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Outline:

• The Max CSP problem

• Tools: Latti
es, supermodularity, implementations, and 
ores

• Results and open questions:� |D| = 3� non-distributive latti
es� single-predi
ate Max CSP� Max CSP with all 
onstants (x = 0, x = 1,. . . )



Basi
s

D � a �nite set with |D| > 1 (the domain)
R

(m)
D = {f | f : Dm → {0,1}} � the set of all m-ary predi
ates

RD =
⋃∞

m=1 R
(m)
DDe�nition: A 
onstraint over a set of variables V = {x1, x2, . . . , xn}is an expression of the form f(x) where

f ∈ R
(m)
D is the 
onstraint predi
ate; and

x = (xi1, . . . , xim) is the 
onstraint s
ope.The 
onstraint f(x) is said to be satis�ed on a tuple a = (ai1, . . . , aim) ∈

Dm if f(a) = 1.



Max CSPA 
olle
tion C = {f1(x1), . . . , fm(xm)} of 
onstraints over V =

{x1, . . . , xn};ea
h 
onstraint fi(xi) has a weight αi ∈ N.Find an assignment φ : V → D that maximizes the total weightof satis�ed 
onstraints; in other words, maximize the fun
tion

f : Dn → N, de�ned by
f(x1, . . . , xn) =

m∑

i=1

αi · fi(xi).



Parameterization of Max CSPFor a �nite set of predi
ates Γ ⊆ RD, Max CSP(Γ) is the set ofMax CSP instan
es where all 
onstraint predi
ates belong to Γ.We say that Γ is a 
onstraint language.



ExampleIn the Max k-Cut problem, one is given an edge-weighted graph,and the goal is to divide it into k parts so as to maximize thetotal weight of edges between di�erent parts.Let neqk be the disequality predi
ate on {0, . . . , k − 1}, that is,

neqk(x, y) = 1 i� x 6= y. Then Max k-Cut ≡ Max CSP({neqk}).



ApproximationPO is the 
lass of optimization problems that 
an be solved tooptimality in polynomial time.APX is the 
lass of optimization problems that 
an be optimized(in polynomial time) within some 
onstant c > 1:

OPT(I)

c
≤ m(A(I)) ≤ c · OPT(I)

Max CSP(Γ) 
an be approximated within |D|a where a is themaximum arity of predi
ates in Γ.



A problem S is APX-
omplete if every problem in APX 
an be
AP -redu
ed to S.If S is APX-
omplete and P 6= NP, then
• there exists a 
onstant c > 0 su
h that S is not c-approximable;

• S does not admit a polynomial-time approximation s
heme;

• it is NP-hard to solve S exa
tly.

Max CSP({neqk}) is APX-
omplete.



Classi�
ation when |D| = 2[Creignou℄ [Khanna, Sudan, Williamson℄Let Γ be a 
onstraint language over {0,1}. Max CSP(Γ) ∈ POif and only if

• Γ is 0-valid; or

• Γ is 1-valid; or
• Γ is 2-monotone.

Otherwise, Γ is APX-
omplete.



A predi
ate f : {0,1}n → {0,1} is 2-monotone if f 
an be ex-pressed as follows:

f(x1, . . . , xn) = 1

⇐⇒

(xi1 ∧ . . . ∧ xis) ∨ (¬xj1 ∧ . . . ∧ ¬xjt)

Both disjun
ts are not required to 
ontain literals.



Tools
• Latti
es and supermodularity
• Stri
t implementations
• Cores



Latti
esA latti
e L is a partial order in whi
h any a, b ∈ L have
• a least 
ommon upper bound (join) a ⊔ b, and
• a greatest 
ommon lower bound (meet) a ⊓ b



A 
hain is a totally ordered latti
e.A latti
e is 
alled distributive i� it 
an be represented by sub-sets of a set, with latti
e operations interpreted as union andinterse
tion.



Supermodular fun
tions/predi
atesLet L be a latti
e order on D. We say that an n-ary fun
tion

f : Dn → R is supermodular on L if
f(x) + f(y) ≤ f(x ⊓ y) + f(x ⊔ y) for all x,y ∈ Dn,where ⊔ and ⊓ a
t point-wise.



1

a

b
c

0

f(a) = f(b) = f(c) = 1

f(0) = f(1) = 0

f(a) + f(c) = 2 6≤ f(a ⊓ c) + f(a ⊔ b) = f(0) + f(1) = 0



1

a

b
c

0

f(a) = f(b) = 1

f(c) = f(0) = f(1) = 0

f(a) + f(c) = 1 6≤ f(a ⊓ c) + f(a ⊔ b) = f(0) + f(1) = 0



1

a

b
c

0

f(a) = f(b) = f(0) = f(1) = 1

f(c) = 0

x, y ∈ {a, b,0,1}

f(x) + f(c) = 1 ≤ f(x ⊓ c) + f(x ⊔ c) = f(0) + f(1) = 2

f(x) + f(y) = 2 ≤ f(x ⊓ y) + f(x ⊔ y) = f(x) + f(y) = 2

f(c) + f(c) = 0 ≤ f(c ⊓ c) + f(c ⊔ c) = f(c) + f(c) = 0



More examplesEvery 2-monotone predi
ate is supermodular on 0 → 1.Every unary predi
ate is supermodular on every 
hain.



