Max CSP and lattices

Peter Jonsson

LinkOpings universitet

Qutline:
e [he Max CSP problem
e Tools: Lattices, supermodularity, implementations, and cores

e Results and open questions:
— |D| =3
— non-distributive lattices
— single-predicate Max CSP

— Max CSP with all constants (x =0, z=1,...)

Basics

D — a finite set with |D| > 1 (the domain)

Rg”) ={f|f:D™— {0,1}} — the set of all m-ary predicates

Rp =U_; RY"

Definition: A constraint over a set of variables V. = {x1,zo,...,xn}
is an expression of the form f(x) where

f e Rgn) is the constraint predicate; and

x = (z,,...,%;,) iS the constraint scope.

The constraint f(x) is said to be satisfied on a tuple a = (a;;,...,a;,,) €
D™ if f(a) = 1.

Max CSP

A collection C' = {f1(x1),..., fm(xm)} of constraints over V =
{x1,...,2n};

each constraint f;(x;) has a weight «o; € N.

Find an assignment ¢ : V — D that maximizes the total weight
of satisfied constraints; in other words, maximize the function
f . D" — N, defined by

f(wla IR 7xn) — Z g - fZ(XZ)
1=1

Parameterization of Max CSP

For a finite set of predicates ' C Rp, Max CSP(IN) is the set of
Max CSP instances where all constraint predicates belong to .

We say that I is a constraint language.

Example

In the Max k-Cut problem, one is given an edge-weighted graph,
and the goal is to divide it into k parts so as to maximize the
total weight of edges between different parts.

Let neq;, be the disequality predicate on {0,...,k — 1}, that is,
neqp(x,y) = 1 iff x = y. Then Max k-Cut = Max CSP({neqy}).

Approximation

PO is the class of optimization problems that can be solved to
optimality in polynomial time.

APX is the class of optimization problems that can be optimized
(in polynomial time) within some constant ¢ > 1:

OPT(I) < m(A(D)) < c¢-OPT(I)

Max CSP(I') can be approximated within |D|® where a is the
maximum arity of predicates in .

A problem S is APX-complete if every problem in APX can be
AP-reduced to S.

If S is APX-complete and P #= NP, then
e there exists a constant ¢ > 0 such that S is not c-approximable;
e S does not admit a polynomial-time approximation scheme;

e it is NP-hard to solve S exactly.

Max CSP({neq}) is APX-complete.

Classification when |D| =2
[Creignou] [Khanna, Sudan, Williamson]

Let ' be a constraint language over {0,1}. Max CSP(I") € PO
if and only if

e [is O-valid; or
e [is 1-valid; or
e [IS 2-monotone.

Otherwise, [is APX-complete.

A predicate f : {0,1}" — {0,1} is 2-monotone if f can be ex-
pressed as follows:

flz1,...,2n) =1
—

(i, Ao Az)V (mxj Ao A xy)

Both disjuncts are not required to contain literals.

Tools

e | attices and supermodularity

e Strict implementations

e Cores

Lattices

A lattice L is a partial order in which any a,b € £ have

e a least common upper bound (join) a b, and

e a greatest common lower bound (meet) aMb

OO O

A chain is a totally ordered lattice.

A lattice is called distributive iff it can be represented by sub-
sets of a set, with lattice operations interpreted as union and
intersection.

OO

Supermodular functions/predicates

Let £ be a lattice order on D. We say that an n-ary function
f D" — R is supermodular on L if

f(x)+ fly) < fxny)+ f(xuy) for all x,y € D",

where LI and M act point-wise.

fla) =f(b) = flc) =1
f(0)=r7(1)=0

fla)+ flc) =2Z flanc) + flaub) = f(0) + f(1) =0

fla) =f(b) =1
fle) =f(0)=r(1)=0

fla)+ flc) =1L flanc) + flaub) = f(0) + f(1) =0

fla) = f(b) = f(0) =f(1) =1

fle) =0

z,y € {a,b,0,1}

fl@)+ fle)=1<f(zMNec)+ f(zUec) = f(O) + f(1) =2
fl@)+ fly)=2<f@ny)+ fzuy) = f(z) + f(y) =2
fle)+ fle) =0< f(cMe) + flcUc) = flc) + f(c) =0

More examples
Every 2-monotone predicate is supermodular on 0 — 1.

Every unary predicate is supermodular on every chain.

Max CSP and supermodularity

Fact. If f1 and fo are supermodular predicates on L,
then a- f1 + 8- fo, a, 8> 0, is supermodular on L.

