
CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

CSPs and inapproxambility

Johan Håstad

March 21, 2006

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Basic definitions

Variables xi ranging over a finite domain
[d ] = {0, 1, . . . d − 1}, many times d = 2, “Boolean values”.

A set Ci (xi1 , xi2 , . . . cik ), 1 ≤ i ≤ m of k-ary constraints.
Usually all of same “type”.

We think of d and k as fixed while n and m tend to infinity.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Examples

Max-k-Lin-d Linear equations modulo d , k variables in each
equation.

Max-k-Sat Disjunctions of k literals, e.g. Ci = x1 ∨ x7 ∨ x12.

Max-Cut-d Divide nodes of graph in d pieces, xi 6= xj (i , j) ∈ E .

Satisfy as many constraints as possible.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Our angle

Efficient algorithms for finding optimal or good solutions.

Probabilistic polynomial time.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

NP-hardness from the stone-ages

It is NP-complete to decide if we can satisfy all constraints of
Max-k-Sat for k ≥ 3, Max-Cut-d , d ≥ 3.

It is NP-hard to find optimal solution to Max-2-Sat, Max-k-Lin-d ,
and Max-Cut(-2).

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Approximation ratio

We try to find good solution. Measure: Approximation ratio

Value(Found solution)

Value(Best solution)

worst case over all instances.

For a randomized algorithm we allow expectation over internal
randomness, worst case over inputs.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The mindless algorithm

Give each variable a random value.

Suppose each constraint accepts P out of the dk possible k-tuples.

Satisfies, on average mPd−k constraints

Approximation ratio ≥ Pd−k .

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The mindless algorithm

Give each variable a random value.

Suppose each constraint accepts P out of the dk possible k-tuples.

Satisfies, on average mPd−k constraints

Approximation ratio ≥ Pd−k .

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The mindless algorithm

Give each variable a random value.

Suppose each constraint accepts P out of the dk possible k-tuples.

Satisfies, on average mPd−k constraints

Approximation ratio ≥ Pd−k .

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Mindless Max-3-Sat, Max-k-Lin-d

3Sat: 8 possible assignments to three literals, 7 satisfying.

Mindless has approximation ratio 7/8.

Max-Lin-d : Each equation is satisfied with probability 1/d ,
independently of number of appearing variables.

Mindless has approximation ratio 1/d .

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Mindless Max-3-Sat, Max-k-Lin-d

3Sat: 8 possible assignments to three literals, 7 satisfying.

Mindless has approximation ratio 7/8.

Max-Lin-d : Each equation is satisfied with probability 1/d ,
independently of number of appearing variables.

Mindless has approximation ratio 1/d .

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Making mindless algorithm deterministic

Use the method of conditional expectations.

For each value of x1 calculate expected number of satisfied
constraints and use fix x1 to value that gives maximum.

Now look at x2, etc.

Simple and good problem for students.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Making mindless algorithm deterministic

Use the method of conditional expectations.

For each value of x1 calculate expected number of satisfied
constraints and use fix x1 to value that gives maximum.

Now look at x2, etc.

Simple and good problem for students.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The key question

For which types of constraints can we beat the random mindless
algorithm and on what instances?

As soon as optimal value is significantly better than Pd−km,
i.e. (1 + ε)Pd−km.

When the optimal value is (very) large, i.e. (1− ε)m.

When we can satisfy all constraints, satisfiable instances.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Two branches

Positive results. Efficient algorithms with provable ratios.

Negative results. Proving that certain tasks are NP-hard, or
possibly hard given some other complexity assumption.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The favorite techniques

Algorithms: Semi-definite programming. Introduced in this context
by Goemans and Williamson.

Lower bounds: The PCP-theorem and its consequences. Arora,
Lund, Motwani, Sudan and Szegedy.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Max-Cut

The task is to maximize with xi ∈ {−1, 1} and edges E ,∑
(i ,j)∈E

1− xixj

2
.

