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Abstract

A near unanimity function, or nufs ann-variable
operation that satisfies the identities

flx,...,x,y) = flz,...,z,y,x)=--- fly,z,...,x) = .

Relational structures invariant under such operations
satisfy remarkable properties. We present a survey of
various results in connection with the complexity of
Constraint Satisfaction Problems.
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CSP’s

Our point of view:

CSP’s = homomorphism problems with a fixed target
(Feder & Vardi 1999, Kolaitis & Vardi 2000)
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CSP’s

Our point of view:

CSP’s = homomorphism problems with a fixed target
(Feder & Vardi 1999, Kolaitis & Vardi 2000)

Let H = (A;0,(i € I)) be a fixed relational structure:

for eachi € I (thesignature ofH),
6, 1s a relation onA of arity r; (a subset ofd™)

I'={6; .+ € I} is the set otonstraint relations.
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Definition of CSP(H)

CSP(H) (orCSP(I")) is the following decision
problem:
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Definition of CSP(H)

CSP(H) (orCSP(I")) is the following decision
problem:

e Input: A structureG = (X; p;(i € 1))
» Question: Is there a homomorphism G — H ?

ahomomorphisns a mapf : X — A such that
f(pz) C ¢, foralli € I.

We writeG — H (G 4 H) whenG admits (does not
admit) a homomorphism té .
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Algebras

An operationf : A" — A preservesher-ary relation
6 on A if the following holds:
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Algebras

An operationf : A" — A preservesher-ary relation
6 on A if the following holds:

ai1.1 a1.n by
: f
N
Ay 1 ar,n br
columns in@ v,

Applying f to the rows of the matrix whose columns
are inf yields a tuple of.
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Algebras, cont’'d

f preserved = 6 Is invariant underf

A structureH Is invariant under an operatighor
admits{ If all its basic relations are invariant undgr
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Algebras, cont’'d

f preserved = 6 Is invariant underf

A structureH Is invariant under an operatighor
admits{ If all its basic relations are invariant undgr

Example: the structurg0, 1}; 8) with
0 ={(0,1),(1,0), (1, 1)} is
e invariant underf(z,y) =z V y
 notinvariant undep(z,y) = x Ay
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Algebras, cont’'d

Given a sel’ of relations onA4, construct:
F' = all operations oM preserving all relations In.

The algebra associated@os P(T):
A= (A F)
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Algebras, cont’'d

Given a sel’ of relations onA4, construct:
F' = all operations oM preserving all relations In.

The algebra associated@os P(T):
A= (A F)

Constraint relations- subalgebras of powers éf.

The operations one can build frof(and
projections) via composition are called tlsemsof A.
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A conjecture

(FV, BJK)
Roughly speaking, it is expected that:
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If the constraint sel’ consists of subalgebras of
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CSP(T) is tractable.

Well-behaved:

A admits terms obeying “nice” identities
l.e. target structure admits “nice” terms
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A conjecture
(FV, BJK)
Roughly speaking, it is expected that:

If the constraint sel’ consists of subalgebras of
powers of asufficiently well behavedlgebra, then

CSP(T) is tractable.

Well-behaved:

A admits terms obeying “nice” identities
l.e. target structure admits “nice” terms

more formally, in what follows, we’ll refer to such
algebras agsice enough
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Nuf’s
Letn > 3.

A near unanimity function, or nufs ann-variable
operation that satisfies the identities

flx,...,z,y) = flz,...,x,y,x) =--- fy,z,...,x) = .
Notice: an nuf iIsdempotenti.e. satisfies

flx,z,...,z) =x.
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Nuf’s, cont’d

Concept first appears:
Huhn, 1972; Baker & Pixley 1975.

Casen = 3 widely studied:majority operations

» 50’s and 60’s: majority decision: voting
paradoxes, etc.