Theorem. [Schrijver]
Let £ be a distributive lattice order on a finite set D. A function

f . D" — R that is supermodular on £ can be maximized in
polynomial time, if f and £ satisfy some mild restrictions.

Let «1,...,am > 0. If predicates f1,..., fm are supermodular on
L, then so is

flx1,..,zn) =) a;- fi(x;).
i=1

Max CSP

A collection C' = {f1(x1),..., fm(xm)} of constraints over V =
{x1,...,2n};

each constraint f;(x;) has a weight «o; € N.

Find an assignment ¢ : V — D that maximizes the total weight
of satisfied constraints; in other words, maximize the function
f . D" — N, defined by

f(wla IR 7xn) — Z g - fZ(XZ)
1=1

Theorem. [Cohen, Cooper, Jeavons, Krokhin]
If £ is a distributive lattice and [consists of supermodular pred-
icates on £, then Max CSP(I) is in PO.

Strict implementations

Definition. Let Y = {y1,...,ym} and Z = {z1,...,2zn} be two
disjoint sets of variables. Let g1(y1),...,9s5(ys), s > 0, be con-
straints over YU Z. If g(y1,...,ym) iS a predicate such that the
equality

S
g(y1,...,ym) = max > gi(y;) —«a

1 =1
is satisfied for all y1,...,ym, and some fixed o > 0, then g is said
to be strictly implemented from {g1,...,9s}.

Lemma. If a predicate g can be strictly implemented from I
and Max CSP(I"'u{g}) is APX-complete then so is Max CSP(IN)

How to strictly implement eqo with nego:

eq2(z,y) = max(nega(z,z) + neqa(y,z)) — 1

If t=y=1, thenlet z=0. Result: 1
If t=9y=0, then let z=1. Result: 1

If t 7y, thenlet 2z =0 (or 2z =1). Result: O

Cores

Definition. An endomorphism of [is a unary operation v on D
such that

f(a'la"'7am) =1 :>f(/7(a’1>77,7<a’m)> =1

for all f el and all (a1,...,am) € D™. We will say that I is a
core if every endomorphism of I" is injective (i.e. a permutation).

Intuition. If " is not a core then Max CSP(I") reduces to a simi-
lar problem over a smaller domain obtained by removing elements
not in image().

Fact. For |D| =2, " is not a core iff there is a € D such that
f(a,...,a) =1 for all f el. In this case Max CSP(IN) is trivial.

Classification when |D| = 2 (version 2)

Let ' be a constraint language over {0,1} and assume (without
loss of generality) that " is a core. Then, Max CSP(IN) € PO
if and only if " is supermodular on 0 — 1. Otherwise, I is
AP X-complete.

Results an pen questi ns

e |D|=3

e Non-distributive lattices

e Single-predicate Max CSP

e Constraint languages that contain all constants

Classification when |D| = 3
[Jonsson, Klasson, Krokhin]

Let " be a constraint language over {0, 1,2} and assume (without
loss of generality) that " is a core. Then, Max CSP(IN) € PO
if and only if " is supermodular on some chain over {0,1,2}.
Otherwise, I is APX-complete.

The proof has many similarities with the proof for constraint
languages with all constants.

pen question:

What is the complexity/approximability of Max CSP(I') when
|D| > 37

Hypothesis

Classification when |D| =k > 3

Let ' be a constraint language over {0,...,k — 1} and assume
that I is a core. Then, Max CSP(IN) € PO if and only if I
is supermodular on some distributive lattice over {0,...,k — 1}.
Otherwise, ' is APX-complete.

There exist constraint languages I that are supermodular on

but not on any distributive lattice [Krokhin, Larose].

Theorem. [Krokhin, Larose]
If T consists of predicates that are supermodular on the k-
diamond, then Max CSP(IN) is in PO.

The algorithm runs in O(n3) and it is inspired by algorithms for
the Min Cut/Max Flow problem.

If V,W are classes of lattices, then V o W consists of all lattices
L such that there is a congruence 6 on L with the following
properties:

e the congruence lattice £L/6 € W, and

e every f-class is a lattice in V

Theorem. [Krokhin, Larose]

Suppose that V,W are finite classes of finite lattices. If super-
modular optimization over V. and W is in PO, then supermodular
optimization over V o W is in PO, too.

Corollary.
If ' consists of predicates that are supermodular on the pen-
tagon, then Max CSP(IN) is in PO.

Let [be a core.

pen question:

Is Max CSP(I') € PO whenever I is supermodular on some
lattice”

pen question:

Is Max CSP(I") APX-complete whenever " is not supermodular
on any lattice?

pen question:

Assume that I is supermodular on

Is Max CSP(IN) in PO?

