Near-Unanimity Functions and CSP

A short survey

Benoit Larose

larose@mathstat.concordia.ca

Concordia University Montréal, QC, Canada

Abstract

A near unanimity function, or nuf, is an *n*-variable operation that satisfies the identities

 $f(x,\ldots,x,y) = f(x,\ldots,x,y,x) = \cdots f(y,x,\ldots,x) = x.$

Relational structures invariant under such operations satisfy remarkable properties. We present a survey of various results in connection with the complexity of Constraint Satisfaction Problems.

Outline

- Preliminaries
- Tractability results: bounded width
- Complexity
- Decidability issues
- Restrictions on structures
- 1-tolerant nuf's: FO-definability
- Generalisations of nuf's
- Problems

Preliminaries

- CSP's
- Algebras
- A conjecture
- Nuf's
- Two fundamental properties of nuf's

CSP's Our point of view:

CSP's = homomorphism problems with a fixed target (Feder & Vardi 1999, Kolaitis & Vardi 2000)

CSP's Our point of view:

CSP's = homomorphism problems with a fixed target (Feder & Vardi 1999, Kolaitis & Vardi 2000)

Let $H = \langle A; \theta_i (i \in I) \rangle$ be a fixed relational structure: for each $i \in I$ (the *signature of* H), θ_i is a relation on A of arity r_i (a subset of A^{r_i})

 $\Gamma = \{\theta_i : i \in I\}$ is the set of *constraint relations*.

Definition of CSP(H)

CSP(H) (or $CSP(\Gamma)$) is the following decision problem:

Definition of CSP(H)

CSP(H) (or $CSP(\Gamma)$) is the following decision problem:

- Input: A structure $G = \langle X; \rho_i (i \in I) \rangle$
- Question: Is there a homomorphism $f: G \to H$?

Definition of CSP(H)

CSP(H) (or $CSP(\Gamma)$) is the following decision problem:

- Input: A structure $G = \langle X; \rho_i (i \in I) \rangle$
- Question: Is there a homomorphism $f: G \to H$?

a *homomorphism* is a map $f : X \to A$ such that $f(\rho_i) \subseteq \theta_i$ for all $i \in I$.

We write $G \rightarrow H$ ($G \not\rightarrow H$) when G admits (does not admit) a homomorphism to H.

An operation $f : A^n \to A$ preserves the *r*-ary relation θ on A if the following holds:

Algebras

An operation $f : A^n \to A$ preserves the *r*-ary relation θ on A if the following holds:

Applying *f* to the rows of the matrix whose columns are in θ yields a tuple of θ .

f preserves $\theta \equiv \theta$ is invariant under f

A structure H is invariant under an operation f or *admits* f if all its basic relations are invariant under f.

f preserves $\theta \equiv \theta$ is invariant under f

A structure H is invariant under an operation f or *admits* f if all its basic relations are invariant under f.

Example: the structure $\langle \{0, 1\}; \theta \rangle$ with $\theta = \{(0, 1), (1, 0), (1, 1)\}$ is

• invariant under $f(x, y) = x \lor y$

• not invariant under $g(x, y) = x \wedge y$

Given a set Γ of relations on A, construct: F = all operations on A preserving all relations in Γ . The algebra associated to $CSP(\Gamma)$:

$$\mathbb{A} = \langle A; F \rangle$$

Given a set Γ of relations on A, construct: F = all operations on A preserving all relations in Γ . The algebra associated to $CSP(\Gamma)$:

 $\mathbb{A} = \langle A; F \rangle$

Constraint relations \subseteq subalgebras of powers of \mathbb{A} . The operations one can build from *F* (and projections) via composition are called the *terms* of \mathbb{A} .

if the constraint set Γ consists of subalgebras of powers of a *sufficiently well behaved* algebra, then $CSP(\Gamma)$ is tractable.

if the constraint set Γ consists of subalgebras of powers of a *sufficiently well behaved* algebra, then $CSP(\Gamma)$ is tractable.

- Well-behaved:
- A admits terms obeying "nice" identities
- i.e. target structure admits "nice" terms

if the constraint set Γ consists of subalgebras of powers of a *sufficiently well behaved* algebra, then $CSP(\Gamma)$ is tractable.

Well-behaved:

A admits terms obeying "nice" identities i.e. target structure admits "nice" terms more formally, in what follows, we'll refer to such algebras as *nice enough*.

Nuf's Let $n \ge 3$.