» Wille 1970: majority terms of lattices,
congruences

« Bandelt et al.: absolute retracts
» Pouzet et al.. Metric point of view
» Etc.
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Elementary facts about nuf’s

- Prototypical example: theedian
m(z,y, 2) = max(min(z, y), min(z, 2), min(y, 2))

=(xAy)V(xAz)V(yAz)

- |If a structureH admits an nuf witim variables, it
admits one witlm + 1 variables (just add a fictitious
variable)
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Two fundamental properties

Let H be a structure. A paliG, p) is azig-zagfor H
if
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Two fundamental properties
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if
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Two fundamental properties
Let H be a structure. A pailiGG, p) is azig-zagfor H
if
» (G Is a structure of the same type HS
* plis a partial map fronds to H;

» p does not extend to a full homomorphism from
(- to H and

» the pair(G, p) is minimal with the above
properties.
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A zig-zag




Nuf’s and zig-zags

Theorem|[Zadori 1997; G. Tardos 1986]

Let H be a structure.
Then the following are equivalent:

1. H admits an nuf of arity: + 1;
2. every zig-zagG, p) for H satisfiegdom p| < n.
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Nuf’s and zig-zags, cont’'d

Sketch of proof.
(1) = (2): let f be an nuf of arityn + 1.

- let (G, p) be a zig-zag; suppose for a
contradictionrdom p = {x1, ..., i1}
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(1) = (2): let f be an nuf of arityn + 1.

- let (G, p) be a zig-zag; suppose for a
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e let p; be the restriction of to domp \ {z;}: it
extends to somg;;
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Nuf’s and zig-zags, cont’'d
Sketch of proof.
(1) = (2): let f be an nuf of arityn + 1.

- let (G, p) be a zig-zag; suppose for a
contradictionrdom p = {x1, ..., i1}

e let p; be the restriction of to domp \ {z;}: it
extends to somg;;

« thenf(p1,- - ,pni1) IS an extension op:

f(P1- - s Prgr)(ws)
:f(p(xi)v e 7p($73)7 *7p($73)7 e 7p(xi))
=p(x;).
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Nuf’s and zig-zags, cont’'d

Sketch of proof, cont’d
(2) = (1):

» let G = A" and define the partial map

ple,...,x,y,x...,x) =2

for all tuples of this form;
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Nuf’s and zig-zags, cont’'d

Sketch of proof, cont’d
(2) = (1):

» let G = A" and define the partial map
ple,...,x,y,x...,x) =2

for all tuples of this form;

« the restriction op to any set with at most
tuples is extendible (appropriate projection)

(G, p) non-extendible=- contains a zig-zag;
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Nuf’s and zig-zags, cont’'d

Sketch of proof, cont’d
(2) = (1):

» let G = A" and define the partial map

ple,...,x,y,x...,x) =2

for all tuples of this form;

« the restriction op to any set with at most
tuples is extendible (appropriate projection)

(G, p) non-extendible=- contains a zig-zag;
* hencep Is extendible;H admitsn + 1-ary nuf.
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n-decomposability

Theorem |[Baker & Pixley 1975]

Let A be a finite algebra.
Then the following are equivalent:

1. A has an nuf term of arity, + 1;

2. every subalgebra of a power Afis determined
by its projections onta indices.

l.e. If I' admits an nuf of arity: + 1, then constraints
In I" are determined by their projections aractors.
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Tractabllity

Theorem [Feder & Vardi 1993, 1998]
If I Is Invariant under an nuf of arity. + 1 then

CSP(I') has widthn. In particular, CSP(T") is
tractable.

In fact, C'S P(I') hasbounded strict width

l.e. once local consistency has been achieved, partial
solutions may be extended greedily to global
solutions.

