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Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

variables,

domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Constraint Solving via Fractional Edge Covers – p.2/23



Representation issues

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle

Does not really matter if the constraints have small arities.
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Representation issues

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle

Does not really matter if the constraints have small arities.

In this talk: Each constraint is given by listing all the tuples that satisfy it.

Motivation: Applications in database theory & AI.

Constraints are known databases, “satisfying” means “appears in the

database.”
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Tractable structures

Our aim: identify structural properties that can make a CSP instance tractable.

bounded tree width

bounded (generalized) hypertree width

bounded fractional edge cover number

bounded fractional hypertree width
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Tractable structures

Our aim: identify structural properties that can make a CSP instance tractable.

bounded tree width

bounded (generalized) hypertree width

bounded fractional edge cover number

bounded fractional hypertree width

Hypergraph of an instance: vertices are variables, edges are constraint
scopes.

If H is a class of hypergraphs, then CSP(H) is the CSP problem restricted to

instances whose hypergraph is in H.

Task: Identify classes H such that CSP(H) is polynomial-time solvable.
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Tree width—reminder

Constraint Solving via Fractional Edge Covers – p.5/23



Tree width

Tree width: A measure of how “tree-like” the hypergraph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Bags of vertices are arranged
in a tree structure satisfying the following properties:

1. For every edge e, there is a bag containing the
vertices of e.

2. For every vertex v, the bags containing v form a

connected subtree.

Width of the decomposition:
size of the largest bag minus 1.

Tree width: width of the best decomposition.

dcb

a

ge f h

g, hb, e, fa, b, c

d, f, gb, c, f

c, d, f
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Generalized hypertree width

In a generalized hypertree decomposition [Gottlob et al. ’99] of width w,

bags of vertices are arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.

2. For every vertex v, the bags containing v form a connected subtree.

3. For each bag, w edges are given (called the guards) that cover the bag.

Generalized hypertree width: width of the best decomposition.
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Generalized hypertree width

Theorem: [Gottlob et al. ’99] For every w, there is a polynomial-time algorithm

for solving CSP on instances with hypergraphs having generalized hypertree
width at most w.

Algorithm: Bottom up dynamic programming. There are at most ‖I‖w

possible satisfying assignments for each bag.
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Generalized hypertree width

Theorem: [Gottlob et al. ’99] For every w, there is a polynomial-time algorithm

for solving CSP on instances with hypergraphs having generalized hypertree
width at most w.

Algorithm: Bottom up dynamic programming. There are at most ‖I‖w

possible satisfying assignments for each bag.

Generalization: Is there some more general property that makes the
number of satisfying assignments of a bag polynomial?
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex

is covered by at least one edge.
̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex

is covered by at least one edge.
̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex

is covered by at least one edge.
̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5

Constraint Solving via Fractional Edge Covers – p.9/23



Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number ̺(H).

Fact: The fractional edge cover number ̺∗(H) can be determined in
polynomial time using linear progamming.

The gap between ̺(H) and ̺∗(H) can be arbitrarily large.
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Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number ̺(H).

Fact: The fractional edge cover number ̺∗(H) can be determined in
polynomial time using linear progamming.

The gap between ̺(H) and ̺∗(H) can be arbitrarily large.

Example:
(

2k
k

)

vertices: all the possible strings with k 0’s and k 1’s.
2k hyperedges: edge Ei contains the vertices with 1 at the i-th position.
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Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number ̺(H).

Fact: The fractional edge cover number ̺∗(H) can be determined in
polynomial time using linear progamming.

The gap between ̺(H) and ̺∗(H) can be arbitrarily large.

Example:
(

2k
k

)

vertices: all the possible strings with k 0’s and k 1’s.
2k hyperedges: edge Ei contains the vertices with 1 at the i-th position.

Edge cover: if only k edges are selected, then there is a vertex that contains

1’s only at the remaining k positions, hence not covered ⇒ ̺(H) ≥ k + 1.

Fractional edge cover: assign weight 1/k to each edge, each vertex is cov-

ered by exactly k edges ⇒ ̺∗(H) ≤ 2k · 1/k = 2.
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CSP and fractional edge covering

Lemma: [easy] If the hypergraph of instance I has edge cover number w,

then there are at most ‖I‖w satisfying assignments.
Proof: Assume that C1, . . . , Cw cover the instance. Fixing a satisfying

assignment for each Ci determines all the variables.

Lemma: If the hypergraph of instance I has fractional edge cover number w,
then there are at most ‖I‖w satisfying assignments (and they can be

enumerated in polynomial time).
Proof: By Shearer’s Lemma.

Corollary: CSP(H) is polynomial-time solvable if H has bounded frac-
tional edge cover number.
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CSP and fractional edge covering

Lemma: [easy] If the hypergraph of instance I has edge cover number w,

then there are at most ‖I‖w satisfying assignments.
Proof: Assume that C1, . . . , Cw cover the instance. Fixing a satisfying

assignment for each Ci determines all the variables.