A near unanimity function, or nuf, is an *n*-variable operation that satisfies the identities

$$f(x,\ldots,x,y) = f(x,\ldots,x,y,x) = \cdots f(y,x,\ldots,x) = x.$$

Notice: an nuf is *idempotent*, i.e. satisfies

$$f(x, x, \dots, x) = x.$$

Nuf's, cont'd

Concept first appears: Huhn, 1972; Baker & Pixley 1975.

Case n = 3 widely studied: majority operations

- 50's and 60's: majority decision: voting paradoxes, etc.
- Wille 1970: majority terms of lattices, congruences
- Bandelt et al.: absolute retracts
- Pouzet et al.: Metric point of view
- Etc.

Elementary facts about nuf's

- Prototypical example: the median

 $m(x, y, z) = \max(\min(x, y), \min(x, z), \min(y, z))$ $= (x \land y) \lor (x \land z) \lor (y \land z)$

- If a structure H admits an nuf with n variables, it admits one with n + 1 variables (just add a fictitious variable)

Let H be a structure. A pair (G, p) is a zig-zag for H if

• G is a structure of the same type as H;

- G is a structure of the same type as H;
- p is a partial map from G to H;

- G is a structure of the same type as H;
- p is a partial map from G to H;
- p does not extend to a full homomorphism from G to H and

- G is a structure of the same type as H;
- p is a partial map from G to H;
- p does not extend to a full homomorphism from G to H and
- the pair (G, p) is minimal with the above properties.

Nuf's and zig-zags

Theorem [Zádori 1997; G. Tardos 1986]

Let H be a structure. Then the following are equivalent:

1. *H* admits an nuf of arity n + 1;

2. every zig-zag (G, p) for H satisfies $|dom p| \le n$.

Sketch of proof. (1) \Rightarrow (2): let f be an nuf of arity n + 1.

• let (G, p) be a zig-zag; suppose for a contradiction $dom p = \{x_1, \dots, x_{n+1}\};$

Sketch of proof. (1) \Rightarrow (2): let f be an nuf of arity n + 1.

- let (G, p) be a zig-zag; suppose for a contradiction $dom p = \{x_1, \dots, x_{n+1}\};$
- let p_i be the restriction of p to dom p \ {x_i}: it extends to some p_i;

Sketch of proof. (1) \Rightarrow (2): let f be an nuf of arity n + 1.

- let (G, p) be a zig-zag; suppose for a contradiction $dom p = \{x_1, \dots, x_{n+1}\};$
- let p_i be the restriction of p to dom p \ {x_i}: it extends to some p_i;
- then $f(\widehat{p_1}, \cdots, \widehat{p_{n+1}})$ is an extension of p:

 $f(\widehat{p_1}, \cdots, \widehat{p_{n+1}})(x_i)$ = $f(p(x_i), \ldots, p(x_i), *, p(x_i), \ldots, p(x_i))$ = $p(x_i).$

Sketch of proof, cont'd (2) \Rightarrow (1):

• let $G = A^{n+1}$ and define the partial map

$$p(x,\ldots,x,y,x\ldots,x) = x$$

for all tuples of this form;

Sketch of proof, cont'd (2) \Rightarrow (1):

• let $G = A^{n+1}$ and define the partial map

$$p(x,\ldots,x,y,x\ldots,x) = x$$

for all tuples of this form;

• the restriction of p to any set with at most n tuples is extendible (appropriate projection)

Sketch of proof, cont'd (2) \Rightarrow (1):

• let $G = A^{n+1}$ and define the partial map

$$p(x,\ldots,x,y,x\ldots,x) = x$$

for all tuples of this form;

- the restriction of p to any set with at most n tuples is extendible (appropriate projection)
- (G, p) non-extendible \Rightarrow contains a zig-zag;

Sketch of proof, cont'd (2) \Rightarrow (1):

• let $G = A^{n+1}$ and define the partial map

$$p(x,\ldots,x,y,x\ldots,x) = x$$

for all tuples of this form;

- the restriction of p to any set with at most n tuples is extendible (appropriate projection)
- (G, p) non-extendible \Rightarrow contains a zig-zag;
- hence p is extendible; H admits n + 1-ary nuf.
n-decomposability

Theorem [Baker & Pixley 1975]

Let \mathbb{A} be a finite algebra. Then the following are equivalent:

1. A has an nuf term of arity n + 1;

2. every subalgebra of a power of \mathbb{A} is determined by its projections onto n indices.

i.e. if Γ admits an nuf of arity n + 1, then constraints in Γ are determined by their projections on n factors.

Tractability

Theorem [Feder & Vardi 1993, 1998] If Γ is invariant under an nuf of arity n + 1 then $CSP(\Gamma)$ has width n. In particular, $CSP(\Gamma)$ is tractable.

