
Restrictive H-Colorings

algorithms and complexity results

Josep Dı́az Maria Serna Dimitrios M. Thilikos

Departament de Llenguatges i Sistemes Informàtics

Universitat Politécnica de Catalunya

Barcelona, Spain

Summary

2 Parameterized complexity

2 Restrictive H-coloring

2 A parameterization of restrictive H coloring

⋆ Hard cases

⋆ Fixed parameter tractable cases

• Kernels and Compactors

• Connected G

• The case with no lists

2 Open problems

Parameterization

Split the input I to a problem {I | P (I)} in two components I = (S, K) and fix the

second part ahead of the input.

Independent set

Given a graph G and an integer k

Does G have an independent set of size k?

Parameterized Independent set

Given a graph G and an integer k

Parameter: k

Does G have an independent set of size k?

Which is the well known k-Independent set problem.

For each value k we have one problem → a layer

FPT-algorithms

For a parameterized problem {I = (S, K) | P (I)} where K is the parameter.

Define an integer k = f(K) that measures the size of K.

A fixed parameter algorithm (FPT-algorithm) is an algorithm that solves a

parameterized problem in time O(f(k)nO(1)) where n is the input size and the

hidden constant is independent of both k and n.

2 When K is fixed independently of the input an FPT-algorithm takes

polynomial time.

2 f(k) can be any function.

2 A parameterized problem with a layer that is NP-hard has no FPT-algorithm

(unless P = NP).

Parameterized complexity

The goal of parameterized complexity is to study parameterizations of hard

problems versus FPT-algorithms.

In parameterized complexity a hierarchy of parameterized problems is defined

The W-hierarchy

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆ XP.

FPT = W[1] implies the existence of a O(2o(n)) for the 3-Sat

Together with a reducibility that allows to prove hardness on those classes.

Parameterized Complexity [Downey, Fellows SIAM J. Computing and TCS 1995]

Parameterized Complexity of Counting problems [Flum, Grohe FOCS 2002]

Some examples of parameterized complexity

k-coloring is NP-hard (k ≥ 3) unlikely to have a FPT-algorithm

k-independent set is W[1]-hard (but it has a O(nk+1) algorithm)

k-vertex cover is in FPT

Restrictions to list H-coloring

List H-coloring allows to model an assignment problem from task to processors,

preserving communication needs in which tasks have a list of prefered processors

Some processors might have limited load.

We can restrict the load of a vertex in H.

[DST WG 02 : Discrete Applied Mathematics 05]

Restrictive H-coloring problems

A partial weight assignment to H is a pair (C, K)

where C ⊆ V (H) and K : C → N

A restrictive list H-coloring of (G, L) and (C, K), where G is a graph, L is a

(H, G)-list, and (C, K) is a partial weight assignment, is a list H-coloring χ of

(G, L) such that for all c ∈ C, |{v | χ(v) = c}| = K(c).

2 Problems

restrictive H-coloring, restrictive #H-coloring.

Input: G, C, K

restrictive list H-coloring, restrictive list #H-coloring.

Input: G, C, K

2 Notation

HH(G, L, C, K) = set of all restrictive list H-colorings of (G, L) and (C, K)

In a similar way we can think of having at most K(c) pre-images of c ∈ C.

Restrictive H-coloring: Complexity

Restrictive H-coloring: Complexity

Problem P NP-complete/#P-complete

restrictive list H-coloring dichotomy(3) [DST DAM 05]

restrictive H-coloring dichotomy(3) [DST DAM 05]

restrictive list #H-coloring dichotomy(3) [DST DAM 05]

restrictive #H-coloring dichotomy(3) [DST DAM 05]

(3) All the connected components of H are either complete reflexive graphs or complete

irreflexive bipartite graphs.

Restrictive H-coloring: Complexity

Problem P NP-complete/#P-complete

restrictive list H-coloring dichotomy(3) [DST DAM 05]

restrictive H-coloring dichotomy(3) [DST DAM 05]

restrictive list #H-coloring dichotomy(3) [DST DAM 05]

restrictive #H-coloring dichotomy(3) [DST DAM 05]

(3) All the connected components of H are either complete reflexive graphs or complete

irreflexive bipartite graphs.

All the connected components of a graph H are either a complete reflexive graph

or a complete irreflexive bipartite graph iff H does not contain as induced

subgraphs any of the graphs

b b

a b

b b

b

a b

c

b b b

a b c
b b b b

a b c d

Hardness: Restrictive H-coloring

b b

a b

b b

b

a b

c

b b b

a b c
b b b b

a b c d

Hardness: restrictive H-coloring

b b

∞ k

b b

b

∞ ∞

∞

b b b

n
2

k + 1
n
2

b b b b

k ∞ ∞ k

Which correspond to the NP-hard problems

2 Independent set

2 3-coloring

2 Balanced separator

2 Balanced complete bipartite subgraph

As H is given, when it contains one of the above subgraphs, we put the weights in

the adequate places and the remaining vertices of H get weight 0.

