Constraint Programming Models for Graceful Graphs

Barbara Smith

Maths of Constraint Satisfaction, Oxford, March 2006

Modelling in Constraint Programming

- How a problem is formulated as a CSP can have a huge impact on how easy it is to solve
- We often try to modify an existing model to make it easier to solve
- Thinking of a completely different way of modelling a problem is much harder....

Graceful Labelling of a Graph

n

6

2

3

- A labelling *f* of the nodes of a graph with *q* edges is graceful if:
 - *f* assigns each node a unique label from {0,1,..., *q* }
 - when each edge xy is labelled with |f(x) - f(y)|, the edge labels are all different

Initial Model as a CSP

- A variable for each node, x₁, x₂, ..., x_n each with domain {0, 1,..., q}
 - Auxiliary variables for each edge, d_1 , d_2 ,..., d_q each with domain $\{1, 2, ..., q\}$
- $d_k = |x_i x_j|$ if edge k joins nodes i and j
- x₁, x₂, ..., x_n are all different
- $d_1, d_2, ..., d_q$ are all different
- Find values for each of $x_1, x_2, ..., x_n$ so that the constraints are satisfied

Symmetry

- The CSP has symmetry from two sources:
 - the symmetry of the graph (if any)
 - a value symmetry: in any solution, we can replace every assignment <*x_i*, *j* > by <*x_i*, *q* -*j* >
- We have used graceful graphs problems to investigate how to eliminate the effects of symmetry on search
 - adding constraints to the CSP
 - using dynamic symmetry breaking methods

A non-CP Approach to Graceful Graphs

- Beutner & Harborth, Graceful Labellings of Nearly Complete Graphs, Results in Mathematics (41),34-39, 2002
- Focus on the edges:
- In any gracefully labelled graph with q edges:
 - the edge labelled q joins nodes labelled 0 and q
 - the edge labelled q-1 joins nodes labelled 0 and q-1 or 1 and q
 - the edge labelled q -2 joins nodes labelled 0 and q -2 or 1 and q -1 or 2 and q
 - etc.

Eliminating Value Symmetry

The edge labelled q -1 joins nodes labelled 0 and q -1
 or 1 and q

- In any gracefully labelled graph, we must have one of these two configurations
- They are symmetrically equivalent

Cork

 We can break the value symmetry by choosing one arbitrarily

K_n is not graceful for n > 4 (I)

- Breaking symmetry as above, we get the triangle below (since all nodes are connected)
- This is the graceful labelling of K_3 (with q = 3)

K_n is not graceful for n > 4 (II)

 For n ≥ 4, the edge labelled q-2 requires an extra node labelled *either*:

• *q*-2

K_n is not graceful for n > 4 (II)

 For n ≥ 4, the edge labelled q-2 requires an extra node labelled *either*:

- *q*-2
- or 1

K_n is not graceful for n > 4 (II)

- For n ≥ 4, the edge labelled q-2 requires an extra node labelled *either*:
 - *q*-2
 - *or* 1
 - *or* 2

Adding a node labelled 2 gives the graceful labelling of K_{a}

K_n is not graceful for n > 4 (III)

To get an edge labelled *q*-4, we need a new vertex labelled *q*-4, *q*-2, 3 or 4; for *K*₅, only *q*-4 does not give a repeated edge label. But then we get edges labelled *q*-6 and 4: for *K*₅ these are the same
For *n* ≥ 6, we cannot get an edge labelled *q*-5 without repeating edge labels

A Different Viewpoint

- The proof focuses on the labels:
 which node labels does this edge label join?
 The CSP model focuses on the nodes (and edges):
 - what is the label on this node (and on this edge)?
- Can we build a new CSP model using the new viewpoint?

Variables of new model

- *e_k* = / if the edge labelled *k* joins nodes labelled / and /+*k*
- n_i = i if the node label / is attached to node i (or a dummy value if node label / is not used)
- $e_k = /$ iff the values of n_l and n_{l+k} are adjacent nodes in the graph
- *n*₁, *n*₂,..., *n*_q are all different, unless they have the dummy value

Graceful Labelling of $K_n \ge P_2$

- K₃ x P₂ and K₄ x P₂ have several graceful labellings (excluding symmetric equivalents)
- K₅ x P₂ has just one
- $K_6 \ge P_2$ and $K_7 \ge P_2$ have none
- I conjecture that K_n x P₂
 is not graceful for n > 5

Finding All Graceful Labellings of $K_n \ge P_2$

	Labellings	Old model (backtracks)	New model (backtracks)
$K_3 \times P_2$	4	24	21
$K_4 \times P_2$	15	467	210
$K_5 \times P_2$	1	14051	1037
$K_6 \times P_2$	0		2614
$K_7 \times P_2$	0		4036

Conclusions

- The original model seemed the 'natural' CSP model of the problem
- The model based on edge labels is less obvious, & is more difficult to write, but is much faster
- An example of a mathematical approach to the problem yielding a good CSP model
- But we can't yet prove that $K_n \ge P_2$ is not graceful for $n \ge 6$