In fact, $CSP(\Gamma)$ has bounded strict width: i.e. once local consistency has been achieved, partial solutions may be extended greedily to global solutions.

(strong n + 1-consistency \Rightarrow global consistency, see Jeavons, Cohen & Cooper 1998)

Tractability, cont'd

Furthermore:

Theorem [FV 1993, 1998; JCC 1998]

Let Γ be a set of constraint relations. Then the following are equivalent:

Γ is invariant under an nuf of arity n + 1;
 CSP(Γ) has strict width n.

• the median on {0,1} preserves all binary relations;

- the median on {0, 1} preserves all binary relations;
- $2 COL = CSP(\{(0, 1), (1, 0)\});$

- the median on {0,1} preserves all binary relations;
- $2 COL = CSP(\{(0, 1), (1, 0)\});$
- 2 SAT is also of the form CSP(Γ) where Γ consists only of binary relations on {0,1};

- the median on {0,1} preserves all binary relations;
- $2 COL = CSP(\{(0, 1), (1, 0)\});$
- 2 SAT is also of the form CSP(Γ) where Γ consists only of binary relations on {0,1};
- both problems have strict width 2.

- the median on {0, 1} preserves all binary relations;
- $2 COL = CSP(\{(0, 1), (1, 0)\});$
- 2 SAT is also of the form CSP(Γ) where Γ consists only of binary relations on {0,1};
- both problems have strict width 2.
- HORNSAT does not have strict width n ($\forall n$):

$(1, 1, \dots, 1) \notin \{\overline{X_1} \lor \dots \lor \overline{X_{n+1}}\}$

but contains $(1, 1, \ldots, 1, 0, 1, \ldots, 1)$ for any placement of the 0.

Complexity

We've seen:

Invariance under an nuf $\Rightarrow CSP(\Gamma) \in \mathbf{P}$

Complexity

We've seen:

Invariance under an nuf $\Rightarrow CSP(\Gamma) \in \mathbf{P}$ Can we do better ?

Complexity

We've seen:

Invariance under an nuf $\Rightarrow CSP(\Gamma) \in \mathbf{P}$

Can we do better ?

Example: if |A| = 2, and Γ is invariant under a majority operation (i.e. the median), then $CSP(\Gamma)$ is a subproblem of 2 - SAT, hence

 $CSP(\Gamma) \in \mathbf{NL}.$

Majority implies NL

Theorem [Dalmau & Krokhin, 2006]

Let H be a structure admitting a majority operation. Then CSP(H) is in **NL**.

Majority implies NL

Theorem [Dalmau & Krokhin, 2006]

Let H be a structure admitting a majority operation. Then CSP(H) is in **NL**.

In fact, they show more: *H* has bounded path width duality.

Let *H* be a structure. An *obstruction* for *H* is a structure *G* of the same type such that $G \not\rightarrow H$.

Let *H* be a structure. An *obstruction* for *H* is a structure *G* of the same type such that $G \not\rightarrow H$.

A *complete set of obstructions* for *H* is a set \mathcal{O} of obstructions for *H* such that $G \not\rightarrow H$ if and only if there exists $G' \in \mathcal{O}$ such that $G' \rightarrow G$.

Let *H* be a structure. An *obstruction* for *H* is a structure *G* of the same type such that $G \not\rightarrow H$.

A *complete set of obstructions* for H is a set \mathcal{O} of obstructions for H such that $G \not\rightarrow H$ if and only if there exists $G' \in \mathcal{O}$ such that $G' \rightarrow G$.

H is said to have *finite (tree)* duality if it has a complete set of obstructions that is finite (consists of trees).

Let *H* be a structure. An *obstruction* for *H* is a structure *G* of the same type such that $G \not\rightarrow H$.

A *complete set of obstructions* for H is a set \mathcal{O} of obstructions for H such that $G \not\rightarrow H$ if and only if there exists $G' \in \mathcal{O}$ such that $G' \rightarrow G$.

H is said to have *finite (tree)* duality if it has a complete set of obstructions that is finite (consists of trees).

H has *bounded path width duality* if it has a complete set of obstructions that consists of structures with ... bounded path width.

Related results, cont'd

Dalmau has shown that on 2 elements, problems invariant under an nuf (of any arity) have bounded path duality, and hence are in **NL**.

Related results, cont'd

Dalmau has shown that on 2 elements, problems invariant under an nuf (of any arity) have bounded path duality, and hence are in **NL**.

This prompts:

Question. If *H* admits an nuf, is CSP(H) in **NL** ?

(We'll see later that a slight strengthening of the notion of nuf guarantees this)

A natural question:

A natural question:

Given a structure H, does it admit an nuf?