Complexity of single-predicate Max CSP

[Jonsson, Krokhin]

Let f: D™ — {0,1} be a predicate such that n > 1.
Max CSP({f}) is in PO if and only if there exists a d € D such
that f(d,...,d) = 1. Otherwise, Max CSP({f}) is NP-complete.

This is proved by two induction proofs. In the first part, it is
assumed that f is binary and the induction is over |D|; cores
play an important réle in the proof. In the second part, the
induction is over the arity of f;, the main idea is to construct
strict implementations that reduce the arity of predicates.

pen question:

Is Max CSP({f}) APX-complete whenever Max CSP({f}) is NP-
complete?

Constraint languages containing all constants
Given a finite set D/, we define the predicate ups such that

up(z) =1 <=z € D

Let ' be a constraint language over domain D = {0,...,d — 1}.
" contains all constants if {usgy, ..., ugg_137 €T

Note: I is a core (the identity is the only endomorphism).

Theorem. [Deineko, Jonsson, Klasson, Krokhin]
Let [be a constraint language that contains all constants. Then,
Max CSP(IN) € PO if and only if I is supermodular on some
chain. Otherwise, Max CSP(IN) is APX-complete.

Every chain is a distributive lattice so we only need to prove the
hardness part: Consequently, we assume that I is not supermod-
ular on any chain over D.

Step 1. For every D' C D, the predicate up can be strictly im-
plemented by I'. Henceforth, we assume that all unary predicates
are in .

Step 2. [contains all unary predicates. Then, [T can strictly
implement a constraint language I’ such that I is not super-
modular on any chain and every predicate in I’ is at most binary.
[Burkard, Klinz, Rudolf]

Step 3. If ' is not supermodular on any chain, then there exists
D' C D such that

e |D'| < 4; and

e [| is not supermodular on any chain.

The proof is inspired by how the COM-algorithm works [Deineko,
Rudolf, Woeginger].

Is there an AP-reduction from Max CSP(I"|p/) to Max CSP(IM)?

However:
Max CSP(I"|p)-B AP-reduces to Max CSP(IM)-B.

Strict implementations increase the degrees of variables, but not
too much.

Step 4. If I is not supermodular on any chain, then there exists
a subset I C I" such that

o || <3; and

e [’ is not supermodular on any chain.

By steps 1-4, we now have a constraint language I’ satisfying
the following properties:

o "= {f1, f2, f3} where f; : {0,1,2,3}2 — {0, 1}
e [’ is not supermodular on any chain:

e Max CSP(I'")-B AP-reduces to Max CSP(IN)-B.

By a computer-generated enumeration of strict implementations,
it turns out that some predicate % with |E| = 2 can be strictly
implemented by every possible 7.

It is known that Max CSP(#g)-3 is APX-complete [Alimonti,
Kann] which concludes the proof.

pen question

Is there an elegant way of proving the previous result without
using computer-assisted case analyses?

[1]

2]

References: Max CSP and lattices.

Nadia Creignou. A dichotomy theorem for maximum generalized satisfia-
bility. Journal of Computer and System Science 51(3):511-522, 1995.

Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David Williamson.
The approximability of constraint satisfaction problems. SIAM Journal
on Computing 30(6):1863-1920, 2000.

Alexander Schrijver. A combinatorial algorithm minimizing submodular
functions in polynomial time. Journal of Combinatorial Theory Ser.B
80:346-355,2000.

David Cohen, Martin Cooper, Peter Jeavons, and Andrei Krokhin. Su-
permodular functions and the complexity of Max CSP. Discrete Applied
Mathematics 149(1-3):53-72, 2005.

Andrei Krokhin and Benoit Larose. Maximum constraint satisfaction on
diamonds. Proc. CP-2005, 388-402, 2005.

Vladimir Deineko, Peter Jonsson, Mikael Klasson, and Andrei Krokhin.
Supermodularity on chains and complexity of maximum constraint satis-
faction problems. In Proceedings of the European Conference on Combi-
natorics, Graph Theory and Applications (EuroCOMB-2005), pp. 51-56,
2005. Longer version available from www.arxiv.org/ps/cs.CC/0602075.

Peter Jonsson, Mikael Klasson, and Andrei Krokhin. The approximability
of three-valued Max CSP. SIAM Journal on Computing 35(3):1329-1349,
2006. Draft version available from www.arxiv.org/ps/cs.CC/0412042.