Lemma: If the hypergraph of instance I has fractional edge cover number w,
then there are at most ‖I‖w satisfying assignments (and they can be

enumerated in polynomial time).
Proof: By Shearer’s Lemma.

Corollary: CSP(H) is polynomial-time solvable if H has bounded frac-
tional edge cover number.

Remark: ‖I‖w is tight, hence if the fractional edge cover number can be
unbounded, then there is no polynomial bound on the number of solutions.

Constraint Solving via Fractional Edge Covers – p.11/23



Shearer’s Lemma—combinatorial version

Shearer’s Lemma: Let H = (V, E) be a hypergraph, and let A1, A2, . . . ,

Ap be (not necessarily distinct) subsets of V such that each v ∈ V is
contained in at least q of the Ai ’s. Denote by Ei the edge set of the

hypergraph projected to Ai . Then

|E| ≤

p
∏

i=1

|Ei|
1/q .
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Shearer’s Lemma—combinatorial version

Shearer’s Lemma: Let H = (V, E) be a hypergraph, and let A1, A2, . . . ,

Ap be (not necessarily distinct) subsets of V such that each v ∈ V is
contained in at least q of the Ai ’s. Denote by Ei the edge set of the

hypergraph projected to Ai . Then

|E| ≤

p
∏

i=1

|Ei|
1/q .

Example:

E = {1, 13, 2, 23, 234, 24} q = 2

A1 = 123 A2 = 124 A3 = 34

E1 = {1, 13, 2, 23} E2 = {1, 2, 24} E3 = {∅, 3, 4, 34}

6 = |E| ≤ (|E1| · |E2| · |E3|)1/q = (4 · 3 · 4)1/2 = 6.928
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Shearer’s Lemma—entropy version

Shearer’s Lemma: Assume we have the following random variables:

X1, . . . , Xn ,

Y1, . . . , Ym , where each Yi = (Xi1 , . . . , Xik
) is a combination of some

Xi ’s,

X = (X1, . . . , Xn).

If each Xj appears in at least q of the Yi ’s, then H(X) ≤ 1
q

∑

H(Yi).

Entropy: “information content”

H(X) = −
∑

x P (X = x) log2 P (X = x)
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Bounding the number of solutions

Lemma: If the hypergraph of instance I has fractional edge cover number w,

then there are at most ‖I‖w satisfying assignments.

Example: Let C1(x1, x2) ∧ C2(x2, x3) ∧ C3(x1, x3) be an instance where

each constraint is satisfied by at most n pairs.

Fractonal edge cover number: 3/2 ⇒ we have to show that there are at most
n3/2 solutions.
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Bounding the number of solutions

Lemma: If the hypergraph of instance I has fractional edge cover number w,

then there are at most ‖I‖w satisfying assignments.

Example: Let C1(x1, x2) ∧ C2(x2, x3) ∧ C3(x1, x3) be an instance where

each constraint is satisfied by at most n pairs.

Fractonal edge cover number: 3/2 ⇒ we have to show that there are at most
n3/2 solutions.

Let X = (x1, x2, x3) be a random variable with uniform distribution over the

satisfying assignments of the instance.

Y1 = (x1, x2) Y2 = (x2, x3) Y3 = (x1, x3)

H(Yi) ≤ log2 n (has at most n different values)
H(X) ≤ 1

2
(H(Y1) + H(Y2) + H(Y3)) ≤ 3

2
log2 n

X has uniform distribution, hence it has 2H(X) = 2
3

2
log2 n = n3/2 different

values.
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Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are

arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.

2. For every vertex v, the bags containing v form a connected subtree.

3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Note: fractional hypertree width ≤ generalized hypertree width
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Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are

arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.

2. For every vertex v, the bags containing v form a connected subtree.

3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Note: fractional hypertree width ≤ generalized hypertree width

Theorem: For every w, there is a polynomial-time algorithm for solving
CSP if a fractional hypertree decomposition of width at most w is given

in the input.
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Determining fractional hypertree width

? Currently we do not know if deciding fractional hypertree width ≤ w

is possible in polynomial time for every fixed value of w.

For the applications, an approximate form would be sufficient:

Conjecture: There are functions f1(w), f2(w) such that for every w, there is
an algorithm that constructs in time nf1(w) a fractional hypertree

decompositioni of width ≤ f2(w) for hypergraphs having fractional hypertree
width ≤ w.
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Determining fractional hypertree width

? Currently we do not know if deciding fractional hypertree width ≤ w

is possible in polynomial time for every fixed value of w.