This is not known to be decidable.

A natural question:

Given a structure H, does it admit an nuf?

This is not known to be decidable.

For algebras, however:

Theorem [Maróti, 2005] *Let* $\mathbb{A} = \langle A; F \rangle$ *be an algebra with* A *and* F *finite. Then it is decidable to determine if* \mathbb{A} *has an nuf term operation.*

A natural question:

Given a structure H, does it admit an nuf?

This is not known to be decidable.

For algebras, however:

Theorem [Maróti, 2005] Let $\mathbb{A} = \langle A; F \rangle$ be an algebra with A and F finite. Then it is decidable to determine if \mathbb{A} has an nuf term operation.

(Makes use of Lovász's proof of Kneser's conjecture !!)

For *fixed* arity: poly-time algorithm (Feder & Vardi 1993)

- For *fixed* arity: poly-time algorithm (Feder & Vardi 1993)
- *H* a poset: poly-time decidable (Kun & Szabó 2001)

- For *fixed* arity: poly-time algorithm (Feder & Vardi 1993)
- *H* a poset: poly-time decidable (Kun & Szabó 2001)
- *H* a symmetric, reflexive graph: poly-time decidable (L., Loten & Zádori 2005)

- For *fixed* arity: poly-time algorithm (Feder & Vardi 1993)
- *H* a poset: poly-time decidable (Kun & Szabó 2001)
- *H* a symmetric, reflexive graph: poly-time decidable (L., Loten & Zádori 2005)

The last two algorithms consist of a "dismantling" of the structure H^2 to its diagonal.

Restrictions on structures

- list-homomorphism problems on graphs
- retraction problems on posets and graphs

List-homomorphism problems

Let $H = \langle A; \Gamma \rangle$ be a fixed structure. Consider the following decision problem:

- Input: A structure G and $\forall g$ a list $L_g \subseteq A$;
- Question: Is there a homomorphism $f: G \to H$ such that $f(g) \in L_g \forall g$?

List-homomorphism problems

Let $H = \langle A; \Gamma \rangle$ be a fixed structure. Consider the following decision problem:

- Input: A structure G and $\forall g$ a list $L_g \subseteq A$;
- Question: Is there a homomorphism $f: G \to H$ such that $f(g) \in L_g \ \forall g \ ?$

List-homomorphisms, cont'd

List-hom problems translate into CSP as follows: add to constraint relations of H all unary constraint relations, i.e. create

$$H^* = \langle A; \Gamma \cup \{L : L \subseteq A\} \rangle.$$

The list-homomorphism problem for H is $CSP(H^*)$. CSP's of this form are also known as *conservative*: an operation f preserves every subset of A iff it is conservative, i.e.

$$f(x_1,\ldots,x_n)\in\{x_1,\ldots,x_n\}.$$

List-homomorphisms, cont'd

Theorem [Bulatov 2003] *If the algebra associated to a conservative CSP is "nice enough" then the CSP is tractable; otherwise it is* **NP***-complete.*

The dividing line in this dichotomy result has been investigated in detail for list-homomorphism problems on various types of graphs, e.g. symmetric graphs:

List-hom for symmetric graphs

Theorem [Feder, Hell & Huang 2003] *Let H be a graph. Then the following are equivalent:*

1. *H* is a bi-arc graph;

2. H admits a conservative majority operation.
If this holds then the list homomorphism problem for H is tractable, otherwise it is NP-complete.

Conservative nuf's on graphs

Theorem [Brewster, F+H+H & MacGillivray 2003] Let H be a graph. Then the following are equivalent:

1. *H* is a bi-arc graph;

2. *H* admits a conservative nuf.

FHH $+\epsilon$:

Fact [Kun, L. & Memartoluie 2004] *Let H be a graph. Then the following are equivalent:*

1. *H* is a bi-arc graph;

2. the algebra associated to H^* is "nice enough".

(predicted by Bulatov's result under $P \neq NP$)

Retraction problems

If a structure H is reflexive (i.e. has loops), then the problem CSP(H) is trivial: there is always a homomorphism, namely, a constant map.

A natural decision problem for reflexive structures is the *retraction problem*:

- Input: A structure G containing a copy of H;
- Question: Is there a retraction $f : G \to H$?

i.e. a homomorphism $f: G \to H$ such that f(x) = x for all $x \in H$.

Retraction problems, cont'd Example:

Retraction problems, cont'd

Retraction problems translate into CSP as follows: add to constraint relations of H all unary constraint relations of size 1, i.e. create

 $H' = \langle A; \Gamma \cup \{\{a\} : a \in A\} \rangle.$

The retraction problem for H is CSP(H').

