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Abstract
A near unanimity function, or nuf,is ann-variable
operation that satisfies the identities

f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · f(y, x, . . . , x) = x.

Relational structures invariant under such operations
satisfy remarkable properties. We present a survey of
various results in connection with the complexity of
Constraint Satisfaction Problems.
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CSP’s
Our point of view:

CSP’s = homomorphism problems with a fixed target
(Feder & Vardi 1999, Kolaitis & Vardi 2000)
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CSP’s
Our point of view:

CSP’s = homomorphism problems with a fixed target
(Feder & Vardi 1999, Kolaitis & Vardi 2000)

Let H = 〈A; θi(i ∈ I)〉 be a fixed relational structure:

for eachi ∈ I (thesignature ofH),
θi is a relation onA of arity ri (a subset ofAri)

Γ = {θi : i ∈ I} is the set ofconstraint relations.
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Definition of CSP (H)

CSP (H) (or CSP (Γ)) is the following decision
problem:
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Definition of CSP (H)

CSP (H) (or CSP (Γ)) is the following decision
problem:

• Input: A structureG = 〈X; ρi(i ∈ I)〉

• Question: Is there a homomorphismf : G → H ?

ahomomorphismis a mapf : X → A such that
f(ρi) ⊆ θi for all i ∈ I.

We writeG → H (G 6→ H) whenG admits (does not
admit) a homomorphism toH.
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Algebras
An operationf : An → A preservesther-ary relation
θ onA if the following holds:
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Algebras
An operationf : An → A preservesther-ary relation
θ onA if the following holds:




a1,1 · · · a1,n
... · · ·

...
ar,1 · · · ar,n




columns inθ

f
7→




b1

...
br




θ

Applying f to the rows of the matrix whose columns

are inθ yields a tuple ofθ.
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Algebras, cont’d
f preservesθ ≡ θ is invariant underf

A structureH is invariant under an operationf or
admitsf if all its basic relations are invariant underf .
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Algebras, cont’d
f preservesθ ≡ θ is invariant underf

A structureH is invariant under an operationf or
admitsf if all its basic relations are invariant underf .

Example: the structure〈{0, 1}; θ〉 with
θ = {(0, 1), (1, 0), (1, 1)} is

• invariant underf(x, y) = x ∨ y

• not invariant underg(x, y) = x ∧ y
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Algebras, cont’d
Given a setΓ of relations onA, construct:

F = all operations onA preserving all relations inΓ.

The algebra associated toCSP (Γ):

A = 〈A; F 〉
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Algebras, cont’d
Given a setΓ of relations onA, construct:

F = all operations onA preserving all relations inΓ.

The algebra associated toCSP (Γ):

A = 〈A; F 〉

Constraint relations⊆ subalgebras of powers ofA.

The operations one can build fromF (and
projections) via composition are called thetermsof A.
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A conjecture
(FV, BJK)

Roughly speaking, it is expected that:
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CSP (Γ) is tractable.
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A admits terms obeying “nice” identities

i.e. target structure admits “nice” terms
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A conjecture
(FV, BJK)

Roughly speaking, it is expected that:

if the constraint setΓ consists of subalgebras of
powers of asufficiently well behavedalgebra, then
CSP (Γ) is tractable.

Well-behaved:

A admits terms obeying “nice” identities

i.e. target structure admits “nice” terms

more formally, in what follows, we’ll refer to such
algebras asnice enough.
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Nuf’s
Let n ≥ 3.

A near unanimity function, or nuf,is ann-variable
operation that satisfies the identities

f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · f(y, x, . . . , x) = x.

Notice: an nuf isidempotent, i.e. satisfies

f(x, x, . . . , x) = x.
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Nuf’s, cont’d
Concept first appears:
Huhn, 1972; Baker & Pixley 1975.

