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Summary

O Parameterized complexity
O Restrictive H-coloring

O A parameterization of restrictive H coloring
* Hard cases

* Fixed parameter tractable cases

Kernels and Compactors
Connected GG
The case with no lists

O Open problems



Parameterization

Split the input I to a problem {I | P(I)} in two components I = (S, K) and fix the
second part ahead of the input.

Independent set
Given a graph GG and an integer k
Does GG have an independent set of size k7

Parameterized Independent set
Given a graph GG and an integer k
Parameter: k

Does GG have an independent set of size k7

Which is the well known k-Independent set problem.

For each value £ we have one problem — a layer



FPT-algorithms

For a parameterized problem {I = (S5, K) | P(I)} where K is the parameter.

Define an integer k = f(K) that measures the size of K.

A fixed parameter algorithm (FPT-algorithm) is an algorithm that solves a
parameterized problem in time O(f(k)n®()) where n is the input size and the

hidden constant is independent of both k£ and n.

O When K is fixed independently of the input an FPT-algorithm takes

polynomial time.

O f(k) can be any function.

O A parameterized problem with a layer that is NP-hard has no FPT-algorithm
(unless P = NP).



Parameterized complexity

The goal of parameterized complexity is to study parameterizations of hard

problems versus FPT-algorithms.

In parameterized complexity a hierarchy of parameterized problems is defined

The W-hierarchy
FPT CW[1] CW[2] C--- C W[SAT] C W[P] C XP.

FPT = W|1] implies the existence of a 0(20(”)) for the 3-SAT

Together with a reducibility that allows to prove hardness on those classes.

Parameterized Complexity [Downey, Fellows STAM J. Computing and TCS 1995
Parameterized Complexity of Counting problems [Flum, Grohe FOCS 2002



Some examples of parameterized complexity

k-coloring is NP-hard (k > 3) unlikely to have a FPT-algorithm
k-independent set is W[1]-hard (but it has a O(n**1) algorithm)

k-vertex cover is in FPT



Restrictions to list H-coloring

List H-coloring allows to model an assignment problem from task to processors,
preserving communication needs in which tasks have a list of prefered processors

Some processors might have limited load.

We can restrict the load of a vertex in H.

IDST WG 02 : Discrete Applied Mathematics 05]



Restrictive H-coloring problems

A partial weight assignment to H is a pair (C, K)
where C CV(H) and K : C — N

A restrictive list H-coloring of (G, L) and (C, K), where G is a graph, L is a
(H, G)-list, and (C, K) is a partial weight assignment, is a list H-coloring y of
(G, L) such that for all c € C, [{v | x(v) = ¢}| = K(¢).
O Problems
restrictive H-coloring, restrictive # H-coloring.
Input: G, C, K
restrictive list H-coloring, restrictive list # H-coloring.

Input: G, C, K

O Notation
H (G, L,C, K) = set of all restrictive list H-colorings of (G, L) and (C, K)

In a similar way we can think of having at most K(c) pre-images of ¢ € C.



Restrictive H-coloring: Complexity



Restrictive H-coloring: Complexity

Problem | P | NP-complete/#P-complete
restrictive list H-coloring dichotomy (%) IDST DAM 05]
restrictive H-coloring dichotomy(3) [DST DAM 05]
restrictive list # H-coloring dichotomy(® [IDST DAM 05]
restrictive # H-coloring dichotomy(®) [DST DAM 05]

(3) All the connected components of H are either complete reflexive graphs or

irreflexive bipartite graphs.

complete



Restrictive H-coloring: Complexity

Problem | P | NP-complete/#P-complete
restrictive list H-coloring dichotomy (%) IDST DAM 05]
restrictive H-coloring dichotomy(3) [DST DAM 05]
restrictive list # H-coloring dichotomy(® [IDST DAM 05]
restrictive # H-coloring dichotomy(®) [DST DAM 05]

(3) All the connected components of H are either complete reflexive graphs or complete

irreflexive bipartite graphs.

All the connected components of a graph H are either a complete reflexive graph
or a complete irreflexive bipartite graph iff H does not contain as induced

subgraphs any of the graphs
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Hardness: Restrictive H-coloring
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Hardness: restrictive H-coloring
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Which correspond to the NP-hard problems
O Independent set
O 3-coloring
O Balanced separator

O Balanced complete bipartite subgraph

As H is given, when it contains one of the above subgraphs, we put the weights in

the adequate places and the remaining vertices of H get weight O.