Remark We're cheating a bit: this is better called the *one or all list homomorphism problem*.

FO-definability

Let \mathcal{K} be a class of structures of the same type as H.

 \mathcal{K} is *first order definable (FO definable)* if there exists a first order sentence Φ in the language of H such that $G \in \mathcal{K}$ iff G satisfies Φ .

We say that CSP(H) is FO-definable if

 $\mathcal{K} = \{G : G \text{ admits a homomorphism to } H\}$

is FO-definable.

Retraction problems on graphs

Theorem [Dalmau, Krokhin & L. 2004] Let H be a symmetric, reflexive graph. Then the following are equivalent:

- 1. the retraction problem for H is FO-definable;
- 2. *H* is connected and admits an nuf.

Retraction problems on graphs

Theorem [Dalmau, Krokhin & L. 2004] Let H be a symmetric, reflexive graph. Then the following are equivalent:

- 1. the retraction problem for H is FO-definable;
- 2. *H* is connected and admits an nuf.

There is an analog for posets but *inputs must be restricted to posets*:

i.e. existence of an nuf does not guarantee FO-definability (e.g. 2-COL) ...

1-tolerant nuf's

FO-definability of general CSP's can be captured by *1-tolerant nuf's*.

1-tolerant nuf's

FO-definability of general CSP's can be captured by *1-tolerant nuf's*.

Let $H = \langle A; \Gamma \rangle$ be a structure. A map $f : A^n \to A$ is a *1-tolerant homomorphism* if it satisfies the following condition: for every $\theta \in \Gamma$,

1-tolerant nuf's

FO-definability of general CSP's can be captured by *1-tolerant nuf's*.

Let $H = \langle A; \Gamma \rangle$ be a structure. A map $f : A^n \to A$ is a *1-tolerant homomorphism* if it satisfies the following condition: for every $\theta \in \Gamma$,

Applying *f* to the rows of a matrix with *at least* n - 1 columns in θ yields a tuple of θ .

1-tolerant powers

For convenience, consider the *n*-th 1-tolerant power of *H*:

- ${}^{1}H^{n}$ is a structure similar to H;
- universe is A^n ;
- *n*-tuples are θ -related as in the diagram:

$$\left[\begin{array}{ccc}a_{1,1}&\cdots&a_{1,n}\\\vdots&\cdots&\vdots\\a_{r,1}&\cdots&a_{r,n}\\n-1 \text{ columns in }\theta\end{array}\right]$$

Critical obstructions

An obstruction G for H is *critical* if it is minimal with the property $G \not\rightarrow H$, i.e. for every proper substructure $G' \subseteq G$ we have $G' \rightarrow H$.

For convenience: the tuples in relations of structures we call *hyperedges*.

Critical obstructions

An obstruction G for H is *critical* if it is minimal with the property $G \not\rightarrow H$, i.e. for every proper substructure $G' \subseteq G$ we have $G' \rightarrow H$.

For convenience: the tuples in relations of structures we call *hyperedges*.

Lemma

Let H be a structure. Tfae:

- 1. The critical obstructions of H have at most n hyperedges;
- 2. *H* admits an n + 1-ary 1-tolerant operation.

- $(1) \Rightarrow (2)$:
 - *H* admits no n + 1-ary 1-tolerant operation \Leftrightarrow there is no homomorphism from the 1-tolerant power ${}^{1}H^{n+1}$ to *H*;

- $(1) \Rightarrow (2)$:
 - *H* admits no n + 1-ary 1-tolerant operation \Leftrightarrow there is no homomorphism from the 1-tolerant power ${}^{1}H^{n+1}$ to *H*;
 - hence there is a critical obstruction C such that $c: C \rightarrow {}^{1}H^{n+1}$;

 $(1) \Rightarrow (2)$:

- *H* admits no n + 1-ary 1-tolerant operation \Leftrightarrow there is no homomorphism from the 1-tolerant power ${}^{1}H^{n+1}$ to *H*;
- hence there is a critical obstruction C such that $c: C \rightarrow {}^{1}H^{n+1}$;
- $\forall 1 \leq i \leq n+1 \exists$ hyperedge e_k of C which is not respected by $\pi_k \circ c$;

 $(1) \Rightarrow (2)$:

- *H* admits no n + 1-ary 1-tolerant operation \Leftrightarrow there is no homomorphism from the 1-tolerant power ${}^{1}H^{n+1}$ to *H*;
- hence there is a critical obstruction C such that $c: C \rightarrow {}^{1}H^{n+1}$;
- $\forall 1 \leq i \leq n+1 \exists$ hyperedge e_k of C which is not respected by $\pi_k \circ c$;
- 1-tolerance implies e_k is respected by $\pi_j \circ c$ for $j \neq k$;