Casen = 3 widely studied:majority operations
• 50’s and 60’s: majority decision: voting

paradoxes, etc.
• Wille 1970: majority terms of lattices,

congruences
• Bandelt et al.: absolute retracts
• Pouzet et al.: Metric point of view
• Etc.
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Elementary facts about nuf’s
- Prototypical example: themedian

m(x, y, z) = max(min(x, y), min(x, z), min(y, z))

= (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

- If a structureH admits an nuf withn variables, it
admits one withn + 1 variables (just add a fictitious
variable)
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Two fundamental properties
Let H be a structure. A pair(G, p) is azig-zagfor H
if
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Two fundamental properties
Let H be a structure. A pair(G, p) is azig-zagfor H
if

• G is a structure of the same type asH;
• p is a partial map fromG to H;
• p does not extend to a full homomorphism from

G to H and
• the pair(G, p) is minimal with the above

properties.
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A zig-zag

1

0

1

0

(G,p) H
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Nuf’s and zig-zags
Theorem [Zádori 1997; G. Tardos 1986]

LetH be a structure.
Then the following are equivalent:

1. H admits an nuf of arityn + 1;

2. every zig-zag(G, p) for H satisfies|dom p| ≤ n.
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Nuf’s and zig-zags, cont’d
Sketch of proof.
(1) ⇒ (2): let f be an nuf of arityn + 1.

• let (G, p) be a zig-zag; suppose for a
contradictiondom p = {x1, . . . , xn+1};
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Nuf’s and zig-zags, cont’d
Sketch of proof.
(1) ⇒ (2): let f be an nuf of arityn + 1.

• let (G, p) be a zig-zag; suppose for a
contradictiondom p = {x1, . . . , xn+1};

• let pi be the restriction ofp to dom p \ {xi}: it
extends to somêpi;

• thenf(p̂1, · · · , p̂n+1) is an extension ofp:

f(p̂1, · · · , p̂n+1)(xi)

=f(p(xi), . . . , p(xi), ∗, p(xi), . . . , p(xi))

=p(xi).
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Nuf’s and zig-zags, cont’d
Sketch of proof, cont’d
(2) ⇒ (1):

• let G = An+1 and define the partial map

p(x, . . . , x, y, x . . . , x) = x

for all tuples of this form;
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for all tuples of this form;
• the restriction ofp to any set with at mostn
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Nuf’s and zig-zags, cont’d
Sketch of proof, cont’d
(2) ⇒ (1):

• let G = An+1 and define the partial map

p(x, . . . , x, y, x . . . , x) = x

for all tuples of this form;
• the restriction ofp to any set with at mostn

tuples is extendible (appropriate projection)
• (G, p) non-extendible⇒ contains a zig-zag;
• hencep is extendible;H admitsn + 1-ary nuf.
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n-decomposability
Theorem [Baker & Pixley 1975]

LetA be a finite algebra.
Then the following are equivalent:

1. A has an nuf term of arityn + 1;

2. every subalgebra of a power ofA is determined
by its projections onton indices.

i.e. if Γ admits an nuf of arityn + 1, then constraints
in Γ are determined by their projections onn factors.
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Tractability
Theorem [Feder & Vardi 1993, 1998]
If Γ is invariant under an nuf of arityn + 1 then
CSP (Γ) has widthn. In particular,CSP (Γ) is
tractable.

In fact,CSP (Γ) hasbounded strict width:
i.e. once local consistency has been achieved, partial
solutions may be extended greedily to global
solutions.

(strongn + 1-consistency⇒ global consistency, see
Jeavons, Cohen & Cooper 1998)
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Tractability, cont’d
Furthermore:

Theorem [FV 1993, 1998; JCC 1998]

LetΓ be a set of constraint relations.
Then the following are equivalent:

1. Γ is invariant under an nuf of arityn + 1;

2. CSP (Γ) has strict widthn.
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Examples
• the median on{0, 1} preserves all binary

relations;
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Examples
• the median on{0, 1} preserves all binary

relations;
• 2 − COL = CSP ({(0, 1), (1, 0)});
• 2 − SAT is also of the formCSP (Γ) whereΓ

consists only of binary relations on{0, 1};
• both problems have strict width 2.
• HORNSAT does not have strict widthn (∀n):

(1, 1, . . . , 1) 6∈ {X1 ∨ · · · ∨ Xn+1}

but contains(1, 1, . . . , 1, 0, 1, . . . , 1) for any
placement of the 0.
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Complexity
We’ve seen:

Invariance under an nuf⇒ CSP (Γ) ∈ P
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Complexity
We’ve seen:

Invariance under an nuf⇒ CSP (Γ) ∈ P

Can we do better ?