For the applications, an approximate form would be sufficient:

Conjecture: There are functions f1(w), f2(w) such that for every w, there is
an algorithm that constructs in time nf1(w) a fractional hypertree

decompositioni of width ≤ f2(w) for hypergraphs having fractional hypertree
width ≤ w.

Two possible approaches:

Separator-based approach. Problem: given sets X, Y , we have to find a
separator that can be fractionally edge covered with weight ≤ w.

Game-theoretic approach.
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Law enforcement on graphs

Robber and Cops Game: k cops try to capture a rob-
ber in the graph.

In each step, the cops can move from vertex to

vertex arbitrarily with helicopters.

The robber moves infinitely fast, and sees where
the cops will land.

The robber cannot go through the vertices blocked

by the cops.
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Law enforcement on graphs

Robber and Cops Game: k cops try to capture a rob-
ber in the graph.

In each step, the cops can move from vertex to

vertex arbitrarily with helicopters.

The robber moves infinitely fast, and sees where
the cops will land.

The robber cannot go through the vertices blocked

by the cops.

Theorem: [Seymour and Thomas ’93]
k cops can win the game ⇐⇒ the tree width of the graph is at most k − 1.

The winner of the game can be determined in nO(k) time ⇒ tree width ≤ k

can be checked in polynomial time for fixed k.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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Law enforcement on hypergraphs

Robber and Marshals Game:
Played on a hypergraph, a marshal can occupy an edge blocking all the
vertices of the edge at the same time.

Theorem: [Adler et al. ’05] k marshals can win the game if generalized
hypertree width is ≤ k, and they cannot win the game if generalized hypertree

width is ≥ 3k + 1.

⇒ nO(k) algorithm for approximating generalized hypertree width:

Theorem: [Adler et al. ’05] There is an nO(k) time algorithm that constructs

a generalized hypertree decomposition of width ≤ 3k if generalized hypertree

width is ≤ k.
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Law enforcement on hypergraphs

Robber and Army Game:
A general has k battalions. A battalion can be divided arbitrarily, each part can
be assigned to an edge. A vertex is blocked if it is covered by one full battalion.

Theorem: k battalions can win the game if fractional hypertree width is ≤ k,

and they cannot win the game if fractional hypertree width is ≥ 3k + 2.

!
We don’t know how to turn this result into an algorithm
(there are too many army positions).

Constraint Solving via Fractional Edge Covers – p.20/23



Law enforcement on hypergraphs

Robber and Army Game:
A general has k battalions. A battalion can be divided arbitrarily, each part can
be assigned to an edge. A vertex is blocked if it is covered by one full battalion.

Theorem: k battalions can win the game if fractional hypertree width is ≤ k,

and they cannot win the game if fractional hypertree width is ≥ 3k + 2.

!
We don’t know how to turn this result into an algorithm
(there are too many army positions).

But maybe not so many:

Conjecture: If hypergraph H has fractional hypertree width w, then for every

r ≤ w there are at most |V (H) + E(H)|O(w) maximal r-covered sets. Fur-

thermore, there is a polynomial-time algorithm that enumerates all these sets.
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Dichotomy?

Given a class of hypergraphs H, CSP(H) is the problem restricted to

instances with hypergraphs in H.

Holy Grail: Determine all those classes of hypergraphs that make CSP(H)

polynomial-time solvable.

Is there a hypergraph property more general than bounded fractional

hypertree width that makes CSP polynomial-time solvable?

Is it possible to show that there is no polynomial-time algorithm for
CSP(H) if H has unbounded fractional hypertree width? (modulo some

comlexity-theoretic assumption)
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Dichotomy?

Given a class of hypergraphs H, CSP(H) is the problem restricted to

instances with hypergraphs in H.

Holy Grail: Determine all those classes of hypergraphs that make CSP(H)

polynomial-time solvable.

Is there a hypergraph property more general than bounded fractional

hypertree width that makes CSP polynomial-time solvable?

Is it possible to show that there is no polynomial-time algorithm for
CSP(H) if H has unbounded fractional hypertree width? (modulo some

comlexity-theoretic assumption)

Theorem: [Grohe ’03] If H has bounded edge size, then

CSP(H) is polynomial-time solvable ⇐⇒ H has bounded tree width
(assuming FPT 6= W[1]).
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Conclusions

CSP where constraints are represented as lists of satisfying tuples.

Bounded tree width and bounded hypertree width make the problem
polynomial-time solvable.

New: Bounded fractional edge cover number.

New: fractional hypertree width.

Open: finding fractional hypertree decompositions.

Robber and Army Game: equivalent to fractional hypertree width (up to a

constant factor).

Open: Are there other classes of hypergraphs where CSP is easy? Can
we prove that bounded fractional hypertree width is best possible?
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Conclusions

tree width

Bounded 

edge cover number

Bounded fractional

hypertree width

Bounded

Bounded fractional hypertree width
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