Datalog and Constraint Satisfaction with Infinite Templates

Manuel Bodirsky, Humboldt-Universität zu Berlin

23.3.2006, Oxford

Examples of Computational Problems

2. No-mono-tri Given A graph G = (V; E)Question Can we partition V into A and B such that both A and B induce triangle-free graphs?

3. Cyclic-ordering Given Variables V, set of triples $(x_1, x_2, x_3) \in V^3$ Question Is there an assignment s.t. for each triple either $x_1 < x_2 < x_3$ or $x_2 < x_3 < x_1$ or $x_3 < x_1 < x_2$?

Constraint Satisfaction with Infinite Domains

Template	$\Gamma = (D; R_1, R_2, \dots, R_n)$ relational structure
Given Question	$\begin{array}{l} CSP(\Gamma)\\ A \text{ finite relational structure }S\\ S \to \Gamma? \text{ I.e., is there a homomorphism }h \text{ from }S \text{ to }\Gamma? \end{array}$
Example	Cyclic-ordering is CSP((\mathbb{Q} ; Cyc)) where Cyc is $\{(x_1, x_2, x_3) \in \mathbb{Q}^3 \mid x_1 < x_2 < x_3 \lor x_2 < x_3 < x_1 \lor x_3 < x_1 < x_2\}.$
Observation	A computational problem can be formulated as a CSP if and only if it is closed under disjoint unions and its complement is closed under homomorphisms.

ω -Categorical Structures

- Question For which infinite templates does the algebraic approach to constraint satisfaction work?
- **Theorem** [Engeler/Ryll-Nardzewski/Svenonius see Hodges'97]: For a countable relational structure Γ , tfae:
 - 1 Aut(Γ) has finitely many orbits of *n*-tuples, for all *n*
 - 2 There are finitely many inequivalent first-order formulas with n free variables in Γ , for all n
 - 3 The first-order theory of Γ has only one countable model, up to isomorphism
 - 4 Γ is ω -categorical

 $\begin{array}{ll} \mathsf{Examples} & (\mathbb{Q};<) \\ & (\mathbb{Q};\,\mathsf{Cyc}) \end{array}$

Datalog

Logic programmingDatalog = Prolog - function symbolsDatabase theoryDatalog = conjunctive queries + recursion

Example Datalog program Φ :

$$\begin{array}{rccccccc} \mathsf{tc}(x,y) & \leftarrow & x {<} y \\ \mathsf{tc}(x,y) & \leftarrow & \mathsf{tc}(x,u), \ \mathsf{tc}(u,y) \\ & \mathsf{false} & \leftarrow & \mathsf{tc}(x,x) \end{array}$$

Terminology <: input relation symbol tc, false: IDBs The program Φ has width (2,3) The program Φ solves $CSP((\mathbb{Q}, <))$

Datalog for Constraint Satisfaction

References Observation	Feder+Vardi'93, Kolaitis+Vardi'98 Datalog programs can be evaluated in <mark>polynomial time</mark>
Definition	A problem C has width l iff it can be solved by a Datalog program of width (l,k) for some $k\geq l$
Examples	$CSP(\mathbb{Q},<)$ has width 2 $CSP(\mathbb{Q},Cyc)$ has unbounded width
Questions	Which CSPs can be solved by Datalog programs?
	Which Datalog queries can be formulated as CSPs?

Bounded Width for Finite Templates

- Width 0 CSP(T) has width 0 iff its complement is in FO (Atserias'04).
- Width 1 Feder+Vardi'93, Dalmau+Pearson'99: CSP(T) has width 1 iff $P(T) \rightarrow T$.
 - P(T) Vertices: non-empty subsets of vertices of T. Edges: link A and B in P(T) if for all $a \in A$ there is $b \in B$ and for all $b \in B$ there is $a \in A$ such that $ab \in E$.

Width 2 For finite T not known to be decidable

From Monadic Datalog to MMSNP

An SNP sentence is a second order sentence of the form:

 $\exists R_1, \ldots, R_l. \forall x_1, \ldots, x_k. \Phi, \Phi$ quantifier free

- Observation If Γ has finite domain, $CSP(\Gamma)$ is contained in monadic monotone SNP (MMSNP)
 - **Theorem** [Feder+Vardi'93,Kun'05]: CSP with finite templates has a dichotomy if and only if MMSNP has a dichotomy
 - Example MMSNP is strictly larger than CSP with finite templates

 $\forall x, y, z. \neg (E(x, y) \land E(y, z) \land E(x, z))$

Fact Every monadic Datalog query can be formulated with a MMSNP sentence

From MMSNP to CSP

- **Theorem** [B.+Dalmau STACS06] Let C be a non-empty MMSNP problem that is closed under disjoint unions. Then $C = \mathsf{CSP}(\Gamma)$ with ω -categorical Γ
- **Theorem** [Cherlin+Shelah+Shi'03, Covington] For every finite set \mathcal{N} of finite connected structures there is an ω -categorical structure Δ that is universal for Forb(\mathcal{N})