Relax by setting yij = xixj and requiring that Y is a positive
semidefinite matrix with yii = 1.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Max-Cut

The task is to maximize with xi ∈ {−1, 1} and edges E ,∑
(i ,j)∈E

1− xixj

2
.

Relax by setting yij = xixj and requiring that Y is a positive
semidefinite matrix with yii = 1.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Positive semidefinite matrices?

Y symmetric matrix is postitive semedefinite iff one of the
following is true

All eigenvalues λi ≥ 0.

zTYz ≥ 0 for any vector z ∈ Rn.

Y = V TV for some matrix V .

yij = xixj is in matrix language Y = xxT .

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

By a result by Alizadeh we can to any desired accuracy solve

max
∑
ij

cijyij

subject to ∑
ij

ak
ijyij ≤ bk

and Y positive semidefinite.

Intuitive reason, set of PSD is convex and we should be able to
find optimum of linear function (as is true for LP).

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

By a result by Alizadeh we can to any desired accuracy solve

max
∑
ij

cijyij

subject to ∑
ij

ak
ijyij ≤ bk

and Y positive semidefinite.

Intuitive reason, set of PSD is convex and we should be able to
find optimum of linear function (as is true for LP).

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Want to solve

max
x∈−1,1n

∑
(i ,j)∈E

1− xixj

2
.

but as Y = V TV we instead maximize

∑
(i ,j)∈E

1− (vi , vj)

2
.

for ‖vi‖ = 1, i.e. optimizing over vectors instead of real numbers.
Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Going vector to Boolean

The vector problem accepts a more general set of solutions. Gives
higher objective value.

Key question: How to use the vector solution to get back a
Boolean solution that does almost as well.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Going vector to Boolean

The vector problem accepts a more general set of solutions. Gives
higher objective value.

Key question: How to use the vector solution to get back a
Boolean solution that does almost as well.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Rounding vectors to Boolean values

Great suggestion by GW.

Given vector solution vi pick random vector r and set

xi = Sign((vi , r)),

where (vi , r) is the inner product.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Intuition of rounding

Contribution to objective function large,

1− (vi , vj)

2
large implying angle between vi , vj large,
Sign((vi , r)) 6= Sign((vj , r)) likely

vi vj

PPPPPPPPPPPPPPq

��������������)

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Analyzing GW

Do term by term, θ angle between vectors.
Contribution to semi-definite objective function

1− (vi , vj)

2
=

1− cos θ

2

Probability of being cut

Pr [Sign((vi , r)) 6= Sign((vj , r))] =
θ

π

Minimal quotient gives approximation ratio

αGW = min
θ

2θ

π(1− cos θ)
≈ .8785

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Immediate other application

Original GW-paper derived same bound for approximating
Max-2-Sat.

Improved [LLZ] to ≈ .9401 (not analytically proved).

“Obvious” semi-definite program. More complicated rounding.

Many other applications some using many additional ideas.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Immediate other application

Original GW-paper derived same bound for approximating
Max-2-Sat.

Improved [LLZ] to ≈ .9401 (not analytically proved).

“Obvious” semi-definite program. More complicated rounding.

Many other applications some using many additional ideas.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Proving NP-hardness results for approximability problems

Want to study problem X .

Given a Sat-formula ϕ, produce an instance, I of X such that:
ϕ satisfiable → Value(I ) ≥ c .
ϕ not satisfiable → Value(I ) ≤ s.

It is NP-hard to approximate our problem within s/c + ε.

Running approximation algorithm on I tells us whether ϕ is
satisfiable.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Proving NP-hardness results for approximability problems

Want to study problem X .

Given a Sat-formula ϕ, produce an instance, I of X such that:
ϕ satisfiable → Value(I ) ≥ c .
ϕ not satisfiable → Value(I ) ≤ s.

It is NP-hard to approximate our problem within s/c + ε.

