Positive and Negative Preferences

Francesca Rossi University of Padova, Italy

Joint work with: **S. Bistarelli**, University "G. d'Annunzio", Pescara, and Istituto di Informatica e Telematica, CNR, Pisa, Italy **M.S. Pini, K.B. Venable** University of Padova, Italy

Outline

- □ Motivation: I like this, I don't like that!
- □ Background: semiring-based soft constraints
- Negative Preferences
- Positive Preferences
- Bipolar Preferences
- Bipolar preference problems
- □ Solving bipolar preference problems

Motivation and desires

- In many real life scenarios users express degrees of acceptance and rejection
- Positive and negative preferences, although symmetric, need different combination operators
 - Example: I like red cars, I like convertibles: red convertible is the best choice
 - Example: I hate black cars, I hate SUVs: black SUV is the worse choice
- □ Indifference: neither positive nor negative
 - Example: I am indifferent to white cars
- □ Compensation:
 - a black convertible is acceptable

Soft constraints

- □ One way to model one kind of preferences
 - Quantitative, non-conditional
- □ Based on an algebraic structure
- □ Other kinds of preferences:
 - Qualitative, positive/negative, conditional, etc.
- □ Other ways to model preferences:
 - CP-nets, partial CSPs, hierarchical CSP/CLP, valued CSPs, etc.

C-semiring framework for constraints

- \Box Variables {X₁,...,X_n}=X
- $\square \quad \text{Domains } \{D(X_1), \dots, D(X_n)\} = D$
- $\Box \quad \text{C-semiring} < A, +, \times, 0, 1 >:$
 - A set of preferences
 - + additive operator commutative, associative, idempotent, unit element 0, flattening property;
 - × multiplicative operator: commutative, associative, unit element 1, absorbing element 0
 - 0,1 respect. bottom and top element
 - × distributes over +

Bistarelli, Montanari, Rossi 1995 (valued CSPs equivalent if total order)

Induced Ordering

- $\Box \quad \text{Given a c-semiring } < A, +, \times, 0, 1 > :$
- \Box + induces a partial order \leq on A:
 - $a \le b$ iff a+b=b
- \square a+b \geq a,b (=lub(a,b))
 - Adding two pref.s gives a higher preference
- □ $a \times b \le a, b$ (=glb(a,b) if × idempotent)
 - Combining two pref.s gives a lower preference
- \Box + and × monotone on \leq

a + **b**

a x b

a

Soft and Hard constraints

- □ Soft constraint: pair c=<f,con> where:
 - Scope: $con=\{X_{c1},...,X_{ck}\}$ subset of X
 - Preference function :
 - f: $D(X_{c1})x...xD(X_{ck}) \rightarrow A$ tuple $(v_1,...,v_k) \rightarrow p$ preference
- Hard constraint: soft constraint where for each tuple (v1,..., vk) $f(v_1,...,v_k)=0$ the tuple is forbidden or $f(v_1,...,v_k)=1$ the tuple is allowed

Soft Constraint Satisfaction Problems

Set of variables V Set of **hard and soft constraints**

Solution: Assignment to all the variables in V

Preference of solution S:

 $pref(S) = f_1(S_1) \times \ldots \times f_n(S_n)$

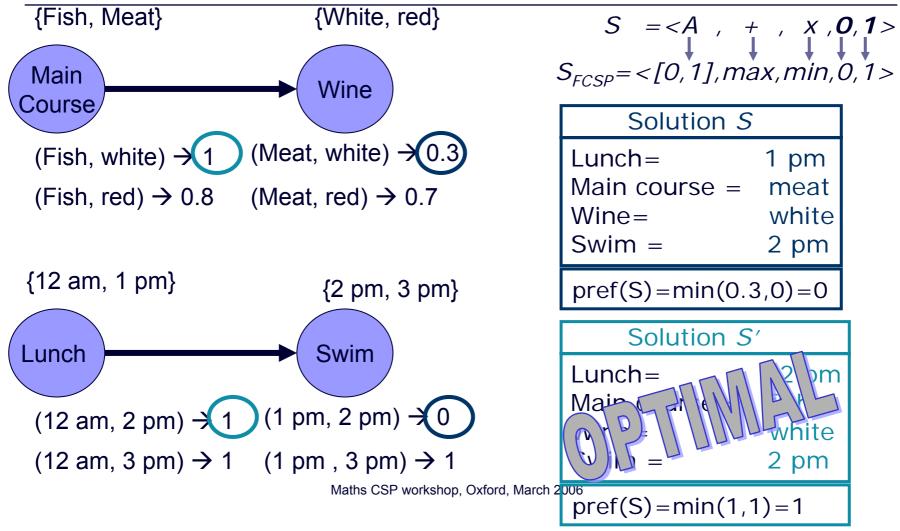
 f_i = preference function of i-th constraint

