An Investigation of the Multimorphisms of Tractable and Intractable Classes of Valued Constraints

> Mathematics of Constraint Satisfaction: Algebra, Logic and Graph Theory 20 - 24 March 2006

Agenda

- The valued constraint formalism (8 mins)
- Reasoning about tractability (5 mins)
- Expressibility/Multimorphisms (10 mins)
- Open Questions (4 minutes)

Constraint Satisfaction

- We have a set of variables
- We have a set of domain values for each variable
- We have an oracle that determines validity
- We have to find any feasible assignment

Constraint Optimization

- We have a set of variables
- We have a set of domain values for each variable
- We have an oracle that determines cost
- We have to find any optimal assignment

Assignment Costs: Axioms

 \perp is the best value.

op is the worst value.

Local Computation

 \otimes models projection and is commutative, associative and idempotent.

models aggregation and is commutative and associative;

 $\forall a : (a \otimes \top = a) \land (a \oplus \bot) = a;$

 $\forall a : (a \otimes \bot = \bot) \land (a \oplus \top) = \top;$

 \oplus distributes over \otimes :

 $\forall a,b,c : (a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c)).$

We then define: $(a \le b) \Leftrightarrow (a \otimes b = a).$ With respect to \le we can show \otimes and \oplus are monotonic.

VCSP framework

- Here we insist \leq is a total order.
- Then the costs are a valuation structure.
- We write:
 - 0 to mean \perp (the best value);
 - ∞ to mean \top (the worst value);
 - Projection (\otimes) becomes minimum;
- If ⊕ is strictly monotonic (except on ∞) we can also subtract costs (we get ⊖).

Constraint Satisfaction

- consists of (CSP);
 - A set of problem variables;
 - A domain of values;
 - A set of constraints.

- Each constraint has a:
 - Scope: list of concerned variables;
 - Relation: validity of each assignment.

Valued Constraint Satisfaction

- consists of (VCSP):
 - A set of problem variables;
 - A domain of values;
 - A set of constraints;

A totally ordered set with a strictly monotonic aggregation operator

- A set of costs (valuation structure).
- Each constraint has a:
 - Scope: list of concerned variables;
 - Cost Function: cost of each assignment.

Multiplicity: How many times we apply it.

Royal Holloway University of London

A voyage of Discovery

In general the VCSP is NP-hard.It generalizes CSP.

Reasoning about Tractability + 8 minutes

Valued Constraint Languages

- For any domain D, and valuation structure χ, a k-ary cost function is a mapping μ from D^k to χ.
- A valued constraint language (for D and χ) is any set Γ of cost functions.

Tractability?

- We generalised the notion of a polymorphism to a multimorphism.
- All tractable Boolean languages (and many others) are characterised by single multimorphisms.
- Intractable Boolean languages have no multimorphisms (to speak of).

Multimorphisms and Expressibility Do Multimorphisms capture Expressibility in the same way that Polymorphism did for crisp contraints? \mathbf{O} Well – at least I don't think so

Fractional Polymorphism

- Here we generalise the concept of a multimorphism.

Fractional polymorphisms

- An n-ary cost function assigns costs to n-tuples
- A k-ary fractional polymorphism maps k-tuples to weighted sets of k-tuples
- We take k (not necessarily different) n-tuples and add up their costs.
- We apply the fractional polymorphism to them component-wise and add up the weighted costs of the obtained weighted n-tuples
- The weighted sum of the costs cannot be worse than original sum of the costs

0: Start with any two 3-tuples

Cost: $\phi(x,y,z) := x + 2y + 3z$ Fractional Polymorphism: {(min,1),(max,1)}

1: Apply the cost function

Cost: $\phi(x,y,z) := x + 2y + 3z$ Fractional Polymorphism: {(min,1),(max,1)}

2: Add the results

Cost: $\phi(x,y,z) := x + 2y + 3z$ Fractional Polymorphism: {(min,1),(max,1)}

3: Apply the fractional polymorphism

4: Check the transformed result is no bigger

Multimorphisms and Polymorphisms

- A k-ary polymorphism is a singleton fractional polymorphism.
- A multimorphism is a fractional polymorphism with integral weights.

Expressibility and Fractional Polymorphisms + 13 minutes

Expressibility

- We say that φ is expressible over Γ if there is a VCSP, P, and a list of variables, σ, for which the projection onto σ of Sol(P) has cost function φ +/- some constant
- For classical CSPs this notion captured the capability of join and project. Here it captures the equivalent notions

Expressibility

- Every cost function expressed by Γ has the fractional polymorphisms of Γ.
- If, furthermore, any cost functions with the fractional polymorphisms of Γ can be expressed by Γ then the fractional polymorphisms capture complexity.
- The tractability of a valued constraint language would then be determined by its fractional polymorphisms.