Running approximation algorithm on I tells us whether ϕ is
satisfiable.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Proving NP-hardness results for approximability problems

Want to study problem X .

Given a Sat-formula ϕ, produce an instance, I of X such that:
ϕ satisfiable → Value(I ) ≥ c .
ϕ not satisfiable → Value(I ) ≤ s.

It is NP-hard to approximate our problem within s/c + ε.

Running approximation algorithm on I tells us whether ϕ is
satisfiable.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Proving NP-hardness results for approximability problems

Want to study problem X .

Given a Sat-formula ϕ, produce an instance, I of X such that:
ϕ satisfiable → Value(I ) ≥ c .
ϕ not satisfiable → Value(I ) ≤ s.

It is NP-hard to approximate our problem within s/c + ε.

Running approximation algorithm on I tells us whether ϕ is
satisfiable.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Inapproximability for Max-3-Sat

Given a Sat-formula ϕ, produce a different Sat-formula ψ with m
clauses such that:

ϕ satisfiable → ψ satisfiable.

ϕ not satisfiable → Can only simultaneously satisfy only (1− ε)m
of the clauses of ψ.

Gives inapproximability ratio (1− ε).

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Probabilistically Checkable Proofs (PCPs)

A proof that 3-Sat formula ϕ is satisfiable.

Traditionally an assignment to the variables.

Checked by reading all variables and checking.

We want to read much less of the proof, only a constant number
of bits.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Probabilistically Checkable Proofs (PCPs)

A proof that 3-Sat formula ϕ is satisfiable.

Traditionally an assignment to the variables.

Checked by reading all variables and checking.

We want to read much less of the proof, only a constant number
of bits.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Sought reduction gives PCP!

Proof: An assignment to variables of ψ.
Checking: Pick a random clause and read the variables that appear
in the clause and see if it is satisfied.

Preserving satisfiability: ϕ satisfiable implies ψ satisfiable and we
always accept.
Amplifying non-satisfiability: ϕ not satisfiable implies ψ only
(1− ε)-satisfiable and we reject with probability ≥ ε.
Repeat a constant number of times to decrease fooling probability.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Sought reduction gives PCP!

Proof: An assignment to variables of ψ.
Checking: Pick a random clause and read the variables that appear
in the clause and see if it is satisfied.
Preserving satisfiability: ϕ satisfiable implies ψ satisfiable and we
always accept.

Amplifying non-satisfiability: ϕ not satisfiable implies ψ only
(1− ε)-satisfiable and we reject with probability ≥ ε.
Repeat a constant number of times to decrease fooling probability.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Sought reduction gives PCP!

Proof: An assignment to variables of ψ.
Checking: Pick a random clause and read the variables that appear
in the clause and see if it is satisfied.
Preserving satisfiability: ϕ satisfiable implies ψ satisfiable and we
always accept.
Amplifying non-satisfiability: ϕ not satisfiable implies ψ only
(1− ε)-satisfiable and we reject with probability ≥ ε.

Repeat a constant number of times to decrease fooling probability.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Sought reduction gives PCP!

Proof: An assignment to variables of ψ.
Checking: Pick a random clause and read the variables that appear
in the clause and see if it is satisfied.
Preserving satisfiability: ϕ satisfiable implies ψ satisfiable and we
always accept.
Amplifying non-satisfiability: ϕ not satisfiable implies ψ only
(1− ε)-satisfiable and we reject with probability ≥ ε.
Repeat a constant number of times to decrease fooling probability.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Thinking more carefully

Our type of reduction is equivalent to a good PCP.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The PCP theorem

PCP theorem: [ALMSS] There is a proof system for satisfiability
that reads a constant number of bits such that

Verifier always accepts a correct proof of correct statement.

Verifier rejects any proof for incorrect statement with
probability 1/2.

Translates to any NP statement by a reduction.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The PCP theorem

PCP theorem: [ALMSS] There is a proof system for satisfiability
that reads a constant number of bits such that

Verifier always accepts a correct proof of correct statement.