Easy cases: restrictive list #£ H-coloring

Given a connected graph G, |Hy(G,wy)| can computed in polynomial time for
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Lemma: If all the connected components of H are either a complete irreflexive
bipartite graph or a complete reflexive clique, then the restrictive list # H-coloring

problem can be solved in polynomial time for connected G.

Using additionally a dynamic programming algorithm

Theorem: If all the connected components of H are either a complete irreflexive
bipartite graph or a complete reflexive clique, then the restrictive list # H-coloring

problem can be solved in polynomial time.



Parameterization: The (H, C, K)-coloring

'DST MFCS 01, DIMATIA-DIMACS 02, EUROCOMB 03, ESA 04, ...]



Parameterization:The (H, C, K)-coloring

We consider a bounded version of restrictive H-coloring.

Input to the restrictive list H-coloring problem: G, L, C' K

We take as parameter (C, K) the partial weight assignment on H.

But we are parameterizing a parameterized problem!

Real parameter (H,C, K) a partially weighted graph

For a partially weighted graph (H,C, K) we set
k=> .ccK(c) h=|V(H) c=|C] s=h-c



Parameterized problems

For a partially weighted graph (H, C, K).

A list (H,C, K)-coloring of (G, L) is a
restrictive list H-coloring of (G, L) and (C, K).

Problems
O (H,C, K)-coloring #(H, C, K)-coloring
Input: G
Parameter: £
O list (H, C, K)-coloring list #(H, C, K)-coloring problem
Input: G, L

Parameter: k

Notation for sets of (H, C, K)-colorings Hm,cx)(G, L) Hm,c,x)(G)



(H,C, K)-coloring

The problem captures some well known parameterized problems as particular

cases?’



(H,C, K)-coloring

The problem captures some well known parameterized problems as particular

cases”?
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(H,C, K)-coloring

The problem captures some well known parameterized problems as particular

cases?’
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Any graph has a H-coloring



(H,C, K)-coloring

The problem captures some well known parameterized problems as particular

cases?’
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k-Independent Set k-Vertex Cover k-remove for bipartite



Complexity (H, C, K)-coloring

Problem | P NP-complete /#P-complete
list (H, C, K)-coloring dichotomy ") [DST MFCS 01, DM ?7]
(H,C, K)-coloring | list (H — C)-coloring in P (1) (H — C)-coloring NP-hard® | [DST MFCS 01, DM ?77]
list #(H, C, K)-coloring dichotomy(®) [DST EUROCOMB 03, DM ?7]
( )- [

4 (H,C, K)-coloring | list #(H — C)-coloring in P ®) | (H,C, K) irreducible DST EUROCOMB 03, DM ?7]

(1) H — C is a bi-arc graph.
(2) H — C is bipartite or contains a loop.

(3) All the connected components of H — C' are either complete reflexive graphs

or complete irreflexive bipartite graphs.

Let (H,C, K) be a partially weighted graph and let ¢ be a vertex in C. We call (H,C, K)
c-reducible if H has an (H — {c})-coloring x such that x(c) € V(H) — C. We say that
(H,C, K) is reducible if it is c-reducible for some ¢ € C', otherwise (H,C, K) is said to be

1rreducible.



Complexity (H, C, K)-coloring

Problem | P NP-complete /#P-complete
list (H, C, K)-coloring dichotomy ™) [DST MFCS 02, DM 06]
(H,C, K)-coloring | list (H — C)-coloring in P (1) (H — C)-coloring NP-hard® | [DST MFCS 02, DM 06]
list #(H, C, K)-coloring dichotomy(®) [DST EUROCOMB 03, DM 06]
#(H,C, K)-coloring | list #(H — C)-coloring in P ®) | (H, C, K) irreducible [DST EUROCOMB 03, DM 06]

(1) H — C is a bi-arc graph.

(2) H — C is bipartite or contains a loop.

(3) All the connected components of H — C' are either complete reflexive graphs

or complete irreflexive bipartite graphs.

There are partially weighted graphs (H,C, K) and (H',C’, K") for which
H—-C=H'"—-CC", H—C satisfies (2), but (H, C, K)-coloring belongs to P but

(H',C", K") is NP-complete




Parameterized complexity of (H, C', K)-coloring



Some W/1]-hard cases

Theorem: The list (H, C, K)-coloring problem is W[1]-hard if there is a looped

vertex in H — C' connected to a un-looped vertex in C.

Theorem: The (H, C, K)-coloring problem is W[1]-hard, in the case that
H=K{®H' and C = V(H"), for some graph H’ which contains at least one

un-looped vertex.

By a parameterized reduction from the W/[1]-hard problem k-independent set.