Example: if|A| = 2, andΓ is invariant under a
majority operation (i.e. the median), thenCSP (Γ) is
a subproblem of2 − SAT , hence

CSP (Γ) ∈ NL.
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Majority implies NL
Theorem [Dalmau & Krokhin, 2006]

LetH be a structure admitting a majority operation.
ThenCSP (H) is in NL .
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Majority implies NL
Theorem [Dalmau & Krokhin, 2006]

LetH be a structure admitting a majority operation.
ThenCSP (H) is in NL .

In fact, they show more:
H hasbounded path width duality.
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Duality
Let H be a structure. Anobstructionfor H is a
structureG of the same type such thatG 6→ H.
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Duality
Let H be a structure. Anobstructionfor H is a
structureG of the same type such thatG 6→ H.

A complete set of obstructionsfor H is a setO of
obstructions forH such thatG 6→ H if and only if
there existsG′ ∈ O such thatG′ → G.

H is said to havefinite (tree)duality if it has a
complete set of obstructions that is finite (consists of
trees).

H hasbounded path width dualityif it has a complete
set of obstructions that consists of structures with ...
bounded path width.
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Related results, cont’d
Dalmau has shown that on 2 elements, problems
invariant under an nuf (of any arity) have bounded
path duality, and hence are inNL .
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Related results, cont’d
Dalmau has shown that on 2 elements, problems
invariant under an nuf (of any arity) have bounded
path duality, and hence are inNL .

This prompts:

Question. If H admits an nuf, isCSP (H) in NL ?

(We’ll see later that a slight strengthening of the
notion of nuf guarantees this)
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Decidability issues
A natural question:
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Decidability issues
A natural question:

Given a structureH, does it admit an nuf ?

This is not known to be decidable.

For algebras, however:

Theorem [Maróti, 2005]LetA = 〈A; F 〉 be an
algebra withA andF finite. Then it is decidable to
determine ifA has an nuf term operation.
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Decidability issues
A natural question:

Given a structureH, does it admit an nuf ?

This is not known to be decidable.

For algebras, however:

Theorem [Maróti, 2005]LetA = 〈A; F 〉 be an
algebra withA andF finite. Then it is decidable to
determine ifA has an nuf term operation.

(Makes use of Lovász’s proof of Kneser’s conjecture !!)
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Partial results
• For fixedarity: poly-time algorithm (Feder &

Vardi 1993)
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Partial results
• For fixedarity: poly-time algorithm (Feder &

Vardi 1993)
• H a poset: poly-time decidable (Kun & Szabó

2001)
• H a symmetric, reflexive graph: poly-time

decidable (L., Loten & Zádori 2005)

The last two algorithms consist of a “dismantling” of
the structureH2 to its diagonal.
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Restrictions on structures
• list-homomorphism problems on graphs
• retraction problems on posets and graphs
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List-homomorphism problems
Let H = 〈A; Γ〉 be a fixed structure. Consider the
following decision problem:

• Input: A structureG and∀g a listLg ⊆ A;
• Question: Is there a homomorphismf : G → H

such thatf(g) ∈ Lg ∀g ?
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List-homomorphism problems
Let H = 〈A; Γ〉 be a fixed structure. Consider the
following decision problem:

• Input: A structureG and∀g a listLg ⊆ A;
• Question: Is there a homomorphismf : G → H

such thatf(g) ∈ Lg ∀g ?

1

0

{0,1}

{1,2}

G H

{0,2}

2
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List-homomorphisms, cont’d
List-hom problems translate into CSP as follows:

add to constraint relations ofH all unary constraint
relations, i.e. create

H∗ = 〈A; Γ ∪ {L : L ⊆ A}〉.

The list-homomorphism problem forH is CSP (H∗).

CSP’s of this form are also known asconservative: an
operationf preserves every subset ofA iff it is
conservative, i.e.

f(x1, . . . , xn) ∈ {x1, . . . , xn}.
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List-homomorphisms, cont’d
Theorem [Bulatov 2003]If the algebra associated to
a conservative CSP is “nice enough” then the CSP is
tractable; otherwise it isNP-complete.

The dividing line in this dichotomy result has been
investigated in detail for list-homomorphism problems
on various types of graphs, e.g. symmetric graphs:
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List-hom for symmetric graphs
Theorem [Feder, Hell & Huang 2003]LetH be a
graph. Then the following are equivalent:

1. H is a bi-arc graph;

2. H admits a conservative majority operation.

If this holds then the list homomorphism problem for
H is tractable, otherwise it isNP-complete.
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Conservative nuf’s on graphs
Theorem [Brewster, F+H+H & MacGillivray 2003]
LetH be a graph. Then the following are equivalent:

1. H is a bi-arc graph;

2. H admits a conservative nuf.

FHH +ǫ:

Fact [Kun, L. & Memartoluie 2004]
LetH be a graph. Then the following are equivalent:

1. H is a bi-arc graph;

2. the algebra associated toH∗ is “nice enough”.