The Fractional Polymorphisms Conjecture

Conjecture

For any language Γ , any finite set Γ^* of cost functions improved by the fractional polymorphisms of Γ is polynomial time reducible to Γ .

Fractional Polymorphisms of Feas(Γ)

- Feas(Γ) is the set of cost functions where finite values are replaced by zero.
- It is worth observing that any fractional polymorphism of Γ is also a fractional polymorphism of Feas(Γ).
- ...because a fractional polymorphism is a weighted set of polymorphisms of Feas(Γ).

Does Γ express Feas(Γ)?

If Γ does not express Feas(Γ) then we cannot have the full conjecture holding. Feas(Γ) provides a counterexample.
The conjecture fails.

k-th order Indicator Problem

- Variables: V = D^k
- Scope $\sigma \in V^*$ matches $\rho \in \Gamma$ if each of the k lists of components of σ is in ρ
- The constraint <σ,ρ> is applied whenever σ matches ρ

The valued Indicator Problem

- Consider the |Feas(φ)| indicator problem over the language Feas(Γ)
- Make this into a family of VCSPs by assigning a Multiplicity Variable, x(σ,γ), to each matched scope σ of the (valued) constraint γ in Γ (and add in a constant)
- Is there an assignment to the Multiplicity Variables so that the VCSP obtained expresses φ on σ_φ where V[σ_φ] = Feas(φ)?

Expressibility and Fractional Polymorphisms

New Theorem

- Or, by a variant of Farkas' Lemma we get that there is a fractional polymorphism of Γ that is not a fractional polymorphism of φ.

Does Γ express Feas(Γ)?

- Suppose that Γ expresses Feas(Γ) then, if Pol(Feas(Γ)) ⊆ Pol(Feas(φ)) we can express Feas(φ) over Γ
- Feas(ϕ) + a finite match of ϕ is equal to ϕ
- In this case we get that the fractional polymorphisms of Γ and polymorphisms of Feas(Γ) exactly capture expressibility.

The conjecture holds.

Corollaries

- Any language Γ without any fractional polymorphisms (to speak of) is intractable. (Such a language expresses XOR).
- If Γ expresses (e.g. includes) Feas(Γ) then the expressibility of Γ is known.
- Finite expressiveness is captured by fractional polymorphisms.
- XOR has no fractional polymorphisms to speak of and so expresses any finite cost function.

$Feas(\Gamma)$

- Feas(Γ) is not in general expressible.
- So Γ cannot express all cost functions with the fractional polymorphisms of Γ.

Conclusions and Open Questions +23 minutes

Conclusions - Expressibility

- Fractional Polymorphisms characterise finite expressibility (and so reducibility)
- Fractional Polymorphisms, and classical Polymorphisms, characterise expressibility for languages with feasibility
- Feasibility is not (in general) expressible

Conclusions - Complexity

- No fractional polymorphisms means intractable
- Adding all finite cost functions closed under the same fractional polymorphisms does not change the complexity
- Adding all cost functions closed under the same fractional polymorphisms (and polymorphisms) to a language with feasibility does not change the complexity

Open Questions

- What exactly characterises expressibility ... and so reducibility?
 - Is there something a bit stronger than fractional polymorphism?
- For which languages Γ is Feas(Γ) expressible?
 - What characterises those non-expressible feasibility cost functions?

The Valued Indicator Problem expresses ϕ

If the following equations are satisfied:

∀𝔅 Pol_{|Feas(φ)|}(Γ), ∑_{γ∈Γ}∑_{σ matches Feas(γ)} x(σ,γ) γ(𝔅(σ)) ≥ φ(𝔅(σ_φ))

with equality when F is a projection, then with the multiplicities $x(\sigma,\gamma)$ the valued indicator problem expresses a function that finitely matches ϕ

The Valued Indicator Problem does not express \$

By Farkas' Lemma the following equations:

• $\forall \gamma \in \Gamma, \forall \sigma \text{ matches } \gamma,$ $\sum_{\mathcal{F} \in \mathsf{Pol}(\Gamma)} y(\mathcal{F}) \gamma(\mathcal{F}(\sigma)) = 0$

$$\begin{array}{l} \forall \ \gamma \in \Gamma, \\ \sum_{\mathcal{F} \in \mathsf{Pol}(\Gamma)} \mathsf{y}(\mathcal{F}) \ \phi(\mathcal{F}(\sigma_{\phi})) \ < 0 \end{array}$$

where $y(\mathcal{F}) \ge 0$ whenever \mathcal{F} is not a projection. This solution precisely defines a fractional polymorphism of Γ that is not a fractional polymorphism of ϕ