(strongn + 1-consistency=- global consistency, see
Jeavons, Cohen & Cooper 1998)
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Tractabllity, cont’'d

Furthermore:
Theorem [FV 1993, 1998; JCC 1998]

Let]" be a set of constraint relations.
Then the following are equivalent:

1. I' is invariant under an nuf of arity, + 1,
2. CSP(I') has strict widthn.
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Examples

« the median o0, 1} preserves all binary
relations;
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Examples
« the median o0, 1} preserves all binary
relations;
« 2—-COL=CSP({(0,1),(1,0)});

e 2 — SAT is also of the forrC'SP(I") wherel
consists only of binary relations di, 1};

both problems have strict width 2.
HORNS AT does not have strict width (Vn):

(1,1,..., 1) €{X;V---VX,11}

but containg1,1,...,1,0,1,...,1) for any
placement of the 0.
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Complexity

We've seen:
Invariance under an nab- CSP(I") € P
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Complexity

We've seen:
Invariance under an nab- CSP(I") € P

Can we do better ?

Example: if|A| = 2, andI is invariant under a
majority operation (i.e. the median), thérb' P(T") is
a subproblem o2 — SAT, hence

CSP(I') € NL.
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Majority implies NL
Theorem[Dalmau & Krokhin, 2006]

Let H be a structure admitting a majority operation.
ThenCSP(H)isinNL.
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Majority implies NL
Theorem[Dalmau & Krokhin, 2006]

Let H be a structure admitting a majority operation.
ThenCSP(H) isin NL.

In fact, they show more:
H hasbounded path width duality
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Duality

Let H be a structure. Aobstructionfor H IS a
structureG of the same type such thét -~ H.
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Duality
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obstructions ford such that;? A~ H if and only If

there existsy’ € O such thatt! — G.

H is said to havdinite (tree)duality if it has a
complete set of obstructions that is finite (consists of
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Duality

Let H be a structure. Aobstructionfor H IS a
structureG of the same type such thét -~ H.

A complete set of obstructiofgr H Is a setD of
obstructions ford such that;? A~ H if and only If

there existsy’ € O such thatt! — G.

H is said to havdinite (tree)duality if it has a
complete set of obstructions that is finite (consists of
trees).

H hasbounded path width duality it has a complete
set of obstructions that consists of structures with ...
bounded path width.
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Related results, cont'd

Dalmau has shown that on 2 elements, problems
Invariant under an nuf (of any arity) have bounded
path duality, and hence areNL.
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Related results, cont'd

Dalmau has shown that on 2 elements, problems
Invariant under an nuf (of any arity) have bounded
path duality, and hence areNL.

This prompts:
Question. If H admits an nuf, i$'SP(H) in NL ?

(We'll see later that a slight strengthening of the
notion of nuf guarantees this)
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Decidability issues

A natural guestion:
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Decidability issues

A natural guestion:

Given a structuréd, does it admit an nuf ?
This is not known to be decidable.

For algebras, however:

Theorem[Maroti, 2005]Let A = (A; F') be an
algebra withA and F' finite. Then it Is decidable to
determine IfA has an nuf term operation.
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Decidability issues

A natural guestion:

Given a structuréd, does it admit an nuf ?
This is not known to be decidable.

For algebras, however:

Theorem[Maroti, 2005]Let A = (A; F') be an
algebra withA and F' finite. Then it Is decidable to
determine IfA has an nuf term operation.

(Makes use of Lovasz’s proof of Kneser’s conjecture !!)
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Partial results

 Forfixedarity: poly-time algorithm (Feder &
Vardi 1993)
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Partial results

 Forfixedarity: poly-time algorithm (Feder &
Vardi 1993)

« H a poset: poly-time decidable (Kun & Szabo
2001)

« H a symmetric, reflexive graph: poly-time
decidable (L., Loten & Zadori 2005)

The last two algorithms consist of a “dismantling” of
the structured? to its diagonal.
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Restrictions on structures

* list-homomorphism problems on graphs
* retraction problems on posets and graphs
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List-homomorphism problems

Let H = (A;T") be a fixed structure. Consider the
following decision problem:

* Input: A structure’ andvg a list L, C A;

* Question: Is there a homomorphisim G — H
such thatf(g) € L, Vg ?
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List-homomorphism problems

Let H = (A;T") be a fixed structure. Consider the
following decision problem:

* Input: A structure’ andvg a list L, C A;

* Question: Is there a homomorphisim G — H
such thatf(g) € L, Vg ?

e (0,1} o 2
¢ {0,2} o 1
o {1,2} O
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List-homomorphisms, cont’'d

List-hom problems translate into CSP as follows:

add to constraint relations @f all unary constraint
relations, I.e. create

H*= (A, TU{L:LC A}).

