Classification of Bipartite Boolean Constraint Satisfaction through Delta Matroid Intersection

by Tomás Feder and Dan Ford

Schaefer's Classification Problems

Domain: {0,1} Constants: 0,1

Polynomial Cases

- Horn clauses: $x \lor y \lor z$, $x \lor y \lor z$ closure function f(0,0) = f(0,1) = f(1,0) = 0 f(1,1) = 1
- Anti-Horn clauses: $x \lor y \lor z$, $x \lor y \lor z$ closure function f(0,0) = 0 f(0,1) = f(1,0) = f(1,1) = 1
- 2-satisfiability: $x \lor y, x \lor y, x \lor y$ closure function g(x, y, z) = majority (x, y, z)
- Linear equations modulo 2: $x + y + z \equiv 0 \pmod{2}$, $x + y + z \equiv 1 \pmod{2}$ closure function $h(x, y, z) \equiv x + y + z \pmod{2}$

All other problems are NP-complete

- 3-satisfiability: $x \lor y \lor z$, $x \lor y \lor z$, $x \lor y \lor z$
- One-in-3-satisfiability: {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
- Not-all-equal satisfiability: $\{(x, y, z) \neg (0, 0, 0), (1, 1, 1)\}$

What happens to NP-complete problems when restricted to two occurrences per variable?

• One-in-3-satisfiability

• Not-all-equal satisfiability

1, 2 graph matching

• 3-satisfiability

polynomial delta-matroid parity

All three become polynomial delta-matroid parity problems !!!

Towards a classification with two occurrences per variable

1. If not in Schaefer's polynomial cases then can simulate all clauses

 $x \lor y \lor z, \quad x \lor y \lor z \lor t$

2. If not delta-matroid then can simulate

 $R = (x \leq \cong y, z): \quad (0, 0, 0), (1, 1, 1) \in R \quad (x, y, z) \in R \Longrightarrow x \leq y, z$

1. and 2. simulate satisfiability with three occurrences per variable

NP-complete !!!

Bipartite case classification with two occurrences per variable

One-in-three satisfiability \rightarrow graph matching \rightarrow bipartite graph matching

One left constraint and one right constraint Delta-matroid parity \rightarrow delta-matroid intersection

Delta-matroids:

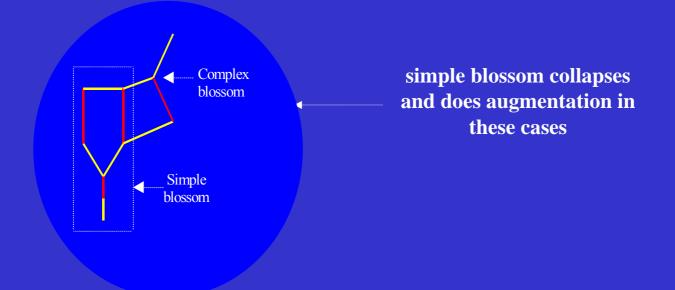
 $[n] = \{1, 2, \dots, n\}$ $B = \{A \subseteq [n]\} \text{ bases}$ $A_1 \in B, A_2 \in B, i \in (A_1 \Delta A_2) \Rightarrow \exists j \in (A_1 \Delta A_2) : (A_1 \Delta \{i, j\}) \in B$

Bases:

 $i \in A$: $x_i = 1$ $i \notin A$: $x_i = 0$

Delta-matroid intersection more general than delta-matroid parity

if = delta-matroid [x = y] = {(0, 0), (1, 1)} not allowed or not = delta-matroid [x not = y] = {(0, 1), (1, 0)} not allowed if = disallowed: simple blossom augmentation gives polynomial algorithm if not = disallowed: simple blossom augmentation gives polynomial algorithm if =, not = disallowed in one delta-matroid, other arbitrary: simple blossom augmentation gives polynomial algorithm



Bipartite classification with oracles

1. NP-complete cases

2. Schaefer-derived cases:

- Horn clauses, anti-Horn clauses, 2-satisfiability, linear equations modulo 2
- One side has only monadic constraints
- Upward closed 2-sat in one side, other side 2-sat downward closure (or vice versa)

3. 2-sat upward closed and delta-matroid downward closed in one side, reverse in the other side

4. Delta-matroid derived cases:

- Delta-matroid intersection without equality
- Delta-matroid intersection without equality, inequality in one side
- Upward delta-matroid in one side, downward closure of other side is delta-matroid
- Delta matroid parity with equality

Open!!!

- Local odd and even delta-matroids
- Local-zebra and linear-zebra delta-matroids (not with oracle)
- Delta-matroid without inequality
- etc.

Open problems

- * Zebra cases do not work with oracles, but polynomial. Other such problems? Linear delta-matroids seem to work with oracles and not just linear representation.
- * *k*-partite for $k \ge 3$: solved classification, polynomial with oracles or NP-complete
- * Multi-domain case: $\{0_A, 1_A\}, \{0_B, 1_B\}...$
 - With 2 (or more) occurrences per variable, solved when relations satisfy symmetry: exchanging first and second occurrences of variables gives another valid relation. What about without symmetry?
 - List constraints have been classified when subsets of lists of size at most 3 are also lists. What about if only subsets of size at most 2 are required lists. Also are NP-complete cases still provable with 3 occurrences, and what about 2 occurrences?