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Over 10 years ago Feder and Vardi introduced the logic
MMSNP as

• a logical ‘manifestation’ of

CSP = {CSP(A) : A a finite structure}

so as to hopefully

• use logical tools and techniques from finite model theory to
obtain a dichotomy result.

This talk is about better understanding the difference between
problems in MMSNP and problems in CSP.

(Joint work with Florent Madelaine, Durham University.)



Defining MMSNP
What does it mean for a homomorphism to exist from a graph G

to some fixed graph H?

“There exists a map f from |G| to |H| such that . . .

• For each vertex h of |H|, define the set Mh of vertices of G

mapped to h by f .

. . . for every pair (u, v) of vertices of G . . .

• Allow only universal quantification over vertices.

. . . if (u, v) is an edge of G then (f (u), f (v)) is an edge of H.”

• We are only interested in ‘positive’ information (about
edges, not non-edges) so concentrate on edges (and not
non-edges) in any formula.

• Don’t allow the equality relation as homomorphisms don’t
‘distinguish’ between different elements.



Monotone monadic SNP without inequality (MMSNP) is the
fragment of ESO consisting of formulae of the form

∃M∀t
∧

i

¬
(

αi(σ, t) ∧ βi(M, t)
)

,

where M is a tuple of monadic relation symbols (not in σ), t is a
tuple of (first-order) variables and for every negated conjunct
¬(αi ∧ βi):

• αi consists of a conjunction of positive atoms involving
relation symbols from σ and variables from t

• βi consists of a conjunction of atoms or negated atoms
involving relation symbols from M and variables from t.

(Dropping any one of ‘monotone’, ‘monadic’ and ‘without
inequalities’ results in a class of problems that does not have a
dichotomy.)



An example: consider the signature σ2 = 〈E(−,−)〉.

Define Φ0 as

∃R ∃W ∃B ∀x ∀y
(

¬(¬R(x) ∧ ¬W (x) ∧ ¬B(x))

∧¬(R(x) ∧ B(x)) ∧ ¬(R(x) ∧ W (x)) ∧ ¬(B(x) ∧ W (x))

∧¬(E(x , y) ∧ R(x) ∧ R(y)) ∧ ¬(E(x , y) ∧ W (x) ∧ W (y))

∧¬(E(x , y) ∧ B(x) ∧ B(y))
)

.

The problem defined by Φ0 is 3-COLOURABILITY, which is in
CSP.

In fact, CSP ⊆ MMSNP (simply write out the definition of a
homomorphism as an MMSNP formula, hinted at above).



An example: define Φ1 over σ2 as

∃C ∀x ∀y ∀z
(

¬
(

E(x , y) ∧ E(y , z) ∧ E(z, x) ∧ C(x) ∧ C(y) ∧ C(z)
)

∧¬
(

E(x , y) ∧ E(y , z) ∧ E(z, x) ∧ ¬C(x) ∧ ¬C(y) ∧ ¬C(z)
))

.

The problem defined by Φ1 is NON-MONOCHROMATIC
TRIANGLE, which is not in CSP:

• Feder and Vardi showed this using a probabilistic argument

• Madelaine and S. did so constructively.

So, CSP ⊂ MMSNP, . . . but Feder and Vardi proved that for
every Ω ∈ MMSNP, there exists Ω′ ∈ CSP such that:

• Ω reduces to Ω′ via a polynomial-time Karp reduction

• Ω′ reduces to Ω via a randomized polynomial-time Turing
reduction.

∗ ∗ ∗ Gabor Kun has recently removed the word ‘randomized’.



Another realisation of MMSNP

A coloured structure (A, aT) is a σ-structure A together with a
homomorphism aT to a σ-structure T.

A T-pattern is a structure (A, aT) so that A has no isolated
elements.

A representation is a pair (F , T), where F is a set of forbidden
patterns and T is the target.

A structure (A, aT) is valid w.r.t. (F , T) if no forbidden pattern
of F maps homomorphically into (A, aT).

A structure A is valid w.r.t. (F , T) if there exists a
homomorphism aT : A → T such that no forbidden pattern of F

maps homomorphically into (A, aT).



Observation: a graph G is in the problem
NON-MONOCHROMATIC TRIANGLE iff its vertices can be
coloured black or white so that

• there is no homomorphism of the ‘all-white’ triangle into G,
and

• there is no homomorphism of the ‘all-black’ triangle into G.

Moreover, the ‘forbidden patterns’ can be ‘read from’ the
defining formula Φ1:

∃C ∀x ∀y ∀z
(

¬
(

E(x , y) ∧ E(y , z) ∧ E(z, x) ∧ C(x) ∧ C(y) ∧ C(z)
)

∧¬
(

E(x , y) ∧ E(y , z) ∧ E(z, x) ∧ ¬C(x) ∧ ¬C(y) ∧ ¬C(z)
))

.