 S_i = projection of S on i-th constraint

Ordering: the preference relation on the set of solutions is a partial order
Optimal solution S': there is no S, pref(S)>pref(S')

Fuzzy-SCSP example

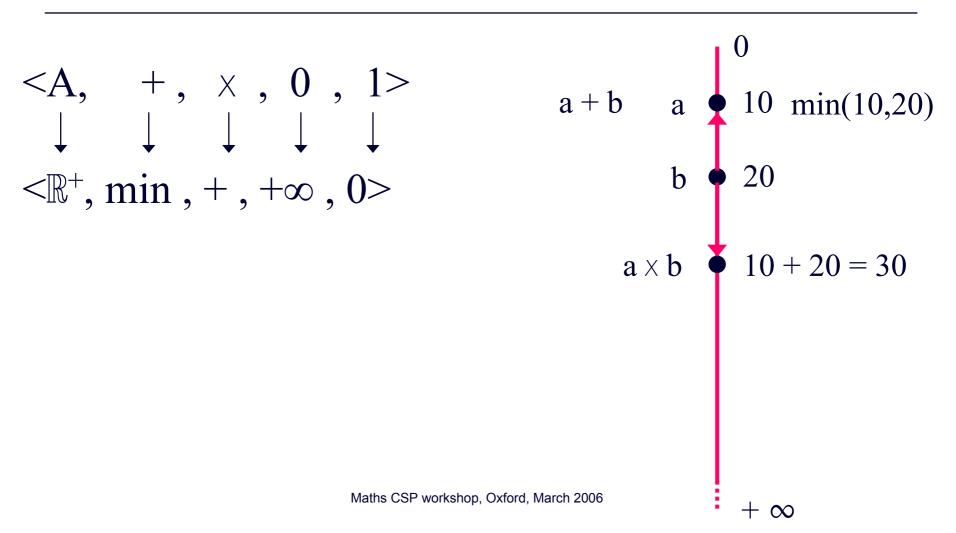
Fuzzy semiring



Negative Preferences

- □ Standard c-semiring $\langle A, +, \times, 0, 1 \rangle$
- □ $a \times b \le a, b$: combining negative preferences should go down in the ordering
 - Example:
 - Weighted semiring <ℝ⁺, min , + , +∞ , 0>,
 □ Values = costs
 - \Box Goal = minimize the sum of costs

Weighted c-semiring: induced ordering



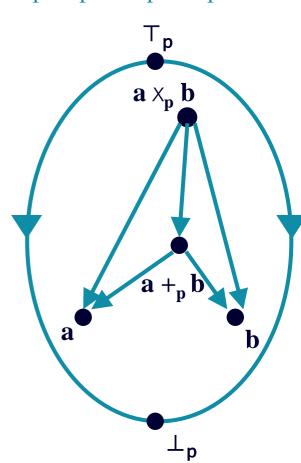
Positive Preferences

- □ C-semiring not adapt because the combining positive preference should go up in the ordering → new structure
- □ Positive Preference Structure $\langle P, +_p, \times_p, \perp_p, \top_p \rangle$
- $\Box \quad P \text{ set, } \bot_p, \top_p \in \mathbf{P};$
 - $+_p$ additive operator: commutative, associative, idempotent, unit element \perp_p , absorbing element \top_p ;
 - \times_p multiplicative operator: commutative, associative, unit element \perp_p , absorbing element \top_p
 - \perp_p , \top_p respect. bottom and top element
 - X_p distributes over $+_p$

Maths CSP workshop, Oxford, March 2006

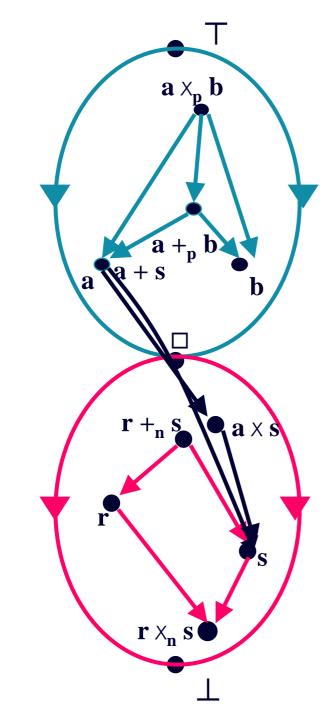
Positive Preference Structure: Induced Ordering