 $(1) \Rightarrow (2):$

- *H* admits no n + 1-ary 1-tolerant operation \Leftrightarrow there is no homomorphism from the 1-tolerant power ${}^{1}H^{n+1}$ to *H*;
- hence there is a critical obstruction C such that $c: C \rightarrow {}^{1}H^{n+1}$;
- $\forall 1 \leq i \leq n+1 \exists$ hyperedge e_k of C which is not respected by $\pi_k \circ c$;
- 1-tolerance implies e_k is respected by $\pi_j \circ c$ for $j \neq k$;
- C has at least n + 1 hyperedges.

 $(2) \Rightarrow (1)$:

• let C be a critical obstruction for H with n + 1 hyperedges;

 $(2) \Rightarrow (1)$:

- let C be a critical obstruction for H with n + 1 hyperedges;
- $\forall 1 \leq i \leq n+1$ there is a homomorphism $f_i: C \setminus \{e_i\} \to H;$

 $(2) \Rightarrow (1)$:

- let C be a critical obstruction for H with n + 1 hyperedges;
- $\forall 1 \leq i \leq n+1$ there is a homomorphism $f_i: C \setminus \{e_i\} \to H;$
- (f_1, \ldots, f_{n+1}) is a homomorphism from C to ${}^1H^{n+1}$;

 $(2) \Rightarrow (1)$:

- let C be a critical obstruction for H with n + 1 hyperedges;
- $\forall 1 \leq i \leq n+1$ there is a homomorphism $f_i: C \setminus \{e_i\} \to H;$
- (f_1, \ldots, f_{n+1}) is a homomorphism from C to ${}^1H^{n+1}$;
- hence ${}^{1}H^{n+1} \not\rightarrow H$.

A structure *H* is a *core* if it has no proper retract i.e. if $G \leftrightarrow H$ implies that $|G| \ge |H|$.

A structure H is a *core* if it has no proper retract i.e. if $G \leftrightarrow H$ implies that $|G| \ge |H|$.

A structure is *rigid* if its only automorphism is the identity.

A structure H is a *core* if it has no proper retract i.e. if $G \leftrightarrow H$ implies that $|G| \ge |H|$.

A structure is *rigid* if its only automorphism is the identity.

Lemma If H is a core with tree duality then it is rigid.

A structure H is a *core* if it has no proper retract i.e. if $G \leftrightarrow H$ implies that $|G| \ge |H|$.

A structure is *rigid* if its only automorphism is the identity.

Lemma If H is a core with tree duality then it is rigid.

Lemma [Nešetřil & Tardif 2000] *If H has finite duality then it has tree duality.*

FO-definable cores

Theorem [L., Loten & Tardif, 2006] *Let H be a core structure. The following are equivalent:*

- 1. CSP(H) is FO-definable;
- 2. *H* admits a 1-tolerant nuf.

Furthermore, there is a polynomial-time algorithm to recognise these structures.

Sketch of Proof

- 1. CSP(H) is FO-definable;
- 2. *H* admits a 1-tolerant nuf.
 - By Atserias (or Rossman) 2005, we have that *H* has finite duality iff CSP(H) is FO-definable.

Sketch of Proof

- 1. CSP(H) is FO-definable;
- 2. *H* admits a 1-tolerant nuf.
 - By Atserias (or Rossman) 2005, we have that *H* has finite duality iff CSP(H) is FO-definable.
 - Hence by the lemma it suffices to prove that, if *H* is a core with finite duality then *every 1-tolerant homomorphism is actually an nuf;*

Sketch of Proof

- 1. CSP(H) is FO-definable;
- 2. *H* admits a 1-tolerant nuf.
 - By Atserias (or Rossman) 2005, we have that *H* has finite duality iff CSP(H) is FO-definable.
 - Hence by the lemma it suffices to prove that, if *H* is a core with finite duality then *every* 1-tolerant homomorphism is actually an nuf;
 - follows because *H* is a core and has tree duality, and hence is rigid.

(use $\phi_{i,y}: H \to {}^1H^n, x \mapsto (x, \ldots, x, y, x \ldots, x)$.)

We briefly describe (without proof) the algorithm to recognise core structures H with FO-definable CSP.

We briefly describe (without proof) the algorithm to recognise core structures H with FO-definable CSP.

In any structure $G = \langle X; \Gamma \rangle$, let $a, b \in X$.

We briefly describe (without proof) the algorithm to recognise core structures H with FO-definable CSP.

