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Examples of Computational Problems

1. Triangle-freeness
Given Graph G

Question Is there no triangle in G?

2. No-mono-tri
Given A graph G = (V ; E)

Question Can we partition V into A and B such that
both A and B induce triangle-free graphs?

3. Cyclic-ordering
Given Variables V , set of triples (x1, x2, x3) ∈ V 3

Question Is there an assignment s.t. for each triple either
x1 < x2 < x3 or x2 < x3 < x1 or x3 < x1 < x2?



Constraint Satisfaction with Infinite Domains

Template Γ = (D;R1, R2, . . . , Rn) relational structure

CSP(Γ)
Given A finite relational structure S

Question S → Γ? I.e., is there a homomorphism h from S to Γ?

Example Cyclic-ordering is CSP((Q; Cyc)) where Cyc is
{(x1, x2, x3) ∈ Q3 | x1<x2<x3∨x2<x3<x1∨x3<x1<x2}.

Observation A computational problem can be formulated as a CSP if and
only if it is closed under disjoint unions and its complement
is closed under homomorphisms.



ω-Categorical Structures

Question For which infinite templates does the algebraic approach
to constraint satisfaction work?

Theorem [Engeler/Ryll-Nardzewski/Svenonius – see Hodges’97]:
For a countable relational structure Γ, tfae:

1 Aut(Γ) has finitely many orbits of n-tuples, for all n

2 There are finitely many inequivalent first-order formulas
with n free variables in Γ, for all n

3 The first-order theory of Γ has only one countable model,
up to isomorphism

4 Γ is ω-categorical

Examples (Q;<)
(Q; Cyc)



Datalog

Logic programming Datalog = Prolog - function symbols
Database theory Datalog = conjunctive queries + recursion

Example Datalog program Φ:

tc(x, y) ← x<y

tc(x, y) ← tc(x, u), tc(u, y)
false ← tc(x, x)

Terminology <: input relation symbol
tc, false: IDBs
The program Φ has width (2, 3)
The program Φ solves CSP((Q, <))



Datalog for Constraint Satisfaction

References Feder+Vardi’93, Kolaitis+Vardi’98
Observation Datalog programs can be evaluated in polynomial time

Definition A problem C has width l iff it can be solved by a Datalog
program of width (l, k) for some k ≥ l

Examples CSP(Q, <) has width 2
CSP(Q, Cyc) has unbounded width

Questions
Which CSPs can be solved by Datalog programs?

Which Datalog queries can be formulated as CSPs?



Bounded Width for Finite Templates

Width 0 CSP(T ) has width 0 iff its complement is in FO (Atserias’04).

Width 1 Feder+Vardi’93, Dalmau+Pearson’99:
CSP(T ) has width 1 iff P (T )→ T .

P (T ) Vertices: non-empty subsets of vertices of T .
Edges: link A and B in P (T ) if for all a ∈ A there is b ∈ B

and for all b ∈ B there is a ∈ A such that ab ∈ E.
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Width 2 For finite T not known to be decidable



From Monadic Datalog to MMSNP

An SNP sentence is a second order sentence of the form:

∃R1, . . . , Rl.∀x1, . . . , xk.Φ, Φ quantifier free

Observation If Γ has finite domain, CSP(Γ) is contained in monadic
monotone SNP (MMSNP)

Theorem [Feder+Vardi’93,Kun’05]: CSP with finite templates has
a dichotomy if and only if MMSNP has a dichotomy

Example MMSNP is strictly larger than CSP with finite templates

∀x, y, z.¬(E(x, y) ∧ E(y, z) ∧ E(x, z))

Fact Every monadic Datalog query can be formulated with a
MMSNP sentence



From MMSNP to CSP

Theorem [B.+Dalmau STACS06] Let C be a non-empty MMSNP
problem that is closed under disjoint unions. Then
C = CSP(Γ) with ω-categorical Γ

Theorem [Cherlin+Shelah+Shi’03, Covington] For every finite set
N of finite connected structures there is an ω-categorical
structure ∆ that is universal for Forb(N)

This is, for all countable ∆′ we have
∆′ ⊆induced ∆ iff N 9 ∆′ for all N ∈ N

Examples For N = {K3} we get the homogeneous universal
triangle-free graph ⋪.
For N = ∅ get the countable random graph.
∆ is not always homogeneous: N = {C5}



Canonical Datalog Programs

Feder+Vardi’93 Canonical Datalog programs for finite templates
Now Let the template Γ be ω-categorical

Definition The canonical Datalog (l, k)-program for CSP(Γ)
- contains an IDB for every at most l-ary primitive
positive definable relation in Γ
- contains a rule R ← R1, . . . , Rs iff the corresponding
implication is valid in Γ, and contains at most k variables

Example (Part of) the canonical program for CSP(Q, <)
tc(x, y)← x < y

tc(x, y)← tc(x, u), tc(u, y)
false ← tc(x, x)

Theorem CSP(Γ) can be solved with an (l, k)-Datalog program iff
the canonical (l, k)-Datalog program solves CSP(Γ)



Bounded Width Characterizations

Width 0 C := CSP(Γ) has width 0
iff C be be described by forbidden obstructions
iff the complement of C is in FO (Rossmann’05)

Width 1 CSP(Γ) has width one if and only if for some k the
structure P (Γ, k) homomorphically maps to Γ, where
P (Γ, k) is constructed as follows:

- Let Φ be the canonical (1, k)-program for CSP(Γ)
- View Φ as a MMSNP query
- Formulate this query as a CSP as shown before
- the corrsponding ω-categorical template is P (Γ, k)

Width 2 Not clear



Strict Bounded Width

Remark The canonical Datalog program for CSP(Γ) computes
an instance of CSP(Γ′), where Γ′ is the expansion of Γ
by all primitive positive definable relations

Definition An instance S of CSP(Γ) is called globally consistent iff
every partial homomorphism from S to Γ can be
extended to a full homomorphism from S to Γ.

Definition CSP(Γ) has strict width l iff for some k the canonical
(l, k)-program computes on all instances S of CSP(Γ) a
globally consistent instance S′.

Example CSP(Q, <) has strict width 2.



Strict Width l

Definition We say that a k-ary operation f preserves a structure Γ
iff f is a homomorphism from Γk to Γ.

An operation f is a weak near-unanimity operation iff
f(y, x, . . . , x) = f(x, y, x, . . . , x) = . . .

= f(x, . . . , x, y) = f(x, . . . , x)

Example (Q; <) preserved by the ternary median operation
⋪ has no nu-operation (Larose+Tardiff’01)
But ⋪ has a weak nu-operation

Theorem (Dalmau+B. STACS06) Let Γ be an ω-categorical. Then
CSP(Γ) has strict width l if and only if it is preserved
by a l+1-ary weak near-unanimity operation.



Summary

• MMSNP queries that are closed under disjoint unions
can be formulated as constraint satisfaction problems
with ω-categorical templates

• For ω-categorical templates, have notion of
canonical Datalog programs

• Characterizations of (strict) bounded width:
– for templates that are ω-categorical
– width 0
– width 1
– strict width k



Problems

A. Atserias LFP ∩ HOM = Datalog?
New LFP ∩ coCSP = Datalog? for infinite templates

Equivalently LFP ∩ HOM ∩ coUnions = Datalog?
A. Atserias LFP ∩ coCSP = Datalog? for finite templates

Is the width-hirarchy strict for ω-categorical templates?
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