(predicted by Bulatov’s result underP 6= NP)
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Retraction problems
If a structureH is reflexive (i.e. has loops), then the
problemCSP (H) is trivial: there is always a
homomorphism, namely, a constant map.

A natural decision problem for reflexive structures is
theretraction problem:

• Input: A structureG containing a copy ofH;
• Question: Is there a retractionf : G → H ?

i.e. a homomorphismf : G → H such thatf(x) = x
for all x ∈ H.
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Retraction problems, cont’d
Example:

1

0

G H
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Retraction problems, cont’d
Retraction problems translate into CSP as follows:

add to constraint relations ofH all unary constraint
relationsof size 1, i.e. create

H ′ = 〈A; Γ ∪ {{a} : a ∈ A}〉.

The retraction problem forH is CSP (H ′).

Remark We’re cheating a bit: this is better called the
one or all list homomorphism problem.
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FO-definability
LetK be a class of structures of the same type asH.

K is first order definable (FO definable)if there exists
a first order sentenceΦ in the language ofH such that
G ∈ K iff G satisfiesΦ.

We say thatCSP (H) is FO-definable if

K = {G : G admits a homomorphism toH}

is FO-definable.
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Retraction problems on graphs
Theorem [Dalmau, Krokhin & L. 2004]
LetH be a symmetric, reflexive graph. Then the
following are equivalent:

1. the retraction problem forH is FO-definable;

2. H is connected and admits an nuf.
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Retraction problems on graphs
Theorem [Dalmau, Krokhin & L. 2004]
LetH be a symmetric, reflexive graph. Then the
following are equivalent:

1. the retraction problem forH is FO-definable;

2. H is connected and admits an nuf.

There is an analog for posets butinputs must be
restricted to posets:

i.e. existence of an nuf does not guarantee
FO-definability (e.g. 2-COL) ...
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1-tolerant nuf’s
FO-definability of general CSP’s can be captured by
1-tolerant nuf’s.
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1-tolerant nuf’s
FO-definability of general CSP’s can be captured by
1-tolerant nuf’s.

Let H = 〈A; Γ〉 be a structure. A mapf : An → A is
a1-tolerant homomorphismif it satisfies the
following condition: for everyθ ∈ Γ,




a1,1 · · · a1,n
... · · ·

...
ar,1 · · · ar,n




n − 1 columns inθ

f
7→




b1

...
br




θ

Applying f to the rows of a matrix withat leastn − 1

columns inθ yields a tuple ofθ.
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1-tolerant powers
For convenience, consider then-th 1-tolerant power
of H:

• 1Hn is a structure similar toH;
• universe isAn;
• n-tuples areθ-related as in the diagram:




a1,1 · · · a1,n
... · · ·

...
ar,1 · · · ar,n




n − 1 columns inθ
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Critical obstructions
An obstructionG for H is critical if it is minimal with
the propertyG 6→ H, i.e. for every proper
substructureG′ ⊆ G we haveG′ → H.

For convenience: the tuples in relations of structures
we callhyperedges.
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Critical obstructions
An obstructionG for H is critical if it is minimal with
the propertyG 6→ H, i.e. for every proper
substructureG′ ⊆ G we haveG′ → H.

For convenience: the tuples in relations of structures
we callhyperedges.

Lemma
LetH be a structure. Tfae:

1. The critical obstructions ofH have at mostn
hyperedges;

2. H admits ann + 1-ary 1-tolerant operation.
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Proof of the lemma
(1) ⇒ (2):

• H admits non + 1-ary 1-tolerant operation⇔
there is no homomorphism from the 1-tolerant
power1Hn+1 to H;
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Proof of the lemma
(1) ⇒ (2):

• H admits non + 1-ary 1-tolerant operation⇔
there is no homomorphism from the 1-tolerant
power1Hn+1 to H;

• hence there is a critical obstructionC such that
c : C → 1Hn+1;
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Proof of the lemma
(1) ⇒ (2):