- □ Given Positive Preference Structure $\langle P, +_p, \times_p, \bot_p, \top_p \rangle$
- \Box +p induces a partial order \leq on P:
 - $a \le b$ iff $a_p^+ b = b$
- $\Box \quad a +_p b \ge a, b (=lub(a,b))$
 - Adding two pref.s gives a higher preference
 - a x_p b \leq a,b (=glb(a,b) if x_p idempotent)
 - Combining two pref.s gives a HIGHER preference
- \Box +_p and ×_p monotone on \leq



Bipolar preferences

- □ Preference Structure <PUN, $+_p$, \times_p , $+_n$, \times_n , +, \times , \perp , \Box , \top >
- > <**P**, +_p, ×_p, □, \top > is a positive preference structure
- > $\langle N, +_n, \times_n, \bot, \Box \rangle$ is a c-semiring
- > +: $(PUN)^2 \rightarrow (PUN)$
 - > + $|_{N}$ =+ $_{n}$,
 - \rightarrow +|_p=+_p,
 - > a+s=a, for all $a \in P$ and $s \in N$
- > X: $(PUN)^2 \rightarrow (PUN)$,
 - $\succ |_{N} = x_{n},$
 - $\succ |_{P} = x_{p},$
 - > s ≤ a × s ≤ a, for all a ∈ P and s ∈ N (compensation, plus other properties defined later)



Ρ

Ν

Preference Structure $< P \cup N, +p, x_p, +_n, x_n, +, x, \perp, \Box, \top >$ $< P, +_p, x_p, \Box, \top >$ positive pref. struct. $< N, +_n, x_n, \perp, \Box >$ is a c-semiring

+ induces a partial order $\forall v \in P \cup N \perp \leq v \leq \top$ $\forall p \in P, \forall n \in N, n \leq \Box \leq p$ $\forall a, b \in P \ a + b = a + b \geq a, b$ $\forall r, s \in N \ r + s = r + s \geq r, s$

 $\forall a, b \in P \ a \times b = a \times_p b \ge a, b$ $\forall r, s \in N \ r \times s = r \times_n s \le r, s$

 $\forall a \in P, \forall s \in N, a + s = a$ $\forall a \in P, \forall s \in N, s \le a \times s \le a$

Examples of unipolar structures

- □ Negative structures: any c-semiring
 - Fuzzy <[0,1],max,min,0,1>
 - Weighted $< R+, min, +, +\infty, 0 >$
 - Probabilistic <[0,1],max, x, 0,1>
- Positive structures
 - <R+, max, +, 0, +∞>
 - [0,1],max,max,0,1>
 - $< [1, +\infty], \max, x, 0, +\infty >$

Examples of bipolar preference structures

PUN	+ _p	×p	+ _n	× _n	+	Х	T		Т
$\begin{matrix} [0,+\infty] \\ \cup [0,-\infty] \end{matrix}$	max	+	max	+	max	+	- 00	0	$+\infty$
[0,1] U[-1,0]	max	max	max	min	max	+	-1	0	1
ℤ>1 ∪[0,1]	max	*	max	min	max	*	0	1	$+\infty$

Т	$+\infty$	1	$+\infty$	
	axb	10=2+8		20=2*10
	b a+b	8 max(2,8)	0.6 max(0.6,0.2)	10. max(2,10)
	a	2	0.2	2
	r s+r 0	-3 max(-10,-3) 0	$-0.2 \max(-0.2, 0.7)$ 1	-1/2 max(-1/8,-1/2)
	sxa	-8=(-10+2)	-0.5=-0.7+0.2	-1/4=1/8*2
	• S	1.0	0.7min(-0.7,-0.2)	<u>1/8</u> min(- <u>1</u> /8,-1/2)
	SXI	-13=-10+(-3)		
\bot	-∞	-1	0	