Max CSP and supermodularityFa
t. If f1 and f2 are supermodular predi
ates on L,then α · f1 + β · f2, α, β ≥ 0, is supermodular on L.Theorem. [S
hrijver℄Let L be a distributive latti
e order on a �nite set D. A fun
tion

f : Dn → R that is supermodular on L 
an be maximized inpolynomial time, if f and L satisfy some mild restri
tions.



Let α1, . . . , αm ≥ 0. If predi
ates f1, . . . , fm are supermodular on

L, then so is

f(x1, . . . , xn) =
m∑

i=1

αi · fi(xi).



Max CSPA 
olle
tion C = {f1(x1), . . . , fm(xm)} of 
onstraints over V =

{x1, . . . , xn};ea
h 
onstraint fi(xi) has a weight αi ∈ N.Find an assignment φ : V → D that maximizes the total weightof satis�ed 
onstraints; in other words, maximize the fun
tion

f : Dn → N, de�ned by
f(x1, . . . , xn) =

m∑

i=1

αi · fi(xi).



Theorem. [Cohen, Cooper, Jeavons, Krokhin℄If L is a distributive latti
e and Γ 
onsists of supermodular pred-i
ates on L, then Max CSP(Γ) is in PO.



Stri
t implementationsDe�nition. Let Y = {y1, . . . , ym} and Z = {z1, . . . , zn} be twodisjoint sets of variables. Let g1(y1), . . . , gs(ys), s > 0, be 
on-straints over Y ∪ Z. If g(y1, . . . , ym) is a predi
ate su
h that theequality

g(y1, . . . , ym) = max
Z

s∑

i=1

gi(yi) − αis satis�ed for all y1, . . . , ym, and some �xed α > 0, then g is saidto be stri
tly implemented from {g1, . . . , gs}.Lemma. If a predi
ate g 
an be stri
tly implemented from Γand Max CSP(Γ∪{g}) is APX-
omplete then so is Max CSP(Γ)



How to stri
tly implement eq2 with neq2:
eq2(x, y) = max

z
(neq2(x, z) + neq2(y, z)) − 1

If x = y = 1, then let z = 0. Result: 1If x = y = 0, then let z = 1. Result: 1If x 6= y, then let z = 0 (or z = 1). Result: 0



CoresDe�nition. An endomorphism of Γ is a unary operation γ on Dsu
h that

f(a1, . . . , am) = 1 ⇒ f(γ(a1), . . . , γ(am)) = 1for all f ∈ Γ and all (a1, . . . , am) ∈ Dm. We will say that Γ is a
ore if every endomorphism of Γ is inje
tive (i.e. a permutation).Intuition. If Γ is not a 
ore then Max CSP(Γ) redu
es to a simi-lar problem over a smaller domain obtained by removing elementsnot in image(γ).



Fa
t. For |D| = 2, Γ is not a 
ore i� there is a ∈ D su
h that

f(a, . . . , a) = 1 for all f ∈ Γ. In this 
ase Max CSP(Γ) is trivial.



Classi�
ation when |D| = 2 (version 2)Let Γ be a 
onstraint language over {0,1} and assume (withoutloss of generality) that Γ is a 
ore. Then, Max CSP(Γ) ∈ POif and only if Γ is supermodular on 0 → 1. Otherwise, Γ isAPX-
omplete.



Results and open questions
• |D| = 3

• Non-distributive latti
es
• Single-predi
ate Max CSP
• Constraint languages that 
ontain all 
onstants



Classi�
ation when |D| = 3[Jonsson, Klasson, Krokhin℄Let Γ be a 
onstraint language over {0,1,2} and assume (withoutloss of generality) that Γ is a 
ore. Then, Max CSP(Γ) ∈ POif and only if Γ is supermodular on some 
hain over {0,1,2}.Otherwise, Γ is APX-
omplete.The proof has many similarities with the proof for 
onstraintlanguages with all 
onstants.



Open question:What is the 
omplexity/approximability of Max CSP(Γ) when

|D| > 3?



Hypothesis

Classi�
ation when |D| = k > 3

Let Γ be a 
onstraint language over {0, . . . , k − 1} and assumethat Γ is a 
ore. Then, Max CSP(Γ) ∈ PO if and only if Γis supermodular on some distributive latti
e over {0, . . . , k − 1}.Otherwise, Γ is APX-
omplete.



There exist 
onstraint languages Γ that are supermodular on

but not on any distributive latti
e [Krokhin, Larose℄.