• H admits non + 1-ary 1-tolerant operation⇔
there is no homomorphism from the 1-tolerant
power1Hn+1 to H;

• hence there is a critical obstructionC such that
c : C → 1Hn+1;

• ∀ 1 ≤ i ≤ n + 1 ∃ hyperedgeek of C which is not
respected byπk ◦ c;
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Proof of the lemma
(1) ⇒ (2):

• H admits non + 1-ary 1-tolerant operation⇔
there is no homomorphism from the 1-tolerant
power1Hn+1 to H;

• hence there is a critical obstructionC such that
c : C → 1Hn+1;

• ∀ 1 ≤ i ≤ n + 1 ∃ hyperedgeek of C which is not
respected byπk ◦ c;

• 1-tolerance impliesek is respected byπj ◦ c for
j 6= k;
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Proof of the lemma
(1) ⇒ (2):

• H admits non + 1-ary 1-tolerant operation⇔
there is no homomorphism from the 1-tolerant
power1Hn+1 to H;

• hence there is a critical obstructionC such that
c : C → 1Hn+1;

• ∀ 1 ≤ i ≤ n + 1 ∃ hyperedgeek of C which is not
respected byπk ◦ c;

• 1-tolerance impliesek is respected byπj ◦ c for
j 6= k;

• C has at leastn + 1 hyperedges.
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Proof of the lemma, cont’d
(2) ⇒ (1):

• let C be a critical obstruction forH with n + 1
hyperedges;
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Proof of the lemma, cont’d
(2) ⇒ (1):

• let C be a critical obstruction forH with n + 1
hyperedges;

• ∀ 1 ≤ i ≤ n + 1 there is a homomorphism
fi : C \ {ei} → H;
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Proof of the lemma, cont’d
(2) ⇒ (1):

• let C be a critical obstruction forH with n + 1
hyperedges;

• ∀ 1 ≤ i ≤ n + 1 there is a homomorphism
fi : C \ {ei} → H;

• (f1, . . . , fn+1) is a homomorphism fromC to
1Hn+1;
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Proof of the lemma, cont’d
(2) ⇒ (1):

• let C be a critical obstruction forH with n + 1
hyperedges;

• ∀ 1 ≤ i ≤ n + 1 there is a homomorphism
fi : C \ {ei} → H;

• (f1, . . . , fn+1) is a homomorphism fromC to
1Hn+1;

• hence1Hn+1 6→ H.

MathsCSP, Oxford, March 2006 – p. 44/67



Core structures
A structureH is acore if it has no proper retract
i.e. if G ↔ H implies that|G| ≥ |H|.
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A structure isrigid if its only automorphism is the
identity.
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A structure isrigid if its only automorphism is the
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Core structures
A structureH is acore if it has no proper retract
i.e. if G ↔ H implies that|G| ≥ |H|.

A structure isrigid if its only automorphism is the
identity.

Lemma If H is a core with tree duality then it is rigid.

Lemma [Nešeťril & Tardif 2000]
If H has finite duality then it has tree duality.
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FO-definable cores
Theorem [L., Loten & Tardif, 2006]
LetH be a core structure.
The following are equivalent:

1. CSP (H) is FO-definable;

2. H admits a 1-tolerant nuf.

Furthermore, there is a polynomial-time algorithm to
recognise these structures.
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Sketch of Proof
1. CSP (H) is FO-definable;

2. H admits a 1-tolerant nuf.

• By Atserias (or Rossman) 2005, we have that
H has finite duality iffCSP (H) is FO-definable.
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Sketch of Proof
1. CSP (H) is FO-definable;

2. H admits a 1-tolerant nuf.

• By Atserias (or Rossman) 2005, we have that
H has finite duality iffCSP (H) is FO-definable.

• Hence by the lemma it suffices to prove that, ifH
is a core with finite duality thenevery 1-tolerant
homomorphism is actually an nuf;
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Sketch of Proof
1. CSP (H) is FO-definable;

2. H admits a 1-tolerant nuf.

• By Atserias (or Rossman) 2005, we have that
H has finite duality iffCSP (H) is FO-definable.

• Hence by the lemma it suffices to prove that, ifH
is a core with finite duality thenevery 1-tolerant
homomorphism is actually an nuf;

• follows becauseH is a core and has tree duality,
and hence is rigid.