Easy cases: restrictive list #H-coloring

Given a connected graph G, |HH(G, wH)| can computed in polynomial time for

k

A, wa

k

∞

B, wb

k1 k2

C, wc

∞ ∞

k1 k2

D, wd

k

E, we

∞

F, wf

Lemma: If all the connected components of H are either a complete irreflexive

bipartite graph or a complete reflexive clique, then the restrictive list #H-coloring

problem can be solved in polynomial time for connected G.

Using additionally a dynamic programming algorithm

Theorem: If all the connected components of H are either a complete irreflexive

bipartite graph or a complete reflexive clique, then the restrictive list #H-coloring

problem can be solved in polynomial time.

Parameterization:The (H,C,K)-coloring

[DST MFCS 01, DIMATIA-DIMACS 02, EUROCOMB 03, ESA 04, . . .]

Parameterization:The (H,C,K)-coloring

We consider a bounded version of restrictive H-coloring.

Input to the restrictive list H-coloring problem: G, L, C ,K

We take as parameter (C, K) the partial weight assignment on H.

But we are parameterizing a parameterized problem!

Real parameter (H, C, K) a partially weighted graph

For a partially weighted graph (H, C, K) we set

k =
∑

c∈C K(c) h = |V (H)| c = |C| s = h − c

Parameterized problems

For a partially weighted graph (H, C, K).

A list (H, C, K)-coloring of (G, L) is a

restrictive list H-coloring of (G, L) and (C, K).

Problems

2 (H, C, K)-coloring #(H, C, K)-coloring

Input: G

Parameter: k

2 list (H, C, K)-coloring list #(H, C, K)-coloring problem

Input: G, L

Parameter: k

Notation for sets of (H, C, K)-colorings H(H,C,K)(G, L) H(H,C,K)(G)

(H,C,K)-coloring

The problem captures some well known parameterized problems as particular

cases?

(H,C,K)-coloring

The problem captures some well known parameterized problems as particular

cases?

(H,C,K)-coloring

The problem captures some well known parameterized problems as particular

cases?

Any graph has a H-coloring

(H,C,K)-coloring

The problem captures some well known parameterized problems as particular

cases?

k k k

k-Independent Set k-Vertex Cover k-remove for bipartite

Complexity (H,C,K)-coloring

Problem P NP-complete/#P-complete

list (H, C, K)-coloring dichotomy(1) [DST MFCS 01, DM ??]

(H, C, K)-coloring list (H − C)-coloring in P (1) (H − C)-coloring NP-hard(2) [DST MFCS 01, DM ??]

list #(H, C, K)-coloring dichotomy(3) [DST EUROCOMB 03, DM ??]

#(H, C, K)-coloring list #(H − C)-coloring in P (3) (H, C, K) irreducible [DST EUROCOMB 03, DM ??]

(1) H − C is a bi-arc graph.

(2) H − C is bipartite or contains a loop.

(3) All the connected components of H − C are either complete reflexive graphs

or complete irreflexive bipartite graphs.

Let (H, C, K) be a partially weighted graph and let c be a vertex in C. We call (H, C,K)

c-reducible if H has an (H − {c})-coloring χ such that χ(c) ∈ V (H) − C. We say that

(H, C, K) is reducible if it is c-reducible for some c ∈ C, otherwise (H, C, K) is said to be

irreducible.

Complexity (H,C,K)-coloring

Problem P NP-complete/#P-complete

list (H, C, K)-coloring dichotomy(1) [DST MFCS 02, DM 06]

(H, C, K)-coloring list (H − C)-coloring in P (1) (H − C)-coloring NP-hard(2) [DST MFCS 02, DM 06]

list #(H, C, K)-coloring dichotomy(3) [DST EUROCOMB 03, DM 06]

#(H, C, K)-coloring list #(H − C)-coloring in P (3) (H, C, K) irreducible [DST EUROCOMB 03, DM 06]

(1) H − C is a bi-arc graph.

(2) H − C is bipartite or contains a loop.

(3) All the connected components of H − C are either complete reflexive graphs

or complete irreflexive bipartite graphs.

There are partially weighted graphs (H, C, K) and (H ′, C′, K′) for which

H − C = H ′ − C′, H − C satisfies (2), but (H, C, K)-coloring belongs to P but

(H ′, C′, K′) is NP-complete

Parameterized complexity of (H,C,K)-coloring

Some W[1]-hard cases

Theorem: The list (H, C, K)-coloring problem is W[1]-hard if there is a looped

vertex in H − C connected to a un-looped vertex in C.