The list-homomorphism problem fd¥ is CSP(H*).

CSP’s of this form are also known asnservativean
operationf preserves every subset afiff it Is
conservative, I.e.

flx1,...,xn) €{21, ..., 20}
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List-homomorphisms, cont’'d

Theorem [Bulatov 2003]If the algebra associated to
a conservative CSP Is “nice enough” then the CSP Is
tractable; otherwise it IsNP-complete.

The dividing line in this dichotomy result has been
Investigated in detall for list-homomorphism problems
on various types of graphs, e.g. symmetric graphs:
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List-hom for symmetric graphs
Theorem[Feder, Hell & Huang 2003l et /7 be a
graph. Then the following are equivalent:

1. H Is a bi-arc graph;
2. H admits a conservative majority operation.

If this holds then the list homomorphism problem for
H is tractable, otherwise it iBlP-complete.
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Conservative nuf’s on graphs
Theorem [Brewster, F+H+H & MacGillivray 2003]
Let H be a graph. Then the following are equivalent:
1. H Is a bi-arc graph;
2. H admits a conservative nuf.

HH +-¢:

—act [Kun, L. & Memartoluie 2004]
_et H be a graph. Then the following are equivalent:

1. H Is a bi-arc graph;
2. the algebra associated #* Is “nice enough”.

(predicted by Bulatov’s result undéY £ NP)
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Retraction problems

f a structureH Is reflexive (i.e. has loops), then the
oroblemC'SP(H) is trivial: there is always a
nomomorphism, namely, a constant map.

A natural decision problem for reflexive structures Is
theretraction problem

 Input: A structureZ containing a copy of{;
* Question: Is there a retractigh: G — H ?

i.e. a homomorphisnf : G — H such thatf(z) =«
forallz € H.
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Retraction problems, cont’d

Example:

o 1

s
O
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Retraction problems, cont’d

Retraction problems translate into CSP as follows:

add to constraint relations @f all unary constraint
relationsof size 11.e. create

H = (A;TU{{a}:a € A}).
The retraction problem foH is CSP(H').

Remark We’re cheating a bit: this Is better called the
one or all list homomorphism problem.
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FO-definability
Let /IC be a class of structures of the same typé/as

IC Is first order definable (FO definabld)there exists
a first order sentence in the language off such that

G € K iff G satisfiesb.
We say thatU'S P(H) is FO-definable if

K ={G : G admits a homomorphism &'}
IS FO-definable.

MathsCSP, Oxford, March 2006 — p. 38/67



Retraction problems on graphs

Theorem [Dalmau, Krokhin & L. 2004]
Let H be a symmetric, reflexive graph. Then the
following are equivalent:

1. the retraction problem foff i1s FO-definable;
2. H Is connected and admits an nuf.
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Retraction problems on graphs

Theorem [Dalmau, Krokhin & L. 2004]

Let H be a symmetric, reflexive graph. Then the
following are equivalent:

1. the retraction problem foff i1s FO-definable;
2. H Is connected and admits an nuf.

There Is an analog for posets lputs must be
restricted to posets

l.e. existence of an nuf does not guarantee
FO-definability (e.g. 2-COL) ...
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1-tolerant nuf’s

FO-definability of general CSP’s can be captured by
1-tolerant nuf’s
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Let H = (A;T") be a structure. Amajp: A" — Ais
a 1-tolerant homomorphism it satisfies the
following condition: for every) € I,
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1-tolerant nuf’s

FO-definability of general CSP’s can be captured by
1-tolerant nuf’s

Let H = (A;T") be a structure. Amajp: A" — Ais
a 1-tolerant homomorphism it satisfies the
following condition: for every) € I,

1.1 a1.n by
: /
—
ar,l Tt ar,n br
n — 1 columns in@ v,

Applying f to the rows of a matrix witlat leastn — 1
columns ind yields a tuple of).