(useφi,y : H → 1Hn, x 7→ (x, . . . , x, y, x . . . , x).)
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An algorithm
We briefly describe (without proof) the algorithm to
recognise core structuresH with FO-definable CSP.
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An algorithm
We briefly describe (without proof) the algorithm to
recognise core structuresH with FO-definable CSP.

In any structureG = 〈X; Γ〉, let a, b ∈ X.
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An algorithm
We briefly describe (without proof) the algorithm to
recognise core structuresH with FO-definable CSP.

In any structureG = 〈X; Γ〉, let a, b ∈ X.

We say thatb dominatesa if for everyθ ∈ Γ and any
tuplex ∈ θ, replacement of any occurrence ofa in x
by b yields a tuple inθ.
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An algorithm
We briefly describe (without proof) the algorithm to
recognise core structuresH with FO-definable CSP.

In any structureG = 〈X; Γ〉, let a, b ∈ X.

We say thatb dominatesa if for everyθ ∈ Γ and any
tuplex ∈ θ, replacement of any occurrence ofa in x
by b yields a tuple inθ.

Example. Supposeθ is 4-ary and thatb dominatesa.
If (a, b, c, a) ∈ θ then

(b, b, c, a), (a, b, c, b), (b, b, c, b) ∈ θ.
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An algorithm, cont’d
Let H = 〈A; Γ〉 be a core. InH2 let

∆ = {(x, x) : x ∈ A}.
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Let H = 〈A; Γ〉 be a core. InH2 let

∆ = {(x, x) : x ∈ A}.

Dismantling algorithm
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An algorithm, cont’d
Let H = 〈A; Γ〉 be a core. InH2 let

∆ = {(x, x) : x ∈ A}.

Dismantling algorithm

Let S0 = H2.
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An algorithm, cont’d
Let H = 〈A; Γ〉 be a core. InH2 let

∆ = {(x, x) : x ∈ A}.

Dismantling algorithm

Let S0 = H2.

Remove fromSi \ ∆ any dominated element, letSi+1

be the resulting structure and repeat; otherwise stop.
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An algorithm, cont’d
Let H = 〈A; Γ〉 be a core. InH2 let

∆ = {(x, x) : x ∈ A}.

Dismantling algorithm

Let S0 = H2.

Remove fromSi \ ∆ any dominated element, letSi+1

be the resulting structure and repeat; otherwise stop.

If the resulting structure is∆, thenCSP (H) is
FO-definable; otherwise it is not.
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Example 1.
Let H = 〈{0, 1, 2}, {(0, 1), (1, 2), (0, 2)}〉, the
irreflexive transitive tournament on 3 vertices.

1

0

H

2
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Example 1, cont’d

1

0

H

2

CSP (H) is FO-definable: a complete set of
obstructions is given by{P3} whereP3 is the path of
length 3:

1

0

P2
3

3
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Example 1, cont’d

1

0

H

2

Thus a structureG 6→ H iff it satisfies

∃ a∃ b∃ c∃ d [(a, b) ∈ θ ∧ (b, c) ∈ θ ∧ (c, d) ∈ θ].
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Example 1, cont’d

1

0

H

2

Thus a structureG 6→ H iff it satisfies

∃ a∃ b∃ c∃ d [(a, b) ∈ θ ∧ (b, c) ∈ θ ∧ (c, d) ∈ θ].

H admits a 4-ary 1-tolerant nuf, but no 3-ary;
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Example 1, cont’d

1

0

H

2

Thus a structureG 6→ H iff it satisfies

∃ a∃ b∃ c∃ d [(a, b) ∈ θ ∧ (b, c) ∈ θ ∧ (c, d) ∈ θ].

H admits a 4-ary 1-tolerant nuf, but no 3-ary;

But it doesadmit a majority operation.
(m(x, y, z) = 1 if {x, y, z} = {0, 1, 2} and maj. else.)
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Example 1, cont’d

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

DismantlingH2 to the diagonal.
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Example 1, cont’d
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(1,0) (1,1) (1,2)
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Example 1, cont’d

(0,0)

(1,1) (1,2)

(2,1) (2,2)

DismantlingH2 to the diagonal.
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Example 1, cont’d

(0,0)

(1,1)

(2,2)

DismantlingH2 to the diagonal.
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Example 2.
Let H = 〈{0, 1, 2, 3}, {(0, 1), (1, 2), (2, 3)}〉, the
irreflexive path of length 3.