In any structure $G = \langle X; \Gamma \rangle$, let $a, b \in X$.

We say that *b* dominates *a* if for every $\theta \in \Gamma$ and any tuple $\overline{x} \in \theta$, replacement of any occurrence of *a* in \overline{x} by *b* yields a tuple in θ .

We briefly describe (without proof) the algorithm to recognise core structures H with FO-definable CSP.

In any structure $G = \langle X; \Gamma \rangle$, let $a, b \in X$.

We say that *b* dominates *a* if for every $\theta \in \Gamma$ and any tuple $\overline{x} \in \theta$, replacement of any occurrence of *a* in \overline{x} by *b* yields a tuple in θ .

Example. Suppose θ is 4-ary and that *b* dominates *a*. If $(a, b, c, a) \in \theta$ then

 $(b, b, c, a), (a, b, c, b), (b, b, c, b) \in \theta.$

Let $H = \langle A; \Gamma \rangle$ be a core. In H^2 let

$$\Delta = \{ (x, x) : x \in A \}.$$

Let $H = \langle A; \Gamma \rangle$ be a core. In H^2 let

 $\Delta = \{ (x, x) : x \in A \}.$

Dismantling algorithm

Let $H = \langle A; \Gamma \rangle$ be a core. In H^2 let

 $\Delta = \{ (x, x) : x \in A \}.$

Dismantling algorithm

Let $S_0 = H^2$.

An algorithm, cont'd Let $H = \langle A; \Gamma \rangle$ be a core. In H^2 let $\Delta = \{(x, x) : x \in A\}.$

Dismantling algorithm

Let $S_0 = H^2$.

Remove from $S_i \setminus \Delta$ any dominated element, let S_{i+1} be the resulting structure and repeat; otherwise stop.

Let $H = \langle A; \Gamma \rangle$ be a core. In H^2 let

 $\Delta = \{ (x, x) : x \in A \}.$

Dismantling algorithm

Let $S_0 = H^2$.

Remove from $S_i \setminus \Delta$ any dominated element, let S_{i+1} be the resulting structure and repeat; otherwise stop.

If the resulting structure is Δ , then CSP(H) is FO-definable; otherwise it is not.
Example 1.

Let $H = \langle \{0, 1, 2\}, \{(0, 1), (1, 2), (0, 2)\} \rangle$, the irreflexive transitive tournament on 3 vertices.

CSP(H) is FO-definable: a complete set of obstructions is given by $\{P_3\}$ where P_3 is the path of length 3:

Thus a structure $G \not\rightarrow H$ iff it satisfies $\exists a \exists b \exists c \exists d [(a, b) \in \theta \land (b, c) \in \theta \land (c, d) \in \theta].$

Thus a structure $G \not\rightarrow H$ iff it satisfies $\exists a \exists b \exists c \exists d [(a, b) \in \theta \land (b, c) \in \theta \land (c, d) \in \theta].$

H admits a 4-ary 1-tolerant nuf, but no 3-ary;

Thus a structure $G \not\rightarrow H$ iff it satisfies $\exists a \exists b \exists c \exists d [(a, b) \in \theta \land (b, c) \in \theta \land (c, d) \in \theta].$ *H* admits a 4-ary 1-tolerant nuf, but no 3-ary; But it *does* admit a majority operation.

 $(m(x, y, z) = 1 \text{ if } \{x, y, z\} = \{0, 1, 2\} \text{ and maj. else. })$

Example 2.

Let $H = \langle \{0, 1, 2, 3\}, \{(0, 1), (1, 2), (2, 3)\} \rangle$, the irreflexive path of length 3.

H is a path: admits a majority operation (Feder 2001);

H is a path: admits a majority operation (Feder 2001); CSP(H) is *not* FO-definable:

H is a path: admits a majority operation (Feder 2001); CSP(H) is *not* FO-definable:

H is a core, and H^2 dismantles only down to $H^2 \setminus \{(0,3), (3,0)\}.$

Generalisations of nuf's

- Congruence-distributivity
- Generalised majority-minority terms
- Weak nuf's

Congruence-distributivity

Algebras in congruence-distributive varieties are characterised by the existence of a sequence of 3-ary *Jónsson terms* d_0, \ldots, d_m for some $m \ge 2$. The following is known:

A has an nuf term \Rightarrow A has Jónsson terms \Rightarrow A is "nice enough".

Hence conjecturally they are tractable, and have enough structure to provide a good testing ground for the conjecture.

C-D, cont'd

Let CD(m) denote the class of finite algebras that admit a sequence of m Jónsson terms.