MathsCSP, Oxford, March 2006 — p. 40/67



1-tolerant powers

For convenience, consider theth 1-tolerant power

of H:

« LH™|s a structure similar td7:

e universe isA™;

» n-tuples aré)-related as in the diagram:

ar,l ar,n

n — 1 columns inf
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Critical obstructions

An obstruction for H is critical if it 1Is minimal with
the propertyG A~ H, I.e. for every proper
substructure&y’ C G we havel/ — H.

For convenience: the tuples in relations of structures
we callhyperedges.
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Critical obstructions

An obstruction for H is critical if it 1Is minimal with
the propertyG A~ H, I.e. for every proper
substructure&y’ C G we havel/ — H.

For convenience: the tuples in relations of structures
we callhyperedges.

Lemma
Let H be a structure. Tfae:

1. The critical obstructions off have at most
hyperedges;

2. H admits am + 1-ary 1-tolerant operation.
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Proof of the lemma
(1) = (2):

« H admits non + 1-ary 1-tolerant operatios:>
there is no homomorphism from the 1-tolerant

power' " to H;
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Proof of the lemma
(1) = (2):

« H admits non + 1-ary 1-tolerant operatios:>
there 1Is no homomorphism from the 1-tolerant

power' " to H;

 hence there Is a critical obstructiéhsuch that
c:C — Lt

V1 <1¢<n+1dhyperedge; of C' which is not
respected byt;. o ¢;

- 1-tolerance impliesy, Is respected by, o c for
j#k
« (' has at least + 1 hyperedges.
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Proof of the lemma, cont'd

(2) = (1):

» let C' be a critical obstruction foff with n + 1
hyperedges,;
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Proof of the lemma, cont'd

(2) = (1):

» let C' be a critical obstruction foff with n + 1
hyperedges,;

* V1 <1 <n+1thereisahomomorphism
fi: C\{ei} — H;
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Proof of the lemma, cont'd

(2) = (1):
 let C' be a critical obstruction foH with n + 1
hyperedges,;
V1 <i¢<n+ 1thereisahomomorphism
fi: C\{ei} — H;
* (f1,..., fune1) 1S @ homomorphism from' to
1Hn+1;
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Proof of the lemma, cont'd

(2) = (1):

» let C' be a critical obstruction foff with n + 1
hyperedges,;

V1 <i¢<n+ 1thereisahomomorphism
fi: C\{ei} — H;

* (f1,..., fune1) 1S @ homomorphism from' to
1Hn+1;

» hence!H"™! 4 H.
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Core structures

A structureH Is acorelif it has no proper retract
l.e. if G «— H implies that|/G| > |H|.
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Core structures

A structureH Is acorelif it has no proper retract
l.e. if G «— H implies that|/G| > |H|.

A structure Isrigid If its only automorphism is the
identity.

Lemmallf A is a core with tree duality then it is rigid.

Lemma [NeSeftil & Tardif 2000]
If H has finite duality then it has tree duality.
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FO-definable cores

Theorem|[L., Loten & Tardif, 2006]
Let H be a core structure.
The following are equivalent:

1. CSP(H) is FO-definable;
2. H admits a 1-tolerant nuf.

Furthermore, there Is a polynomial-time algorithm to
recognise these structures.
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Sketch of Proof
1. CSP(H) is FO-definable;

2. H admits a 1-tolerant nuf.

» By Atserias (or Rossman) 2005, we have that
H has finite duality ifiC’'S P(H) is FO-definable.
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Sketch of Proof
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2. H admits a 1-tolerant nuf.

» By Atserias (or Rossman) 2005, we have that
H has finite duality ifiCSP(H) is FO-definable.

« Hence by the lemma it suffices to prove thatHif
IS a core with finite duality theavery 1-tolerant
homomorphism is actually an nuf;
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Sketch of Proof
1. CSP(H) is FO-definable;

2. H admits a 1-tolerant nuf.

» By Atserias (or Rossman) 2005, we have that
H has finite duality ifiCSP(H) is FO-definable.