1

0

P2
3

3
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Example 2, cont’d

1

0

P2
3

3

H is a path: admits a majority operation (Feder 2001);
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Example 2, cont’d

1

0

P2
3

3

H is a path: admits a majority operation (Feder 2001);

CSP (H) is notFO-definable:
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Example 2, cont’d

1

0

P2
3

3

H is a path: admits a majority operation (Feder 2001);

CSP (H) is notFO-definable:

H is a core, andH2 dismantles only down to
H2 \ {(0, 3), (3, 0)}.

MathsCSP, Oxford, March 2006 – p. 55/67



Generalisations of nuf’s
• Congruence-distributivity
• Generalised majority-minority terms
• Weak nuf’s

MathsCSP, Oxford, March 2006 – p. 56/67



Congruence-distributivity
Algebras in congruence-distributive varieties are
characterised by the existence of a sequence of 3-ary
Jónsson termsd0, . . . , dm for somem ≥ 2. The
following is known:

A has an nuf term
⇒ A has Jónsson terms
⇒ A is “nice enough”.

Hence conjecturally they are tractable, and have
enough structure to provide a good testing ground for
the conjecture.
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C-D, cont’d
Let CD(m) denote the class of finite algebras that
admit a sequence ofm Jónsson terms.

It is immediate (from the Jónsson condition) that
algebras inCD(2) have a majority term, and hence
yield tractable CSP’s. The next case,m = 3, is taken
care of by the following result:
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C-D, cont’d
Theorem [Kiss & Valeriote 2006]
LetA be a finite algebra inCD(3); let Γ denote the
set of all subalgebras of finite powers ofA.

ThenCSP (Γ) has relational width|A2|, and hence is
globally tractable.
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C-D, cont’d
Theorem [Kiss & Valeriote 2006]
LetA be a finite algebra inCD(3); let Γ denote the
set of all subalgebras of finite powers ofA.

ThenCSP (Γ) has relational width|A2|, and hence is
globally tractable.

This prompts:

Question. If A admits Jónsson terms, does it yield a
tractable CSP ? Does the CSP have bounded width ?
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GMM operations
An operationf is ageneralised majority-minority
(GMM) operation if it satisfies the following: for
every pair{a, b} either

f(x, . . . , x, y) = f(y, x, . . . , x) = y

or

f(x, . . . , x, y) = · · · = f(y, x, . . . , x) = x

holds for allx, y ∈ {a, b}.

Notice that nuf’s are a special case of GMM.
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GMM operations, cont’d
Theorem [Dalmau 2005]
If Γ is invariant under a GMM operation then
CSP (Γ) is tractable.

MathsCSP, Oxford, March 2006 – p. 61/67
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GMM operations, cont’d
Theorem [Dalmau 2005]
If Γ is invariant under a GMM operation then
CSP (Γ) is tractable.

NOTE: the principal author of the above paper isnot
Ho Weng Kin.

http://www.lfcs.inf.ed.ac.uk/events/lics/2005/Kin Dalmau-GeneralizedMajority.html
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Weak nuf’s
We’ll say an idempotent operationf is aweak nufif it
satisfies the identities

f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · = f(y, x, . . . , x).

[Note: what’s missing to get an nuf is that these are all
equal tox]

Once again, conjecturally, CSP’s invariant under such
a term should be tractable.
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Weak nuf’s, cont’d
Theorem [Kiss & Valeriote 2006]
If CSP (Γ) has relational widthk, thenΓ is invariant
under a weak nuf of arityk.
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Weak nuf’s, cont’d
Theorem [Kiss & Valeriote 2006]
If CSP (Γ) has relational widthk, thenΓ is invariant
under a weak nuf of arityk.

Theorem [McKenzie, 2006]
LetA be an algebra in a congruence-distributive
variety. ThenA has a weak majority term.

(More as we speak ? ....)
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A recap

k-nuf

Congruence-Distributive

3-weak nuf k-weak nuf

relational width k

``nice enough''

?
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Some Problems
Problem 1.If H admits an nuf, isCSP (H) in NL ?
What about bounded path width duality ?

Problem 2.Is the problem “doesH admit an nuf ?”
decidable ? What about for FO-definableH ?

Problem 3.Investigate the notion of weak majority
operation and weak nuf: imply tractability ? (6⇒
bounded width (M. Valeriote))
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(continued on next slide)
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