Verifier rejects any proof for incorrect statement with
probability 1/2.

Translates to any NP statement by a reduction.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Proof of PCP theorem

Original proof: Algebraic techniques, properties of polynomials,
proof composition, aggregation of queries, etc. Many details.

Interesting new proof by Dinur (2005) that is essentially
combinatorial. Relies on recursion and expander graphs.

These basic proofs give BAD inapproximability constants

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Proof of PCP theorem

Original proof: Algebraic techniques, properties of polynomials,
proof composition, aggregation of queries, etc. Many details.

Interesting new proof by Dinur (2005) that is essentially
combinatorial. Relies on recursion and expander graphs.

These basic proofs give BAD inapproximability constants

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Proof of PCP theorem

Original proof: Algebraic techniques, properties of polynomials,
proof composition, aggregation of queries, etc. Many details.

Interesting new proof by Dinur (2005) that is essentially
combinatorial. Relies on recursion and expander graphs.

These basic proofs give BAD inapproximability constants

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Improving constants

A long story, one final point:

Theorem [H]: For any ε > 0, k ≥ 3 and d ≥ 2 it is NP-hard to
approximate Max-k-Lin-d within 1/d + ε.

Matches mindless algorithm up to ε.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Ingredients in proof/construction

Two prover games.

Parallel repetition for two-prover games. [R]

Coding strings by the long code. [BGS]

Using discrete Fourier transforms in the analysis. [H]

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Classifying CSPs

We have some well defined groups.

1 Hard to approximate better than random mindless algorithm
on satisfiable instances.

2 Hard to do better than random mindless algorithm on
(almost) satisfiable instances.

3 Have an approximation constant better than achieved by
random mindless algorithm.

4 Can beat random mindless algorithm as soon as soon as
optimal beats random.

Two first classes we call Approximation resistant.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The case k = 2

Predicates that depend on two variables.

Semi-definite programming is universal, for any fixed domain d and
any predicate that the depends we can do better than random [H].

Belongs at least to class 4, if optimal significantly better than
random, we can efficiently find solution significantly better than
random.

Any d , any predicate.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The case k = 3 and d = 2.

Predicates of three boolean variables.

Approximation resistant iff we accept either all strings of even
parity or all strings of odd parity.

Fully approximable (class 4) if un-correlated with parity of all
three variables.

Other (nontrivial) cases belong to class 3.

Max-3-Sat is hard to approximate within 7/8 + ε, mindless is
optimal!

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The case k = 3 and d = 2.

Predicates of three boolean variables.

Approximation resistant iff we accept either all strings of even
parity or all strings of odd parity.

Fully approximable (class 4) if un-correlated with parity of all
three variables.

Other (nontrivial) cases belong to class 3.
Max-3-Sat is hard to approximate within 7/8 + ε, mindless is
optimal!

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The case k = 3 and d = 2 unknown.

What happens with the “not two ones” predicate on satisfiable
instances.

Could we do better than random?

Not true for just (1− ε)-satisfiable instances!

Parity is different for satisfiable and almost satisfiable instances!

Adding one more accepting configuration we do get approximation
resistance on satisfiable instances.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The case k = 3 and d = 2 unknown.

What happens with the “not two ones” predicate on satisfiable
instances.

Could we do better than random?

Not true for just (1− ε)-satisfiable instances!

Parity is different for satisfiable and almost satisfiable instances!

Adding one more accepting configuration we do get approximation
resistance on satisfiable instances.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The case k = 3 and d = 2 unknown.

What happens with the “not two ones” predicate on satisfiable
instances.

Could we do better than random?

Not true for just (1− ε)-satisfiable instances!

Parity is different for satisfiable and almost satisfiable instances!

Adding one more accepting configuration we do get approximation
resistance on satisfiable instances.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

The case of k = 4 and d = 2.

