Quantified cost functions for reasoning under uncertainty

Cédric Pralet, Thomas Schiex, Gérard Verfaillie

伺下 イヨト イヨト

Cédric Pralet, Thomas Schiex, Gérard Verfaillie Mathematics of CS: Algebra, Logic and Graph Theory

Decision under uncertainty Quantified cost functions

Decision problems, SAT and CSP

Constraint network

- a set X = {x₁,..., x_n} of variables with boolean/finite domains.
- a set C = {c₁,..., c_n} of boolean functions (clauses, constraints) with a scope (subset of X).

Query

Satisfiability: $\exists x_1 \dots x_n (c_1 \wedge \dots \wedge c_n)$

Optimisation: MaxSAT/CSP, Valued/Semiring CSP

Cost function network

- a set X = {x₁,..., x_n} of variables with boolean/finite domains.
- a set C = {c₁,..., c_n} of cost functions over a set E (combination operator ⊗) with a scope.

Query

Optimisation: $\max x_1 \dots \max x_n (c_1 \otimes \dots \otimes c_n)$.

Addition: an utility set E, a combination op. \otimes , an elimination op. max, axioms.

Example

John has three doors (A, B, C) in front of him. Behind one, there is a treasure, and behind another a gangster. John may choose one door to open. He must pay $4 \in$ to the gangster and the treasure amounts to $10 \in$.

The network

• Variables: ga,
$$tr \in \{A, B, C\}$$
 and $do \in \{A, B, C, nd\}$.

• Cost functions: $U_1 : do = ga(-4), U_2 : do = tr(10).$

No uncertainty: ga = A, tr = C. do = C (we get $10 \in$).

Adding uncertainty (plausibility)

Non determinism

The treasure and the gangster are not behind the same door. Extra constraint: $P_1 : ga \neq tr$. Pessimistic query: $\exists do \forall ga, tr, (P_1) \rightarrow (do \neq ga \land do = tr)$?

Quantitative (probabilistic) uncertainty

Situations are all as likely. Cost function: $P_2: \frac{1}{6}$ (normalization). Query: maximize expected utility

$$\max_{do} \sum_{tr,ga} \left(\left(\prod_{i=1}^{2} P_i \right) \times \left(\sum_{i=1}^{2} U_i \right) \right)$$

Two types of cost functions (P, U), specific combination operators, an operator to combine P and U. Multiple elimination (quantification) operators: max (decision), + (environment), =

Observations

John can listen to one door and try to detect the gangster. The probability of hearing is 0.8 if John listens to the ganster door but still 0.4 for a door next to this one. His friend Peter can do the same.

Network extension

Variables: Ii_J , Ii_P , domain $\{A, B, C\}$, he_J , he_P $\{y, n\}$ Plausibilities: $P_3 : P(he_J|ga, Ii_J)$, $P_4 : P(he_P|ga, Ii_P)$ (norm)

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

- 4 同 6 4 日 6 4 日 6

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

- 4 周 ト - 4 日 ト - 4 日 ト

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

Query: decision rules **maximizing the expected utility**, if first Peter and John listen in, and then John decides to open a door knowing what has been heared?

$$\begin{bmatrix} \text{Solve the query} \\ \text{with a tree} \\ \text{exploration} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \text{Record optimal decision rules for the quantity} \\ \max_{li_J, li_P} \sum_{he_J, he_P} \max_{do} \sum_{g^a, tr} \left(\prod_{i \in [1,4]} P_i\right) \times \left(\sum_{i \in [1,2]} U_i\right) \end{bmatrix}$$

Other possible queries

Opposite aims

If John thinks Peter is a traitor and let him choose a door to listen in first (**pessimistic attitude concerning the other agent**):

$$\min_{li_{P}} \max_{li_{J}} \sum_{he_{P}, he_{J}} \max_{do} \sum_{ga, tr} \left(\prod_{i \in [1, 4]} P_{i} \right) \times \left(\sum_{i \in [1, 2]} U_{i} \right)$$

Observabilities

If Peter does not even tell John what he has heard (John does not observe he_P):

$$\min_{li_{P}} \max_{li_{J}} \sum_{he_{J}} \max_{do} \sum_{he_{P}} \sum_{ga,tr} \left(\prod_{i \in [1,4]} P_{i} \right) \times \left(\sum_{i \in [1,2]} U_{i} \right)$$

Mathematics of CS: Algebra, Logic and Graph Theory

Adding feasibilities

John and Peter cannot listen in to the same door, door A is locked!

