(Γ2) can express undirected graph reachability as follows:

Given G , s, t, construct F to consist of clauses s, t, and u = v for

every edge (u, v) ∈ G .

Then t is reachable in G from s iff F is unsatisfiable, hence

CSP(Γ2) is hard for L (under AC0-reductions/FO-reductions).

Thus: Provably different complexity: CSP(Γ2) 6≤AC0

m CSP(Γ1),

but Pol(Γ1) = Pol(Γ2) (= R2).

Refining Schaefer’s Theorem



Within LOGSPACE

CSP Galois Schaefer Classification I Logspace Equality Classification II Applications Résumé
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The Equality Constraint
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I If Γ′ ⊆ 〈Γ〉 then CSP(Γ′) ≤AC0

m CSP
(
Γ ∪ {=}

)
≤log

m CSP(Γ).

Say that Γ can express equality if equality constraint can be

defined by an existentially quantified Γ-formula.

I If Γ can express equality then CSP
(
Γ ∪ {=}

)
≤AC0

m CSP(Γ).

There is an algorithm that detects if Γ can express equality.

I If Γ can express equality then CSP(Γ) is hard for L, otherwise

CSP(Γ) ∈ coNLOGTIME.
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I If Pol(Γ) ∈ {D1,D}, then CSP(Γ) is L-complete.

I If S02 ⊆ Pol(Γ) ⊆ R2 or S12 ⊆ Pol(Γ) ⊆ R2, then either CSP(Γ)

is in coNLOGTIME, or CSP(Γ) is L-complete. There is an

algorithm deciding which case occurs.
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The Power of ⊕L
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Post’s lattice: L2 ⊆ R2, hence Inv(R2) ⊆ Inv(L2).

Hence:

I Undirected graph accessibility is in ⊕L, in other words:

SL ⊆ ⊕L [Karchmer, Wigderson, 1993].

(Today we even know SL ⊆ L.)
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Myhill’s Isomorphism Theorem:

I If A ≤1 B and B ≤1 A then A and B are isomorphic via a

recursive bijection.

In the polynomial time setting:

Isomorphism conjecture/Berman-Hartmanis-Conjecture:

I If A ≤p
m B and B ≤p

m A then A and B are isomorphic via a

polynomial-time computable bijection.

Implies P 6= NP.
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Isomorphism Theorem holds for ≤AC0

m -reducibility:

I For every constraint language Γ, CSP(Γ) is AC0-isomorphic

either to 0Σ? or to the standard complete set for one of the

complexity classes NP, P, ⊕L, NL, or L.

There are only six different CSP-problems!
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Why study Boolean CSP?
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Provide a reasonably accurate bird’s eye view of complexity theory

[Creignou, Khanna, Sudan]:

– inclusions among complexity classes

– relations among reducibility notions

– structure of complete problems

– playground for the study of many issues related to counting

classes

– CSP isomorphism problems yield good candidates for

“intermediate problems”
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Open Questions for Boolean CSP
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– Fine classification for Boolean counting problem

– Infinite constraint languages?

– Uniform Boolean CSP?
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