The forbidden patterns problem, FPP(F , T), given by the
representation (F , T) is the problem whose yes-instances are
exactly those structures that are valid w.r.t. (F , T).



Another example: define Φ2 as

∃C ∀x ∀y
(

¬
(

E(x , y) ∧ C(x)
)

∧ ¬
(

E(x , x) ∧ C(x) ∧ C(y)
))

.

It is not so easy to see how the problem defined by Φ2 can be
realised as a forbidden patterns problem; but Φ2 is equivalent
to the disjunction of Φ′

2 and Φ′′

2 defined as

Φ′

2 = ∃C ∀x ∀y
(

¬
(

E(x , y) ∧ C(x) ∧ C(y)
)

∧¬
(

E(x , y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

E(x , x) ∧ C(x)
))

and

Φ′′

2 = ∃C ∀x ∀y
(

¬
(

E(x , y) ∧ C(x) ∧ C(y)
)

∧¬
(

E(x , y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

¬C(y)
))

.



We can see how to realise the problem defined by Φ2 as the
union of the forbidden patterns problems corresponding to Φ′

2
and to Φ′′

2:

E
T

E
T

Φ1
'Φ2

''Φ2



In fact, any sentence of MMSNP can be written as a finite
disjunction of primitive sentences, where a primitive sentence is
such that for every negated conjunct ¬(α ∧ β):

• for every first-order variable x that occurs in ¬(α ∧ β) and
for every monadic symbol C in M, exactly one of C(x) and
¬C(x) occurs in β

• unless x is the only first-order variable that occurs in
¬(α ∧ β), an atom of the form R(t), where x occurs in t and
R is a relation symbol from σ, must occur in α.

So, primitive sentences are the ones we can ‘read’ (to obtain
forbidden patterns) and we restrict ourselves to primitive
sentences of MMSNP.



Theorem
The class of problems captured by the primitive fragment of the
logic MMSNP is exactly the class FPP of forbidden patterns
problems.

Proof: Let Φ = ∃M∀tϕ be a primitive sentence of MMSNP.

A conjunction χ(M, x) of atoms and negated atoms involving
only relation symbols from M and the sole first-order variable x ,
where for each relation symbol C in M, exactly one of C(x) or
¬C(x) occurs, is referred to as an M-colour.

So, associated with every negated conjunct ¬(α∧ β) in Φ (more
precisely, with β) and every variable occurring in this negated
conjunct, is a unique M-colour; in fact, β can be written as the
conjunction of these M-colours.



Construct the structure T from Φ as follows:

• its domain T consists of all M-colours χ(M, x) that are not
explicitly forbidden in Φ, i.e., some ¬(α ∧ β) is s.t. α is
empty and β is the M-colour χ; and

• for every relation symbol R of arity m in σ, set RT := T m.

Start with F := ∅, and for every negated conjunct ¬(α∧ β) in ϕ,
add to F the structure (Aα, aT

β), where:

• the domain of Aα consists of all first-order variables that
occur in the negated conjunct ¬(α ∧ β)

• for every relation symbol R in σ, there is a tuple RAα(t) iff
the atom R(t) appears in α

• for every x ∈ |Aα|, set aT
β(x) := χ, where χ is the M-colour

of x in β.

Then the problem defined by Φ is FPP(F , T).



Normal forms for representations

We have essentially reduced the question of whether a problem
in the primitive fragment of MMSNP is in CSP to whether a
problem defined as FPP(F , T) is in CSP.

We now develop a normal form for a representation (F , T) so
as to enforce six properties.

Assume that all forbidden patterns are connected.

(p1) Any structure is valid if, and only if, it is weakly valid.

A structure A is weakly valid for (F , T) if there exists a coloring
a : A → T such that no forbidden pattern embeds into (A, a).



A homomorphic image of (B, b) ∈ F is a structure (C, c) such
that there is an epimorphism B → C with the properties that:

• for each symbol R ∈ σ and for each tuple RC(t′), there
exists a tuple RB(t) such that h(t) = t′;

• the following diagram commutes:

B C

T

T
b

h

T
c

Denote all homomorphic images of patterns of F by HF .

Lemma
The representation (HF , T) is equivalent to (F , T), and
(HF , T) satisfies p1.



p2 Every pattern of F is automorphic.

A retract of a structure (B, b) is a structure (A, a) for which
there is a monomorphism ι : A → B and an epimorphism
s : B → A such that s ◦ ι = idA, b ◦ ι = a and s ◦ a = b.

A retract (A, a) of (B, b) is a proper retract if A 6≈ B.

A coloured structure is automorphic if it has no proper retracts,
and a core of a coloured structure is an automorphic retract.