« Hence by the lemma it suffices to prove thatHif
IS a core with finite duality theavery 1-tolerant
homomorphism is actually an nuf;

- follows becausédd is a core and has tree duality,
and hence is rigid.

(useg;, : H—'H", x — (z,...,2,y,T...,2).)
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An algorithm

We Dbriefly describe (without proof) the algorithm to
recognise core structurés with F'O-definable CSP.
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An algorithm

We Dbriefly describe (without proof) the algorithm to
recognise core structurés with F'O-definable CSP.

In any structurez = (X; '), leta,b € X.

We say that dominates: If for everyf € I' and any
tuplex € 0, replacement of any occurrencewin x
by b yields a tuple iry.
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An algorithm

We Dbriefly describe (without proof) the algorithm to
recognise core structurés with F'O-definable CSP.

In any structurez = (X; '), leta,b € X.

We say that dominates: If for everyf € I' and any

tuplex € 0, replacement of any occurrencewin x
by b yields a tuple iry.

Example. Supposgis 4-ary and that dominates:.
If (a,b,c,a) € 0 then

(b,b,¢,a), (a,b,c,b), (b,b,c,b) €6.

MathsCSP, Oxford, March 2006 — p. 48/67



An algorithm, cont’d
Let H = (A;T") be a core. InH? let

A={(z,z):xe A}
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An algorithm, cont’d
Let H = (A;T") be a core. InH? let
A={(x,x): 2z e A}l
Dismantling algorithm

Let Sy = H?.
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An algorithm, cont’d
Let H = (A;T") be a core. InH? let
A={(x,x): 2z e A}l
Dismantling algorithm

LetS) = H?.

Remove fromS; \ A any dominated element, I8t
ne the resulting structure and repeat; otherwise stop.
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An algorithm, cont’d
Let H = (A;T") be a core. InH? let
A={(x,x): 2z e A}l
Dismantling algorithm

LetS) = H?.

Remove fromS; \ A any dominated element, 16t 4
ne the resulting structure and repeat; otherwise stop.

If the resulting structure ig&, thenC'SP(H) is
FO-definable; otherwise it Is not.
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Example 1.

Let H = ({0,1,2},{(0,1),(1,2),(0,2)}), the
Irreflexive transitive tournament on 3 vertices.

2

/N
¢ 1 H
N

0
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Example 1, cont'd

CSP(H) is FO-definable: a complete set of

obstructions is given by P;} whereP; is the path of
length 3:
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Example 1, cont'd

Thus a structuré’ -~ H Iff it satisfies
dadbdcdd|(a,b) € O A (b,c) € OA (c,d) € 8].
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H admits a 4-ary 1-tolerant nuf, but no 3-ary;
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Example 1, cont'd

Thus a structuré’ -~ H Iff it satisfies
dadbdcdd|(a,b) € O A (b,c) € A (c,d) € 0.

H admits a 4-ary 1-tolerant nuf, but no 3-ary;

But it doesadmit a majority operation.
(m(z,y,2) = 1if {z,y, 2z} = {0,1,2} and maj. else)
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Example 1, cont'd

(2,0) (2.1) (2.2)

DismantlingZ* to the diagonal.
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Example 1, cont'd

(2,1) (2,2)

(1,1) 1,2)

DismantlingZ* to the diagonal.
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Example 1, cont'd

(2.2)

(1.1)

DismantlingZ* to the diagonal.
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Example 2.

Let H = ({0,1,2,3},{(0,1),(1,2),(2,3)}), the
irreflexive path of length 3.

o 3
A
02F>3
A

® 1
A

e (
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Example 2, cont'd

H 1s a path: admits a majority operation (Feder 2001);
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Example 2, cont'd

H is a path: admits a majority operation (Feder 2001);
CSP(H) is not FO-definable:
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Example 2, cont'd

H is a path: admits a majority operation (Feder 2001);
CSP(H) is not FO-definable:

H is a core, and?? dismantles only down to

H*\ {(0,3),(3,0)}.
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Generalisations of nuf’s

« Congruence-distributivity
» Generalised majority-minority terms
« Weak nuf’s
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Congruence-distributivity

Algebras in congruence-distributive varieties are
characterised by the existence of a sequence of 3-ary
Jonsson termsy, . . ., d,, for somem > 2. The

following Is known:

A has an nuf term
= A has Jonsson terms
= A IS “nice enough”.