This is, for all *countable* Δ' we have $\Delta' \subseteq_{induced} \Delta \text{ iff } N \not\rightarrow \Delta' \text{ for all } N \in \mathcal{N}$

Examples For $\mathcal{N} = \{K_3\}$ we get the homogeneous universal triangle-free graph $\not\triangleleft$. For $\mathcal{N} = \emptyset$ get the countable random graph. Δ is not always homogeneous: $\mathcal{N} = \{C_5\}$

Canonical Datalog Programs

- Feder+Vardi'93 Canonical Datalog programs for finite templates Now Let the template Γ be ω -categorical
 - **Definition** The canonical Datalog (l, k)-program for $CSP(\Gamma)$
 - contains an IDB for every at most $l\mbox{-ary}$ primitive positive definable relation in Γ
 - contains a rule $R \leftarrow R_1, \ldots, R_s$ iff the corresponding implication is valid in Γ , and contains at most k variables
 - Example (Part of) the canonical program for $CSP(\mathbb{Q}, <)$ $tc(x, y) \leftarrow x < y$ $tc(x, y) \leftarrow tc(x, u), tc(u, y)$ false $\leftarrow tc(x, x)$
 - **Theorem** $\mathsf{CSP}(\Gamma)$ can be solved with an (l, k)-Datalog program iff the canonical (l, k)-Datalog program solves $\mathsf{CSP}(\Gamma)$

Bounded Width Characterizations

- Width 0 $C := \mathsf{CSP}(\Gamma)$ has width 0 iff C be be described by forbidden obstructions iff the complement of C is in FO (Rossmann'05)
- Width 1 $\mathsf{CSP}(\Gamma)$ has width one if and only if for some k the structure $P(\Gamma, k)$ homomorphically maps to Γ , where $P(\Gamma, k)$ is constructed as follows:
 - Let Φ be the canonical $(1,k)\text{-}\mathsf{program}$ for $\mathsf{CSP}(\Gamma)$
 - View Φ as a MMSNP query
 - Formulate this query as a CSP as shown before
 - the corrsponding $\omega\text{-categorical template is }P(\Gamma,k)$

Width 2 Not clear

Strict Bounded Width

- Remark The canonical Datalog program for $CSP(\Gamma)$ computes an instance of $CSP(\Gamma')$, where Γ' is the expansion of Γ by all primitive positive definable relations
- **Definition** An instance S of $CSP(\Gamma)$ is called globally consistent iff every partial homomorphism from S to Γ can be extended to a full homomorphism from S to Γ .
- **Definition** $\mathsf{CSP}(\Gamma)$ has strict width l iff for some k the canonical (l,k)-program computes on all instances S of $\mathsf{CSP}(\Gamma)$ a globally consistent instance S'.

Example $CSP(\mathbb{Q}, <)$ has strict width 2.

Strict Width *l*

Definition We say that a k-ary operation f preserves a structure Γ iff f is a homomorphism from Γ^k to Γ .

An operation f is a weak near-unanimity operation iff $f(y, x, \dots, x) = f(x, y, x, \dots, x) = \dots$ $= f(x, \dots, x, y) = f(x, \dots, x)$

- Example $(\mathbb{Q}; <)$ preserved by the ternary median operation \measuredangle has no nu-operation (Larose+Tardiff'01) But \measuredangle has a weak nu-operation
- **Theorem** (Dalmau+B. STACS06) Let Γ be an ω -categorical. Then CSP(Γ) has strict width l if and only if it is preserved by a l+1-ary weak near-unanimity operation.

Summary

- MMSNP queries that are closed under disjoint unions can be formulated as constraint satisfaction problems with ω -categorical templates
- For ω -categorical templates, have notion of canonical Datalog programs
- Characterizations of (strict) bounded width:
 - for templates that are ω -categorical
 - width 0
 - width 1
 - strict width k

Problems

Is the width-hirarchy strict for ω -categorical templates?

References

Introductory book

Hodges'97 A shorter model theory, Cambridge University Press

Papers referenced in this talk

Atserias'04	On Digraph Coloring Problems and Treewidth Duality, LICS'04
B.,Dalmau'06	Datalog and Constraint Satisfaction with Infinite Templates, STACS'06
Cherlin,Shelah,Shi'99	Universal graphs with forbidden subgraphs and algebraic closure,
	Advances in Applied Mathematics 22, p. 454-491
Covington'90	Homogenizable Relational Structures, Illinois Journal of Mathematics
	34, p.731-743
Dalmau+Pearson'99	Closure Functions and Width 1 Problems, CP'99
Feder+Vardi'93	Monotone Monadic SNP and Constraint Satisfaction, STOC'93
Kolaitis, Vardi'98	Conjunctive-query Containment and Constraint Satisfaction, PODS'98
Kun'05	Every Problem in MMSNP is equivalent to a CSP, unpublished
Larose, Tardiff'01	Strongly Rigid Graphs and Projectivity, Multiple-Valued Logic 7, p.
	339-361.
Rossmann'05	Existential Positive Types and Preservation under Homomorphisms,
	LICS'05