Adding feasibilities

John and Peter cannot listen in to the same door, door A is locked! Two local feasibility functions: $F_1 : Ii_J \neq Ii_P$, $F_2 : do \neq A$

 글 > 글

Feasibility operators

Feasibilities is not unacceptibility. It restricts elimination domains.

• false
$$\star \alpha = \Diamond$$
, true $\star \alpha = \alpha$

• \Diamond is ignored by elimination operators (max(\Diamond , u) = min(\Diamond , u) = \Diamond + u = u)

Computation of **optimal decision rules** with:

$$\min_{li_{P}} \max_{li_{J}} \sum_{he_{J}} \max_{do} \sum_{he_{P}} \sum_{ga,tr} \left(\left(\bigwedge_{i \in [1,2]} F_{i} \right) \star \left(\prod_{i \in [1,4]} P_{i} \right) \times \left(\sum_{i \in [1,2]} U_{i} \right) \right)$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Decision under uncertainty Quantified cost functions

Many frameworks, many related algorithms

イロン イヨン イヨン イヨン

Three key components

- the algebraic structure, defining properties satisfied by the combination and the elimination operators
- the network of local functions, with normalization conditions on plausibilities and feasibilities
- the **query** (sequence of eliminations).

An algebraic structure for plausibilities, utilities...

Extension of Halpern and Chu work to sequential decisions.

- plausibilities: $(E_p, \leq_p, \oplus_p, \otimes_p)$ commutative semiring with monotonic operators.
- **2 utilities**: $(E_u, \preceq_u, \otimes_u)$ commutative monoid.
- **3** expected utility: $(E_p, E_u, \oplus_u, \otimes_{pu})$ $(E_u, \oplus_u, \otimes_{pu})$ semi-module on plausibilities:
 - \otimes_{pu} distributive wrt \oplus_p and \oplus_u .
 - $\forall p_1, p_2 \in E_p, \forall u \in E_u, p_1 \otimes_{pu} (p_2 \otimes_{pu} u) = (p_1 \otimes_p p_2) \otimes_{pu} u.$
 - $\forall u \in E_u, (0_p \otimes_{pu} u = 0_u) \land (1_p \otimes_{pu} u = u).$

$$\sum_{j} (p_j \times u_j) \text{ becomes } \bigoplus_{j} (p_j \otimes_{pu} u_j)$$

	Ep	\oplus_{p}	\otimes_{p}	Eu	\otimes_{u}	\oplus_{u}	$\otimes_{\it pu}$
1	\mathbb{R}^+	+	Х	$\mathbb{R} \cup \{-\infty\}$	+	+	×
2	\mathbb{R}^+	+	Х	\mathbb{R}^+	×	+	×
3	[0, 1]	max	min	[0, 1]	min	max	min
4	[0,1]	max	min	[0,1]	min	min	$\max(1-p, u)$
5	$\mathbb{N}\cup\{\infty\}$	min	+	$\mathbb{N}\cup\{\infty\}$	+	min	+
6	$\{t, f\}$	\vee	\wedge	$\{t, f\}$	\wedge	V	\wedge
7	$\{t, f\}$	V	\wedge	$\{t, f\}$	\wedge	\wedge	\rightarrow

(1) probabilistic expected utility, (2) probabilistic expected satisfaction, (3/4) optimistic/pessimistic possibilistic utilities, (5) κ -rankings with positive utilities (6/7) optimistic/pessimistic expected boolean satisfaction

Locality of functions

Definition: a **PFU network** is a tuple (V, G, P, F, U) where:

- V: finite set of variables, partitionned between V_D the set of decision variables, and V_E, the set of environment variables. Each is partitioned in clusters.
- *G* a a cluster DAG representing normalization/independance.
- $P = \{P_1, P_2, \ldots\}$ a finite set of local plausibility functions
- $F = \{F_1, F_2, \ldots\}$ a finite set of local feasibility functions
- $U = \{U_1, U_2, \ldots\}$ a finite set of local utility functions

Decision under uncertainty Quantified cost functions Algebraic structure Local cost functions

Example

Query Q on a PFU network \mathcal{N}

- A pair (\mathcal{N}, Sov) where:
 - \mathcal{N} : PFU network
 - Sov is a sequence of operator/variable(s) pairs. Operators are min, max, or \bigoplus_u and act as quantifiers.

$Ex.: (\mathcal{N}, \max_{x_1, x_2} \min_{x_3} \oplus_{u \times 4, x_5} \max_{x_6})$ Meaning:

- the order specifies the order in which decisions are made and environment variables are observed
- min and max operators applied on decision variables specify if an optimistic or a pessimistic attitude is adopted for decisions.

소리가 소문가 소문가 소문가

Correct queries

- Adequation between an eliminated variable and its elimination operator (decision variable → eliminated with min or max; environment variables → eliminated with ⊕_u). Ex: if Sov = ... ∑_{do}..., the query is not correct
- Respect of causality: conditions (imposed by the DAG) on the order of elimination
 - Ex: if $Sov = \ldots \sum_{he_J} \ldots \max_{li_J} \ldots$, the query is not correct.

Value of a query

Answer to a query Q

The answer Ans(Q) to a correct query Q can be defined based on **decision trees**.

- Advantage: has a clear semantic foundation.
- Drawback: weights associated with some edges in the tree must be computed, which can take an exponential time.

Property

The definition is **equivalent** to the following operational one:

$$Ans(Q) = Sov\left(\left(\bigwedge_{F_i \in F} F_i\right) \star \left(\bigotimes_{P_i \in P} P_i\right) \otimes_{pu} \left(\bigotimes_{U_i \in U} U_i\right)\right)$$

Mathematics of CS: Algebra, Logic and Graph Theory

イロト イポト イヨト イヨト

э

Theorem: the PFU framework can be used to model and solve queries asked on:

CSP Valued CSP Quantified CSP Mixed and probabilistic CSP Stochastic CSP

イロン イヨン イヨン イヨン

Theorem: the PFU framework can be used to model and solve queries asked on:

CSP Valued CSP Quantified CSP Mixed and probabilistic CSP Stochastic CSP

SAT Quantified boolean formulas Stochastic SAT Extended stochastic SAT

イロト イヨト イヨト イヨト

Theorem: the PFU framework can be used to model and solve queries asked on:

Theorem: the PFU framework can be used to model and solve queries asked on:

Theorem: the PFU framework can be used to model and solve queries asked on:

イロン イヨン イヨン イヨン

Theorem: the PFU framework can be used to model and solve queries asked on:

イロン イヨン イヨン イヨン

Not covered

- non distributional uncertainty (Dempster-Shafer)
- really qualitative utility (CP-nets) or partially ordered utilities (Queries).

- 4 同 ト 4 ヨ ト 4 ヨ ト

The operational definition gives us a **generic tree search algorithm** (and PSPACE membership).

Variable elimination: additional axioms needed (sufficient).

- (Ax1) semiring: $((E_p, \oplus_p, \otimes_p) = (E_u, \oplus_u, \otimes_u)) \land (\otimes_{pu} = \otimes_u) \land (\preceq_p = \preceq_u)$ (2,3,5,6)
- **2** (Ax2) vector space-like: $\oplus_u = \otimes_u$ on E_u (1,4,7).

- combine existing algorithms: branch and bound, local consistency (csp, hard information), cost function consistency (soft constraints), tree decomposition based (recursive conditioning).
- variable elimination/CTE: constrained treewidth and quantified cost functions: connection between the query and the network structure. Do query optimization to lower contrained treewidth.
- islands of tractability/NP-completeness and beyond (multi-chotomy ?) in quantified cost-functions.