Theorem: The (H, C, K)-coloring problem is W[1]-hard, in the case that

H = Kr
1 ⊕ H ′ and C = V (H ′), for some graph H ′ which contains at least one

un-looped vertex.

By a parameterized reduction from the W[1]-hard problem k-independent set.

Easy cases: with FPT-algorithm

Easy cases: with FPT-algorithm

We have to design FPT-algorithms for both decision and counting version.

Algorithmic techniques

Decision problems

Reduction to a problem Kernel

Counting problems

Compactor enumeration

Tribal graphs

A tribal graph G̃ is a graph G together with a vertex weight assignment p.

A list (H, C, K)-coloring of a tribal graph G̃ and an (H, G̃) list L is a mapping

w : V (G̃) × V (H) → {0, . . . , k} where:

1. ∀ v ∈ V (G̃) and a ∈ V (H) − C, w(v, a) ≤ 1.

2. ∀ v ∈ V (G̃) and a ∈ C, w(v, a) ≤ K(a).

3. ∀ v ∈ V (G̃), 1 ≤ ∑
a∈H w(v, a) ≤ p(v).

4. {v, u} ∈ E(G̃) =⇒ ∀ a, b ∈ H with w(v, a) > 0 and w(u, b) > 0, {a, b} ∈ E(H).

5. ∀ a ∈ C,
∑

v∈V (eG) w(v, a) = K(a),

6. ∀ v ∈ V (G̃) and a ∈ V (H) with w(v, a) > 0, a ∈ L(v).

L(c) =

L(d) =

H

L(e) =

L(f) =

L(g) =

G
S

C
L(a) =

{

{

{

{

{

{

{

}

}

}

}

}

}

}

L(b) =g

d

c

b

f

a

e

11

1 1

2

2 2

1 1

1

cb gfeda

2

3

2

4

List (H,C,K)-coloring: Connected G

Partially weighted graphs

...
C

Y

Kr
h

Simple

1-component

C
Kx,y

X

C

3-component2-component

Generic Kernel/Compactor construction

Define P to be the partition of V (G) induced by the equivalence relation,

v ∼ u iff [NG(v) = NG(u) ∧ L(v) = L(u)].

For v ∈ V (G), Pv = {u | u ∼ v} and for any Q ∈ P, we select a representative

vertex vQ ∈ Q.

R ⊆ V (G) is a closed set for P, if for any v ∈ R we have Pv ⊆ R.

Generic Kernel/Compactor construction

For v ∈ V (G), let P k
v be Pv if |Pv| ≤ k, otherwise it is a subset of Pv with k + 1

vertices. Define Ĝ = G
[
R ∪

(
∪v/∈RP k

v

)]
.

Define G̃ = (G[R ∪ {vQ | Q ∈ P and vQ /∈ R}], p), where p(v) = 1 when v ∈ R, and

p(vQ) = min{|Q|, k + s}, for s = |V (H) − C|.

R

5 2 5 54

RR

G Ĝ G̃

k = 3, s = 2

Generic Kernel/Compactor construction

Lemma: Let (H, C, K) be a partially weighted graph and R a closed set of P.

Given a graph G together with a (H, G)-list L, H(G, L) 6= ∅ iff H(Ĝ, L) 6= ∅.

Fundamental property for (Ĝ, L) to be a Kernel

Lemma: Let (H, C, K) be a partially weighted graph and R a closed set of P.

Given a graph G together with a (H, G)-list L. Then, there is a surjective function

from H(G, L) into H(G̃, L).

Fundamental property for H(G̃, L) to be a Compactor

The remaining properties follow from an adequate selection of the closed set R.

Case 1: G is connected and H − C is edgeless

The k-splitting of G is the partition (R1, R2, R3) of V (G) where

R1 is the set of vertices with degree more than k

R2 is formed by the non isolated vertices in G′ = G[V (G) − R1],

and R3 contains the isolated vertices in G′.

Lemma: Let (H, C, K) be a partially weighted graph, where H − C is edge-less.

Given a graph G, let (R1, R2, R3) be the k-splitting of G. Then R1 ∪R2 is a closed

set. Furthermore if |R1| > k or |R2| > k2 + k, then H(H,C,K)(G, L) = ∅.

k-splitting is a well know partition to obtain a kernelization for k-Independent set

[Buss, Goldsmith 93]

Case 1: G is connected and H − C is edgeless

R1 is the set of vertices with degree at least k

R2 is formed by the non isolated vertices in G′ = G[V (G) − R1],

and R3 contains the isolated vertices in G′.

Now we assume |R1| ≤ k and |R2| ≤ k2 + k

Furthermore, all the vertices in R3 have degree at most k and

For any v ∈ R3, NG(v) ⊆ R1.