It is immediate (from the Jónsson condition) that algebras in CD(2) have a majority term, and hence yield tractable CSP's. The next case, m = 3, is taken care of by the following result:

C-D, cont'd

Theorem [Kiss & Valeriote 2006] Let \mathbb{A} be a finite algebra in CD(3); let Γ denote the set of all subalgebras of finite powers of \mathbb{A} . Then $CSP(\Gamma)$ has relational width $|A^2|$, and hence is globally tractable.

C-D, cont'd

Theorem [Kiss & Valeriote 2006] Let \mathbb{A} be a finite algebra in CD(3); let Γ denote the set of all subalgebras of finite powers of \mathbb{A} . Then $CSP(\Gamma)$ has relational width $|A^2|$, and hence is globally tractable.

This prompts:

Question. If \mathbb{A} admits Jónsson terms, does it yield a tractable CSP ? Does the CSP have bounded width ?

GMM operations

An operation f is a generalised majority-minority (GMM) operation if it satisfies the following: for every pair $\{a, b\}$ either

$$f(x,\ldots,x,y) = f(y,x,\ldots,x) = y$$

or

 $f(x, ..., x, y) = \cdots = f(y, x, ..., x) = x$ holds for all $x, y \in \{a, b\}$. Notice that nuf's are a special case of GMM.

GMM operations, cont'd

Theorem [Dalmau 2005] If Γ is invariant under a GMM operation then $CSP(\Gamma)$ is tractable.

GMM operations, cont'd

Theorem [Dalmau 2005] If Γ is invariant under a GMM operation then $CSP(\Gamma)$ is tractable.

NOTE: the principal author of the above paper is *not* Ho Weng Kin.

http://www.lfcs.inf.ed.ac.uk/events/lics/2005/ Kin Dalmau-GeneralizedMajority.html

Weak nuf's

We'll say an idempotent operation f is a weak nuf if it satisfies the identities

$$f(x,\ldots,x,y) = f(x,\ldots,x,y,x) = \cdots = f(y,x,\ldots,x).$$

[Note: what's missing to get an nuf is that these are all equal to x]

Once again, conjecturally, CSP's invariant under such a term should be tractable.

Weak nuf's, cont'd

Theorem [Kiss & Valeriote 2006] If $CSP(\Gamma)$ has relational width k, then Γ is invariant under a weak nuf of arity k.

Weak nuf's, cont'd

Theorem [Kiss & Valeriote 2006] If $CSP(\Gamma)$ has relational width k, then Γ is invariant under a weak nuf of arity k.

Theorem [McKenzie, 2006] Let A be an algebra in a congruence-distributive variety. Then A has a weak majority term. (More as we speak ?)

Some Problems

Problem 1. If *H* admits an nuf, is CSP(H) in **NL**? What about bounded path width duality?

Problem 2. Is the problem "does *H* admit an nuf ?" decidable ? What about for FO-definable *H* ?

Problem 3. Investigate the notion of weak majority operation and weak nuf: imply tractability ? (\neq bounded width (M. Valeriote))

Key references

- K.A. Baker, A.F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic systems, Math.Z.143 (1975), 165–174.
- V. Dalmau Generalized Majority-Minority Operations are Tractable, LICS 2005.
- V. Dalmau, A. Krokhin, Majority constraints have bounded path duality, preprint, 17 pages, 2006.
- T. Feder, P. Hell, J. Huang, Bi-arc graphs and the complexity of list homomorphisms, J. Graph Theory 42 (2003) 61 80.
- T. Feder, M. Y. Vardi, The Computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory, *SIAM Journal of Computing* 28, (1998), 57-104.
- P.G. Jeavons, D.A. Cohen, and M. Cooper. Constraints consistency and closure. Articial Intelligence, 101(1-2):251-265, 1998.
- E. Kiss, M. Valeriote, On tractability and congruence distributivity, preprint, 10 pages, 2006.

(continued on next slide)

Key references, cont'd

- B. Larose, C. Loten, C. Tardif, A characterisation of first-order definable constraint satisfaction problems, preprint, 10 pages, 2006.
- B. Larose, C. Loten, L. Zádori, A polynomial-time algorithm to recognise near-unanimity graphs, *J. Algorithms*, 55 no. 2, 177–191, 2005.
- M. Maróti, The existence of a near-unanimity term in a finite algebra is decidable, preprint, 13 pages, 2005.
- J. Nešetřil, C. Tardif, Duality theorems for finite structures (characterising gaps and good characterisations), *J. Combin. Theory Ser. B* 80, 2000, 80–97.
- L. Zádori, Relational sets and categorical equivalence of algebras, *Internat. J. Algebra Comput.* 7 no. 5, 561-576, 1997.