Lemma
Every T-coloured structure has a T-coloured core that is unique
up to T-coloured isomorphism.



Let (F ′, T) be obtained from (F , T) by replacing a pattern of F

with its core. We call this a core-reduction on (F , T).

Lemma
If (F ′, T) is a core-reduction of (F , T) then

• (F ′, T) is equivalent to (F , T)

• if (F , T) satisfies p1 then so does (F ′, T).



p3 It is not the case that there is a monomorphism
(B1, b1) → (B2, b2), for any distinct patterns (B1, b1) and
(B2, b2) of F .

Let (F , T) be a representation and let (B1, b1) and (B2, b2) be
distinct patterns of F such that there is a monomorphism
(B1, b1) → (B2, b2).

Let (F ′, T) be obtained by removing (B2, b2) from F .

Then (F ′, T) is an embed-reduction of (F , T).

Lemma
If (F ′, T) is an embed-reduction of (F , T) then

• (F ′, T) is equivalent to (F , T)

• if (F , T) satisfies p1 then so does (F ′, T).



p4 No pattern of F is conform.

A pattern (A, a) is conform iff A consists solely of an
antireflexive tuple RA(t); that is, there exists a relation symbol
R in σ such that RA = {t}, where every element of |A| occurs
in t exactly once, and for every other relation symbol R′ in σ, we
have R′A = ∅.

Let (F , T) be a representation and let (R(t), πT) be a conform
pattern of F .

Let T′ be T with R(πT(t)) removed.

Let F ′ be the patterns of F that are also T′-patterns; that is,
the patterns (B, b) ∈ F for which b(u) 6= π(t), for any tuple
RB(u).



We say that (F ′, T′) is a conform-reduction of (F , T).

Lemma
If (F ′, T) is a conform-reduction of (F , T) then

• (F ′, T) is equivalent to (F , T)

• if (F , T) satisfies p1 then so does (F ′, T).
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p5 Every forbidden pattern is biconnected.

Let the forbidden pattern (A, aT) of (F , T) be such that A has
an articulation point x such that (A, aT) = (B, bT)|x(C, cT).

Let T′ be built from T so that

• aT(x) = bT(x) = cT(x) is replaced in T′ by k0 and k1

• set RT′

(t) whenever RT(̃t) holds, with t obtained from t̃ by
replacing every occurrence of aT(x) with either k0 or k1.

Let F ′ be built from F so that

• (A, aT) = (B, bT)|x(C, cT) is replaced by (B, bT′

) and
(C, cT′

) where bT′

(x) = k0 and cT′

(x) = k1.

• Every occurrence of the colour aT(x) in any forbidden
pattern (including the two above) is replaced by both k0

and k1 (so lots of new forbidden patterns corresponding to
one old one).

(F ′, T′) is a Feder-Vardi reduction of (F , T).



Lemma
If (F ′, T) is a Feder-Vardi-reduction of (F , T) then

• (F ′, T) is equivalent to (F , T)

• if (F , T) satisfies p1 then so does (F ′, T).

However, ‘splitting’ forbidden pattern of F results in more
forbidden patterns in F ′, albeit ‘more connected’ ones and
ones very similar in structure.

However, by working with compact representations, where
forbidden patterns are actually families of forbidden patterns,
the members of which only differ in their colourings, and a
consequent notion of a Feder-Vardi-reduction relating to
compact representations, we can show that any sequence of
Feder-Vardi-reductions can be assumed to be finite.



Hence, we are now in a position to enforce properties p1 − p5.

Essentially, we continually ‘hit’ (HF , T) with core-, embed-,
conform- and Feder-Vardi-reductions so as to enforce
properties p1 − p5.

It can be shown that this process eventually halts so that we
may assume that (F , T) satisfies the properties.

Our final property is

p6 The representation is automorphic.

Any representation (F , T) satisfying properties p1 − p6 is
normal.

Every representation can be (effectively) reduced to an
equivalent normal representation.

Corollary
Let (F , T) be a normal representation. If F 6= ∅ then the target
T is not valid w.r.t. (F , T).



Recap

Any problem in MMSNP can be described by a disjunction of
primitive sentences.

The primitive sentences of MMSNP equate to FPP.

Assume all representations are connected.

Any problem in FPP can be defined by a normal representation.

If a problem Ω in FPP can be defined by a (normal)
representation (F , T) with F = ∅ then Ω = CSP(T).

Theorem
If a problem Ω in FPP can be defined by a normal
representation (F , T) with F 6= ∅ then Ω 6∈ CSP.

Henceforth, the representation (F , T) is normal, connected
and F 6= ∅.