Easy cases: with FP T-algorithm



Easy cases: with FP T-algorithm

We have to design FPT-algorithms for both decision and counting version.

Algorithmic techniques

Decision problems

Reduction to a problem Kernel

Counting problems

Compactor enumeration



Technique: kernelization

Problem instance

m O

kernel

I,k)—

kernelization transformation

O(h(I’

(I k) —

brute force

) ~(I,k)ell
(L k) ¢ 10

Overall time: O(h(g(k

I'| < g(k)and k' <k

ILk)elle (I' k) ell
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Technique: Compactor construction

Problem instance compactor (a set)

| |

([, k') —= compactor generation %Cmp(]7 k') — OU.tpU_t Z |m_1<0>|
C'ecmp(1,k)

(i) cmp(I, k) can be enumerated in FPT

(ii) there is a surjective function m : solutions(/, k) — cmp(/, k) and
for any C € cmp(I, k), |[m~(C)| can be computed in FPT

solutions(/, k) cmp(/, k)

Conclusion:

=

If there exists a cmp(/, k) satisfying (i) and (ii)
then ¢(/, k) can be computed in FPT




Tribal graphs

A tribal graph G is a graph G together with a vertex weight assignment p.

A list (H, C, K)-coloring of a tribal graph G and an (H, é) list L is a mapping

w:V(G) x V(H) — {0, ..., k} where:
1. Voe V(G) and a € V(H) — C, w(v,a) < 1.

~

)
2. VveV(G) and a € C, w(v,a) < K(a).

), 1 <2 aen w(v,a) < p(v).
{v,u} € B(G) = Va,be H with w(v,a) > 0 and w(u,b) > 0, {a,b} € E(H).
VaeC, Zve\/(é) w(v,a) = K(a),

~

6. Vve V(G) and a € V(H) with w(v,a) > 0, a € L(v).

~

3. Vve V(G

ovo
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List (H, C, K)-coloring: Connected G

Partially weighted graphs

Simple

K K.,
ONe
O Oc @ Oc

X Y
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I-component 2-component 3-component




Generic Kernel/Compactor construction
Define P to be the partition of V(G) induced by the equivalence relation,

v~ u iff [Ng(v) = Ng(u) A L(v) = L(u)].

For v € V(G), P, = {u | u ~ v} and for any ) € P, we select a representative
vertex vg € Q.

R C V(@) is a closed set for P, if for any v € R we have P, C R.



Generic Kernel/Compactor construction

G |[RU (UygrPY)|.

AN

For v € V(QG), let P* be P, if |P,| < k, otherwise it is a subset of P, with k + 1
Define GG

vertices.

1 when v € R, and

Define G = (G[RU {vg | Q € P and vg ¢ R}, p), where p(v)

min{|Q|, k + s}, for s = |V(H) — C|.

p(vQ)

- J

4 N
e o o

(eeee

B e

(eeee

(eeee

k=3,5s=2



Generic Kernel/Compactor construction

Lemma: Let (H,C, K) be a partially weighted graph and R a closed set of P.
Given a graph G together with a (H, G)-list L, H(G, L) # 0 iff H(G, L) # 0.

Fundamental property for (G, L) to be a Kernel

Lemma: Let (H,C, K) be a partially weighted graph and R a closed set of P.
Given a graph G together with a (H,G)-list L. Then, there is a surjective function
from H(G, L) into H(G, L).

Fundamental property for H(é, L) to be a Compactor

The remaining properties follow from an adequate selection of the closed set R.



Case 1: GG is connected and H — (' is edgeless

The k-splitting of G is the partition (R;, R, R3) of V(G) where

R1 is the set of vertices with degree more than k
Rs is formed by the non isolated vertices in G' = G[V (G) — Ry],

and R3 contains the isolated vertices in G’.

Lemma: Let (H,C, K) be a partially weighted graph, where H — C' is edge-less.
Given a graph G, let (R, R2, R3) be the k-splitting of G. Then R; U Ry is a closed
set. Furthermore if |R1| > k or |Ra| > k* + k, then H g o x)(G,L) = 0.

k-splitting is a well know partition to obtain a kernelization for k-Independent set
[Buss, Goldsmith 93]



Case 1: GG is connected and H — (' is edgeless

R, is the set of vertices with degree at least k
R is formed by the non isolated vertices in G' = G[V(G) — Ry},
and Rs3 contains the isolated vertices in G.