Therefore:

Ĝ has size ≤ 2k + k2 + (k + 1)2k+h and

can be obtained in time O((k + h)n + 2k+h) Kernel

We also show that

2 |H(G̃, L)| = f(k, h)

2 The information provided by w ∈ H(G̃, L) is enough to compute in FPT the

size of the subset of colorings w represents.

Compactor

Case 1: The last piece

For the decision version we have to solve an instance of list (H, C, K)-coloring

when H − C has no edges.

So we have to devise a fast exact algorithm for this particular case:

So we have to devise a fast exact algorithm for this particular case:

Theorem: Let (H, C, K) be a partially weighted graph, where H − C is edge-less.

Given an input graph G, there is an algorithm that decides whether there is a list

(H, C, K)-coloring of (G, L) in O
(
2kck

(
(k + h)n + nk

√
n + k log k

))
steps.

Theorem: Let (H, C, K) be a partially weighted graph, where H − C is edge-less.

Given an input graph G and a (H, G)-list L, there is an algorithm that decides

whether there is a list (H, C, K)-coloring of (G, L) in time

O
(
(h + k)n + 2k+h + 25k/2ckp(k, h)

)
,

for some polynomial p.

Case 1: The last piece

For the counting version we apply directly the proposed schema of

enumerate-and-count taking care of the cost of constructing the compactor.

Theorem: Let (H, C, K) be a partially weight assignment, where H − C is

edge-less. Given a graph G and a (H, G)-list L then, there is an algorithm that

outputs the number of list (H, C, K)-colorings of (G, L) within time

O(f1(k)n + f2(k) log n + f3(k)).

list (H,C,K)-coloring: Connected G

...
C

Y

Kr
h

Simple

1-component

C
Kx,y

X

C

3-component2-component

Using similar ideas but with different spplittings and ad-hoc algorithms we find

FPT algorithms for the counting and decision versions of the list (H, C, K)-coloring

problem for each one of the 1,2 or 3-components for connected G.

G must be mapped to only one of the components of H

Simple (H,C,K)

...
C

Y

Kr
h

Simple

1-component

C
Kx,y

X

C

3-component2-component

(H, C, K) is simple whenever all the connected components of H

are 1, 2 or 3-components.

We can prove that List #(H, C, K)-coloring and #(H, C, K)-coloring have

FPT-algorithms for simple (H, C, K)

Plain (H,C,K)

...

Kr
k yx

C

Plain
C

x

4-component1-component

C

X

6-component

Y

a b

We present a parameterized reduction from the (H, C, K)-coloring problem for

plain (H, C, K) to the list (H, C, K)-coloring for simple (H, C, K).

The reduction is done through a series of sub-reductions that gradually transforms

a plain (H, C, K) into a particular case of simple (H, C, K).

Summary of FPT results

The following problems admit FPT-algorithms:

2 List #(H, C, K)-coloring and #(H, C, K)-coloring for simple (H, C, K).

2 List (H, C, K)-coloring, for simple (H, C, K).

2 (H, C, K)-coloring for plain (H, C, K).

The complexity of our FPT-algorithms is linear in n (thus efficient)

for counting problems time bound is O(f1(k)n + f2(k)g + f3(k) log n + f4(k))

for decision problems time bound is O(f ′
1(k)n + f ′

2(k)g + f ′
4(k)).

assuming the connected components of G are given as part of the input.

Other results

2 An algorthm to enumerate list (H, C, K)-colorings for simple (H, C, K). The

algorithm, after a preprocesing phase (FPT), requires linear additional time per

element.

2 In the case of list (H, C, K)-coloring, the hardness results can be extended to further

restrictions on the list L:

⋆ for any vertex v, H[L(v)] is connected,

connected list (H, C,K)-coloring

⋆ L(v) has either one vertex or all V (H),

one-all list (H, C,K)-coloring.

2 All the results for (H,C, K)-colorings are also true for (H, C,≤K)-colorings.

Open problems

2 Close the complexity gap for (H, C, K)-coloring and #(H, C, K)-coloring

Requires to study properties of C and K for decision.

Requires to understand the role of c-reducibility for counting.

Open problems

2 Find a tight characterization for the (H, C, K) giving raise to FPT-algorithms.

The class of simple (H, C, K) verify that H − C is a complete reflexive or a

complete irreflexive bipartite. Are there any other nice properties of H − C?

Our hardness results show that loops in C play a especial role, as by removing

them or by adding them we get cases of list (H, C, K)-coloring that are W[1]-hard.

What is the exact role?

[Reed, Smith, Vetta Operation Research Letters 04] show that the k-remove for

bipartite problem, the (H, C, K)-coloring problem where H = K1,1 ⊕ Kr
1 and

C = V (Kr
1), belongs to FPT.

We conjecture that when H = Kx,y ⊕ Kr
c with C = V (Kr

c) is the

(H, C, K)-coloring problem belongs to FPT.