Conservative extension of soft constraints

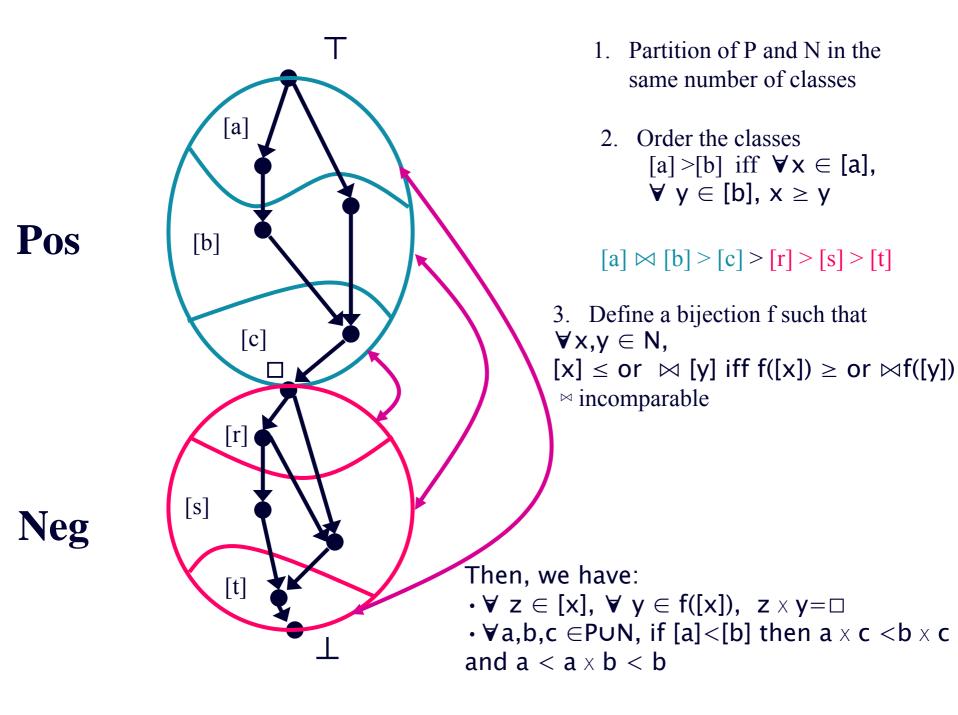
The preference structure represented by a c-semiring is a special case of a bipolar preference structure where: the positive preferences collapses into the indifferent element

□ Examples:

- \Box Fuzzy semiring <[0,1],max,min,0,1>
 - **preference** = $1 \rightarrow$ indifference, nothing wrong
 - **preference** = $0.9 \rightarrow$ weak rejection
 - **preference** = $0.2 \rightarrow$ strong rejection
 - **•** preference = $0 \rightarrow$ unacceptable
- \Box Classic semiring <{false,true}, or, and, false, true>
 - preference = true \rightarrow indifference, no violations
 - preference = false \rightarrow rejection, some violations

Other properties for preference compensation

- \Box To drfine them:
- 1. Partition of P and N in the same number of classes
- 2. Elements in the same class behave similarly when combined with elements of the opposite class
- 3. Ordering among the classes
- 4. Correspondence function $c \rightarrow c^{-1}$, for all h in c and for all f in c^{-1} , $h \times f = \Box$



Associativity of X

 \square × might be not associative

□ Example: If x_p idempotent, p ∈ P, n ∈ N and p × n = □. Then p × (p × n) = p ×_p □= p (p ×_p p) × n = p × n = □
□ It may be not associative even if x_p and x_n are not

idempotent

A	• , •	•		C	
Assoc	lati	V1 1	V	0^{\dagger}	X
				-	

PUN	+ _p	×p	+ _n	× _n	+	Х	\bot		Т
$\begin{matrix} [0,+\infty] \\ \cup [0,-\infty] \end{matrix}$	max	+	max	+	max	+	-∞	0	$+\infty$
[0,1] U[-1,0]	max	max	max	min	max	+	-1	0	1
ℤ>1 ∪[0,1]	max	*	max	min	max	*	0	1	$+\infty$

The first structure is associative, while the other two are not

Associativity of *X*

□ If one of the following holds:

- x_p or x_n idempotent
- P| ≠ |N|
- there are negative (positive) preferences a and b such that a,b ≠ ⊥ (⊤) and a x_n b = ⊥ (⊤)
- there are preferences a,b,c such that

 $a \times f(b) = c but c \times b \neq a$

 \square x is not associative

Bipolar Preference Problems (1)