Theorem. [Krokhin, Larose℄If Γ 
onsists of predi
ates that are supermodular on the k-diamond, then Max CSP(Γ) is in PO.The algorithm runs in O(n3) and it is inspired by algorithms forthe Min Cut/Max Flow problem.



If V,W are 
lasses of latti
es, then V ◦ W 
onsists of all latti
es
L su
h that there is a 
ongruen
e θ on L with the followingproperties:

• the 
ongruen
e latti
e L/θ ∈ W; and
• every θ-
lass is a latti
e in VTheorem. [Krokhin, Larose℄Suppose that V,W are �nite 
lasses of �nite latti
es. If super-modular optimization over V andW is in PO, then supermodularoptimization over V ◦ W is in PO, too.Corollary.If Γ 
onsists of predi
ates that are supermodular on the pen-tagon, then Max CSP(Γ) is in PO.



Let Γ be a 
ore.

Open question:Is Max CSP(Γ) ∈ PO whenever Γ is supermodular on somelatti
e?
Open question:Is Max CSP(Γ) APX-
omplete whenever Γ is not supermodularon any latti
e?



Open question:Assume that Γ is supermodular on
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Is Max CSP(Γ) in PO?



Complexity of single-predi
ate Max CSP[Jonsson, Krokhin℄Let f : Dn → {0,1} be a predi
ate su
h that n > 1.Max CSP({f}) is in PO if and only if there exists a d ∈ D su
hthat f(d, . . . , d) = 1. Otherwise, Max CSP({f}) is NP-
omplete.This is proved by two indu
tion proofs. In the �rst part, it isassumed that f is binary and the indu
tion is over |D|; 
oresplay an important r�le in the proof. In the se
ond part, theindu
tion is over the arity of f ; the main idea is to 
onstru
tstri
t implementations that redu
e the arity of predi
ates.



Open question:Is Max CSP({f}) APX-
omplete whenever Max CSP({f}) is NP-
omplete?



Constraint languages 
ontaining all 
onstantsGiven a �nite set D′, we de�ne the predi
ate uD′ su
h that
uD′(x) = 1 ⇐⇒ x ∈ D′.

Let Γ be a 
onstraint language over domain D = {0, . . . , d − 1}.

Γ 
ontains all 
onstants if {u{0}, . . . , u{d−1}} ⊆ Γ.Note: Γ is a 
ore (the identity is the only endomorphism).



Theorem. [Deineko, Jonsson, Klasson, Krokhin℄Let Γ be a 
onstraint language that 
ontains all 
onstants. Then,Max CSP(Γ) ∈ PO if and only if Γ is supermodular on some
hain. Otherwise, Max CSP(Γ) is APX-
omplete.



Every 
hain is a distributive latti
e so we only need to prove thehardness part: Consequently, we assume that Γ is not supermod-ular on any 
hain over D.Step 1. For every D′ ⊆ D, the predi
ate uD′ 
an be stri
tly im-plemented by Γ. Hen
eforth, we assume that all unary predi
atesare in Γ.Step 2. Γ 
ontains all unary predi
ates. Then, Γ 
an stri
tlyimplement a 
onstraint language Γ′ su
h that Γ is not super-modular on any 
hain and every predi
ate in Γ′ is at most binary.[Burkard, Klinz, Rudolf℄



Step 3. If Γ is not supermodular on any 
hain, then there exists
D′ ⊆ D su
h that

• |D′| ≤ 4; and

• Γ|D′ is not supermodular on any 
hain.

The proof is inspired by how the COM-algorithm works [Deineko,Rudolf, Woeginger℄.



Is there an AP -redu
tion from Max CSP(Γ|D′) to Max CSP(Γ)?



However:Max CSP(Γ|D′)-B AP -redu
es to Max CSP(Γ)-B.Stri
t implementations in
rease the degrees of variables, but nottoo mu
h.



Step 4. If Γ is not supermodular on any 
hain, then there existsa subset Γ′ ⊆ Γ su
h that

• |Γ′| ≤ 3; and

• Γ′ is not supermodular on any 
hain.



By steps 1-4, we now have a 
onstraint language Γ′ satisfyingthe following properties:

• Γ′ = {f1, f2, f3} where fi : {0,1,2,3}2 → {0,1};
• Γ′ is not supermodular on any 
hain;
• Max CSP(Γ′)-B AP -redu
es to Max CSP(Γ)-B.



By a 
omputer-generated enumeration of stri
t implementations,it turns out that some predi
ate 6=E with |E| = 2 
an be stri
tlyimplemented by every possible Γ′.It is known that Max CSP(6=E)-3 is APX-
omplete [Alimonti,Kann℄ whi
h 
on
ludes the proof.



Open questionIs there an elegant way of proving the previous result withoutusing 
omputer-assisted 
ase analyses?
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