Hence conjecturally they are tractable, and have

enough structure to provide a good testing ground for
the conjecture.
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C-D, cont'd

Let CD(m) denote the class of finite algebras that
admit a sequence of Jonsson terms.

It Is Immediate (from the Jonsson condition) that
algebras inC'D(2) have a majority term, and hence
yield tractable CSP’s. The next case= 3, Is taken
care of by the following result:
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C-D, cont'd

Theorem [Kiss & Valeriote 2006]
Let A be a finite algebra ilC’ D(3); let I denote the
set of all subalgebras of finite powers Af

ThenC'SP(T") has relational width A*|, and hence is
globally tractable.
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C-D, cont'd

Theorem [Kiss & Valeriote 2006]
Let A be a finite algebra irlC' D(3); let I denote the
set of all subalgebras of finite powers Af

T
g
T

nenC'SP(T") has relational width A
obally tractable.

~and hence is

NIS prompts:

Question. If A admits Jonsson terms, does it yield a
tractable CSP ? Does the CSP have bounded width ?
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GMM operations

An operationf is ageneralised majority-minority
(GMM) operation if it satisfies the following: for
every pair{a, b} either
f(aj77aj7y) :f(y7a;77aj) :y
or
fle,...,x,y) == fly,x,...,x) =x
holds for allz, y € {a,b}.

Notice that nuf’s are a special case of GMM.
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GMM operations, cont’'d

Theorem [Dalmau 2005]
If I Is Invariant under a GMM operation then

CSP(T) is tractable.
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http://www.lfcs.inf.ed.ac.uk/events/lics/2005/KinDalmau-GeneralizedMajority.html

GMM operations, cont’'d

Theorem [Dalmau 2005]
If I Is Invariant under a GMM operation then
CSP(T) is tractable.

NOTE: the principal author of the above papend
Ho Weng Kin.

http://www.lfcs.inf.ed.ac.uk/events/lics/200%lin ' Dalmau-GeneralizedMajority.html

MathsCSP, Oxford, March 2006 — p. 61/67


http://www.lfcs.inf.ed.ac.uk/events/lics/2005/KinDalmau-GeneralizedMajority.html

Weak nuf’s

We'll say an idempotent operatighis aweak nufif it
satisfies the identities

flx,...,x,y) = flz,...,z,y,x) == f(y,z,...,T).

[Note: what’s missing to get an nuf Is that these are all
equal tor]

Once again, conjecturally, CSP’s invariant under such
a term should be tractable.
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Weak nuf’s, cont’'d

Theorem [Kiss & Valeriote 2006]
If C'SP(T") has relational widthk, thenI is invariant
under a weak nuf of arity.
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Weak nuf’s, cont’'d

Theorem [Kiss & Valeriote 2006]
If C'SP(T") has relational widthk, thenI is invariant
under a weak nuf of arity.

Theorem[McKenzie, 2006]

Let A be an algebra in a congruence-distributive
variety. ThemA has a weak majority term.

(More as we speak ? ....)
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A recap

K-nuf

LN

Congruence-Distributive ——-3 relational width k

3-weak nuf —p» k-weak nuf

l

" “nice enough"
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Some Problems

Problem 1.1f H admits an nuf, i$'SP(H) in NL ?
What about bounded path width duality ?

Problem 2.Is the problem “doeg#! admit an nuf ?”
decidable ? What about for FO-definalsfe?

Problem 3.Investigate the notion of weak majority

operation and weak nuf: imply tractability 22
bounded width (M. Valeriote))
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(continued on next slide)
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