- $\Box \text{ Variables } \{X_1, \dots, X_n\} = X$
- $\square Domains \{D(X_1), \dots, D(X_n)\} = D$
- □ Preference Structure <PUN,+_p,×_p, ,+_n,×_n,+,×, ⊥,□, \top >
- □ Set of bipolar constraints C
 - Bipolar constraint: pair c=<f,con> where:
 - $\square \quad \text{Scope: con} = \{X_{c1}, \dots, X_{ck}\} \text{ subset of } X$
 - Preference function :
 - f: $D(X_{c1})x...xD(X_{ck}) \rightarrow P \cup N$
 - tuple $(v_1, \dots, v_{Maths})_{CSP Workshop}$, degree of preference or rejection

Bipolar Preference Problems (2)

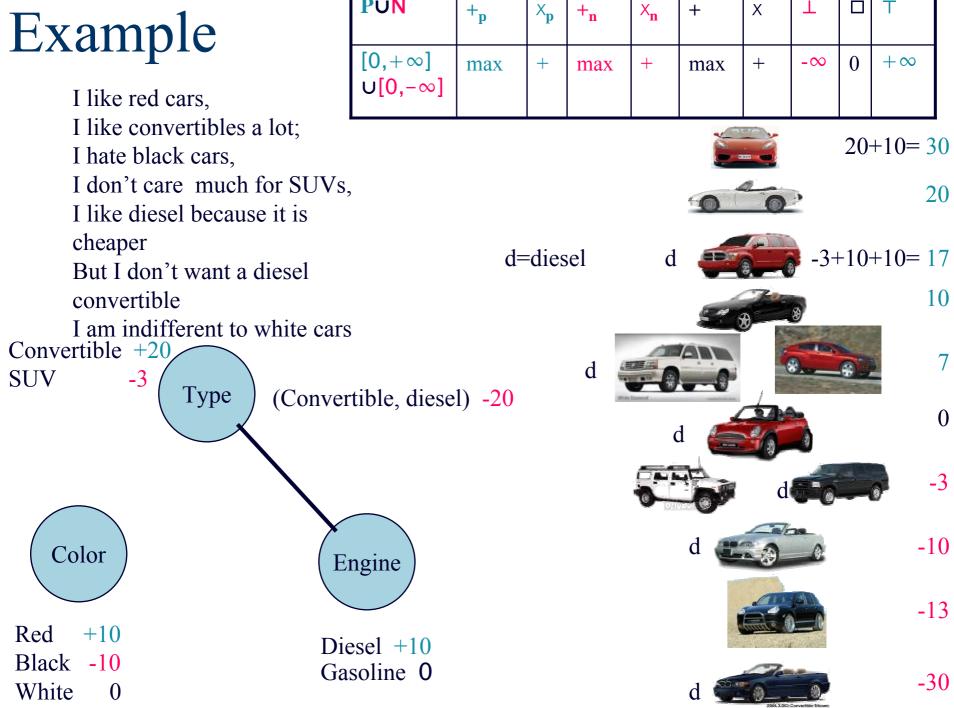
Solution: Assignment to all the variables in V

Preference of solution S:

 $\begin{array}{l} \texttt{pref(S)=}(p_1 \times_p \ldots \times_p p_k) \ x \ (n_1 \times_n \ldots \times_n n_h) \\ p_i \in P \ \texttt{positive values assigned to projections} \\ n_i \in N \ \texttt{negative values assigned to projections} \end{array}$

Ordering: the preference relation on the set of solutions is a partial order
Optimal solution S': there is no S, pref(S)>pref (S')

Example



PUN

0

Х

Т

 $+\infty$

20+10=30

20

10

7

0

-3

-10

-13

-30

Solving bipolar preference problems

- □ Branch and bound can be adapted
- \Box Value associated at every tree node: (p,n)
- □ To compute an upper bound of the preference of solutions in the subtree:
 - Compute (p',n'), where p' (n') combination of best positive (negative) preferences in subtree
 - Upper bound = (pxp') x (nxn')
- □ If x is associative, p and n can be combined, also in the computation of the upper bound
- Constraint propagation: useful on negative preferences, not convenient on positive preferences

Open issues

- □ Conditions for associativity of compensation
- □ Negative preferences which cannot be compensated
- Branch and bound and constraint propagation when x is associative
- □ Connection with non-monotonic reasoning
- □ Tractable structures for bipolar preference problems