Now we assume |R1| < k and |Ra| < k* + k
Furthermore, all the vertices in R3 have degree at most £ and
For any v € R3, Ng(v) C R;y.
Therefore:
G has size < 2k + k2 + (k + 1)2Ft" and
can be obtained in time O((k + h)n + 2~8+7) Kernel
We also show that
O [H(G, L)| = f(k,h)

O The information provided by w € H(é, L) is enough to compute in FPT the
size of the subset of colorings w represents.

Compactor



Case 1: The last piece

For the decision version we have to solve an instance of list (H, C, K)-coloring

when H — C has no edges.
So we have to devise a fast exact algorithm for this particular case:

So we have to devise a fast exact algorithm for this particular case:

Theorem: Let (H,C, K) be a partially weighted graph, where H — C' is edge-less.
Given an input graph G, there is an algorithm that decides whether there is a list

(H,C, K)-coloring of (G, L) in O (2*¢* ((k + h)n + nkv'n + klogk)) steps.

Theorem: Let (H,C, K) be a partially weighted graph, where H — C' is edge-less.
Given an input graph G and a (H, G)-list L, there is an algorithm that decides
whether there is a list (H, C, K)-coloring of (G, L) in time

O ((h +k)n 2k R | 95k/2cky 1 h)) |

for some polynomial p.



Case 1: The last piece

For the counting version we apply directly the proposed schema of
enumerate-and-count taking care of the cost of constructing the compactor.

Theorem: Let (H,C, K) be a partially weight assignment, where H — C' is
edge-less. Given a graph G and a (H, G)-list L then, there is an algorithm that
outputs the number of list (H, C, K)-colorings of (G, L) within time

O(f1(k)n + fa(k)logn + f3(k)).



list (H, C, K)-coloring: Connected G

I-component 2-component 3-component

Using similar ideas but with different spplittings and ad-hoc algorithms we find
FPT algorithms for the counting and decision versions of the list (H, C, K)-coloring

problem for each one of the 1,2 or 3-components for connected G.

G must be mapped to only one of the components of H



Simple (H,C, K)

I-component 2-component 3-component

(H,C, K) is simple whenever all the connected components of H

are 1, 2 or 3-components.

We can prove that List #(H, C, K)-coloring and #(H, C, K)-coloring have
FPT-algorithms for simple (H,C, K)



Plain (H,C, K)

Plain
C
M r
K k
C
—
l-component  4-component 6-component

We present a parameterized reduction from the (H, C, K)-coloring problem for
plain (H,C, K) to the list (H, C, K)-coloring for simple (H, C, K).

The reduction is done through a series of sub-reductions that gradually transforms
a plain (H,C, K) into a particular case of simple (H,C, K).



Summary of FPT results

The following problems admit FPT-algorithms:
O List #(H, C, K)-coloring and #(H, C, K )-coloring for simple (H,C, K).
O List (H, C, K)-coloring, for simple (H,C, K).
O (H,C, K)-coloring for plain (H,C, K).

The complexity of our FPT-algorithms is linear in n (thus efficient)
for counting problems time bound is O(f1(k)n + fo(k)g + f3(k)logn + fi(k))
for decision problems time bound is O(f](k)n + f5(k)g + fi(k)).

assuming the connected components of G are given as part of the input.



Other results

O An algorthm to enumerate list (H, C, K)-colorings for simple (H,C, K). The
algorithm, after a preprocesing phase (FPT), requires linear additional time per

element.
O In the case of list (H, C, K)-coloring, the hardness results can be extended to further
restrictions on the list L:

* for any vertex v, H[L(v)] is connected,
connected list (H, C, K)-coloring

* L(v) has either one vertex or all V(H),
one-all list (H, C, K)-coloring.

O All the results for (H, C, K)-colorings are also true for (H,C, < K)-colorings.



Open problems

O Close the complexity gap for (H, C, K)-coloring and #(H, C, K)-coloring
Requires to study properties of C' and K for decision.

Requires to understand the role of c-reducibility for counting.



Open problems

O Find a tight characterization for the (H, C, K) giving raise to FPT-algorithms.

The class of simple (H, C, K) verify that H — C' is a complete reflexive or a

complete irreflexive bipartite. Are there any other nice properties of H — C'?

Our hardness results show that loops in C play a especial role, as by removing
them or by adding them we get cases of list (H, C, K)-coloring that are W/[1]-hard.
What is the exact role?

[Reed, Smith, Vetta Operation Research Letters 04] show that the k-remove for
bipartite problem, the (H, C, K)-coloring problem where H = K; ; & K| and
C' = V(KY), belongs to FPT.

We conjecture that when H = K, , ® K] with C = V(K) is the
(H, C, K)-coloring problem belongs to FPT.