Partial classification by Hast.

400 essentially different predicates.

79 approximation resistant.

275 not approximation resistant.

46 not classified.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

What can we say in general?

With d = 2 and large k.

Accepts very few inputs, nontrivially approximable.

Exists rather sparse approximation resistant predicates.

The really dense predicates are approximation resistant.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

General result on sparse predicates

Any k-ary Boolean predicate can be approximated within ck2−k

[T,Hast].

No predicate with ≤ ck accepting configurations is approximation
resistant.

Hast uses semi-definite programming.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

General result on sparse predicates

Any k-ary Boolean predicate can be approximated within ck2−k

[T,Hast].

No predicate with ≤ ck accepting configurations is approximation
resistant.
Hast uses semi-definite programming.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Sparse resistant predicates

For any l1 and l2 there are predicates on k = l1 + l2 + l1l2 Boolean
variables that accept 2l1+l2 vectors and are approximation resistant.

Only 2O(
√

k) accepted inputs.

Extends with 2 replaced by d for any d > 2 [E].

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Very dense predicates

If k ≥ l1 + l2 + l1l2 any predicate on k Boolean variables that
rejects fewer than 2l1l2 inputs is approximation resistant [Hast].

This is 2o(k) but still a reasonable number. For small k constants
can be improved.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

General fact?

It seems like the more inputs a predicate accepts the more likely it
is to be approximation resistant.

Approximation resistance is not a monotone property. Have
example P,Q,

P(x) → Q(x)

P approximation resistant.

Q not approximation resistant.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

General fact?

It seems like the more inputs a predicate accepts the more likely it
is to be approximation resistant.
Approximation resistance is not a monotone property. Have
example P,Q,

P(x) → Q(x)

P approximation resistant.

Q not approximation resistant.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Puzzling question

For large k is a random predicate of Boolean variables
approximation resistant?

I do not have a strong opinion.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Wide open question

What happens form larger d?

Maybe something nice can be said at least for k = 3?

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Exact constant for Max-Cut?!

Thm: [KKMO] If the unique games conjecture is true the
GW-constant for Max-Cut is best possible.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Unique games conjecture?

Made by Khot.

Problem: For a restricted type of two-person games we should
distinguish whether optimal value is (1− ε) and ε.
Conjecture: NP-hard!

True? A new complexity class?

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Unique games conjecture?

Made by Khot.

Problem: For a restricted type of two-person games we should
distinguish whether optimal value is (1− ε) and ε.
Conjecture: NP-hard!

True? A new complexity class?

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Consequences of UGC

Many, some central:

Vertex Cover is hard to approximate within 2− ε.

Optimal constant for balanced Max-2-Sat.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Summing up

We have a huge classification problem ahead of us.

We have only scratched the surface.

Does it have a nice answer, even for d = 2?

The question of random predicates might be doable...

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Key references

Arora, Lund, Motwani, Sudan and Szegedy “Proof verification and
hardness of approximation problems”, JACM, 45: 501-555, 1998.

Goemans Williamson, “Improved Approximation Algorithms for
Maximum Cut and Satisfiability Problems, using Semi-Definite
Programming”, JACM, 42:1115-1145, 1995.

Hast “Beating a Random Assignment”, Ph.D. Thesis, Royal
Institute of Technology, 2005.

Håstad “Some optimal inapproximability results”, JACM, 48:
798-859, 2001.

Johan Håstad CSPs and inapproxambility



CSPs
Classical results

Semi-Definite programming
Inapproximability results

Classification
Unique games

Final words

Some more

Khot, Kindler, Mossel, and O’Donnell “Optimal inapproximability
results for Max-Cut and other 2-variable CSPs?”, FOCS 2004, pp
146-154.

Zwick “Approximation algorithms for constraint satisfaction
problems involving at most three variables per constraint”, SODA
1998, pp 551-560.

Johan Håstad CSPs and inapproxambility