Constructing counter-examples

A family of structures W is said to be a witness family for (F , T)
iff W ⊆ FPP(F , T) and for any structure B, there exists W ∈ W

such that either

• W 6→ B, or

• for some h : W → B, the homomorphic image h(W) does
not belong to FPP(F , T).

Suppose that W is a witness family for (F , T) and
FPP(F , T) = CSP(B).

There exists W ∈ W such that either

• W 6→ B - contradiction

or

• h : W → B and h(W) 6∈ FPP(F , T) - contradiction, as
h(W) → B.



As (F , T) is normal, T is not valid w.r.t. (F , T).

So, some forbidden pattern (A, aT) embeds into (T, ιT) via
some monomorphism f .

As (A, aT) is biconnected and non-conform, it contains a cycle;
let C be the image of this cycle under f (and so C is a cycle).

‘Break’ C at some articulation point x , into x and x ′, so that x ′

inherits x ’s colour. Continue until no forbidden pattern embeds,
and call the resulting gadget (G, gT) (which is valid for (F , T)).



Suppose that G has pi plugpoints of type i , for i = 1, 2, . . . , k .

Let σ′ = 〈R〉, with the arity of R equal to p1 + p2 + . . . + pk .

From Feder and Vardi:

Theorem
Fix r and s. For every structure B of size n, there exists a
structure B′ of size na (where a depends solely on r and s)
such that:

• the girth of B′ is greater than r ;

• B′ → B; and

• for every structure C of size at most s, B → C if, and only if,
B′ → C.

Furthermore, B′ can be constructed from B in randomized
polynomial time.



Let γ be the length of a longest cycle in any forbidden pattern of
F .

Suppose that FPP(F , T) = CSP(B) where |B| = b.

Using the above theorem, there is a σ′-structure Q of girth
greater than γ with the property that for every map
h : |Q| → {0, 1, . . . , b − 1}, there must exist at least one tuple
RQ(u1, u2, . . . , uk ) such that for every i ,

h(ui
1) = h(ui

2) = . . . = h(ui
pi
).

Define WB as follows.

• Initialize the domain of WB to be that of Q.

• For every tuple RQ(u1, u2, . . . , uk ), plug a copy of the
gadget G by identifying the pi type-i plug-points of G with
the pi ‘socket-points’ ui of |Q|, for each i = 1, 2, . . . , k .



We want a T-colouring of WB:

w : WB → T (inherit the colouring G → T).

We want (WB, w) ∈ FPP(F , T):

Suppose that (WB, w) is not valid w.r.t. (F , T); so, some
forbidden pattern (A, a) embeds into (WB, w).

As (A, a) is biconnected and non-conform, there exists a cycle
in (WB, w) of length at most γ.

This cycle yields a cycle of length at least 2 and at most γ in Q -
contradiction; so, (WB, w) is valid w.r.t. (F , T).



We want the witness property :

If WB 6→ B, we are done; so, suppose that h : WB → B.

h induces a map ĥ : |Q| → {0, 1, . . . , b − 1}, and so there exists
a tuple RQ(u1, u2, . . . , uk ) for which for every i ,

ĥ(ui
1) = ĥ(ui

2) = . . . = ĥ(ui
pi
).

Thus, h(WB) contains a homomorphic image of G, where all
same-type plug-points map to the same element of h(WB); so,
h(WB) contains a homomorphic image of T via h̃.

Let f be any homomorphism f : h(WB) → T; so, f ◦ h̃ : T → T.

By the normal form corollary, there is a forbidden pattern (A, a)
such that f̃ : (A, a) → (T, f ◦ h̃).

Consequently, h̃ ◦ f̃ : (A, a) → (h(WB), f ) and
h(WB) 6∈ FPP(F , T).



Tidy-up

Theorem
Let Φ be any sentence of MMSNP. Corresponding to Φ is an
effectively derivable set of normal representations. The
following are equivalent.

• There are no forbidden patterns in any of the normal
representations.

• The problem defined by Φ is in CSP.

If |F | = 1 and T is trivial then the question of whether (F , T) is
in CSP corresponds to the duality problems from yesterday.

In particular, given a tree X , we can build (the same) DX (as
Nešetřil) using Feder-Vardi-reductions.

Our method gives an incremental construction of DX .



Open problems
Bodirsky has shown that every connected problem in FPP is a
constraint satisfaction problem with a (nice) infinite template.

So, we can decide whether such infinite constraint satisfaction
problems are actually in (finite) CSP.

There are problems not in FPP that are ‘nice’ infinite constraint
satisfaction problems (the template is countable and
ω-categorical) so:

Open Problem: Find a good logic to capture ‘nice’ infinite CSP.

Omitted from this talk is the notion of recolouring (a kind of
morphism between representations).

Open Problem: Does the recolouring problem for
representations correspond to the containment problem?

(This open problem is related to whether an infinite countable
structure is a core.)


