
Constraint Satisfaction and Pebble
Games
Vı́ctor Dalmau

Universitat Pompeu Fabra

Constraint Satisfaction and Pebble Games – p.1/27

Goals:

Show that existential pebble games (and some other
variants of the game) arise naturally in the study of CSP
and have many applications.

Present a (rather personal) overview of the use of
games in CSP with special emphasis on the
computational complexity aspects.

Constraint Satisfaction and Pebble Games – p.2/27

Talk outline:

Existential pebble games

Structural restrictions
Language restrictions

Pebble Relation games

Cover games

Constraint Satisfaction and Pebble Games – p.3/27

Existential k-pebble game

[Kolaitis, Vardi 95]

Spoiler and Duplicator play on structures A and B.
Each player has k pebbles. In each move,

Spoiler places pebble on an element ai of A or
removes one of its pebbles.
Duplicator duplicates the move on B.

Spoiler wins if the mapping h taking ai → bi is not a
partial homomorphism

Duplicator wins if he has an strategy that allows him to
play forever.

Constraint Satisfaction and Pebble Games – p.4/27

Example
PSfrag replacements

A B

Constraint Satisfaction and Pebble Games – p.5/27

Example
PSfrag replacements

A B

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2

2

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1

2

2

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

2

2

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1

2

2

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1

1

2

2

Duplicator wins the 2-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example
PSfrag replacements

A B

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2

2

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2

2

3

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2

2

3

3

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2

3

3

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

3

3

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

3

3

2

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

3

3

2 2

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

3

2 2

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2 2

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

Example

PSfrag replacements

A B

1 1

2 2

3

Duplicator wins the 2-pebble game
Spoiler wins the 3-pebble game

Constraint Satisfaction and Pebble Games – p.5/27

[Feder,Vardi 93,98, Kolaitis,Vardi 95,00]

Fact: Let A and B be structures. The following are
equivalent:

Duplicator wins the (∃, k)-pebble game on A and B

For every formula ϕ in ∃Lk
∞ω

A |= ϕ ⇒ B |= ϕ

For every struct. T with treewidth(T) < k,

T → A ⇒ T → B

Strong k-consistency can be established on A and B

Constraint Satisfaction and Pebble Games – p.6/27

[Feder,Vardi 93,98, Kolaitis,Vardi 95,00]

Fact: Let A and B be structures. The following are
equivalent:

Duplicator wins the (∃, k)-pebble game on A and B

For every formula ϕ in ∃Lk
∞ω

A |= ϕ ⇒ B |= ϕ

For every struct. T with treewidth(T) < k,

T → A ⇒ T → B

Strong k-consistency can be established on A and B

Constraint Satisfaction and Pebble Games – p.6/27

[Feder,Vardi 93,98, Kolaitis,Vardi 95,00]

Fact: Let A and B be structures. The following are
equivalent:

Duplicator wins the (∃, k)-pebble game on A and B

For every formula ϕ in ∃Lk
∞ω

A |= ϕ ⇒ B |= ϕ

For every struct. T with treewidth(T) < k,

T → A ⇒ T → B

Strong k-consistency can be established on A and B

Constraint Satisfaction and Pebble Games – p.6/27

[Feder,Vardi 93,98, Kolaitis,Vardi 95,00]

Fact: Let A and B be structures. The following are
equivalent:

Duplicator wins the (∃, k)-pebble game on A and B

For every formula ϕ in ∃Lk
∞ω

A |= ϕ ⇒ B |= ϕ

For every struct. T with treewidth(T) < k,

T → A ⇒ T → B

Strong k-consistency can be established on A and B

Constraint Satisfaction and Pebble Games – p.6/27

Algebraic definition:
A winning strategy for the Duplicator in the (∃, k)-pebble
game is a (non-empty) set H of partial homomorphisms
such that

If f ∈ H and h ⊆ f then h ∈ H
(H is closed under subfunctions)

If f ∈ H then for every a ∈ A such that
| dom(f) ∪ {a}| ≤ k there is g with f ⊆ g and a ∈ dom(g)
(H has the forth property up to k)

Intuitively: elements of H are winning positions for the
Duplicator

Constraint Satisfaction and Pebble Games – p.7/27

Algebraic definition:
A winning strategy for the Duplicator in the (∃, k)-pebble
game is a (non-empty) set H of partial homomorphisms
such that

If f ∈ H and h ⊆ f then h ∈ H
(H is closed under subfunctions)

If f ∈ H then for every a ∈ A such that
| dom(f) ∪ {a}| ≤ k there is g with f ⊆ g and a ∈ dom(g)
(H has the forth property up to k)

Intuitively: elements of H are winning positions for the
Duplicator

Constraint Satisfaction and Pebble Games – p.7/27

For fixed k, there is a polynomial-time algorithm that
computes a winning strategy (or determine that none
exists)

Initially place in H all partial homomorphisms with
domain size at most k

(there are O(|A|k|B|k) of them)

Remove all f ∈ H not satisfying condition (2) of winning
strategy until stabilizes

If k is also part of the input then deciding the existence of a
winning strategy for the duplicator is EXPTIME-complete
[Kolaitis, Panttaja 03]

Constraint Satisfaction and Pebble Games – p.8/27

For fixed k, there is a polynomial-time algorithm that
computes a winning strategy (or determine that none
exists)

Initially place in H all partial homomorphisms with
domain size at most k

(there are O(|A|k|B|k) of them)

Remove all f ∈ H not satisfying condition (2) of winning
strategy until stabilizes

If k is also part of the input then deciding the existence of a
winning strategy for the duplicator is EXPTIME-complete
[Kolaitis, Panttaja 03]

Constraint Satisfaction and Pebble Games – p.8/27

For fixed k, there is a polynomial-time algorithm that
computes a winning strategy (or determine that none
exists)

Initially place in H all partial homomorphisms with
domain size at most k

(there are O(|A|k|B|k) of them)

Remove all f ∈ H not satisfying condition (2) of winning
strategy until stabilizes

If k is also part of the input then deciding the existence of a
winning strategy for the duplicator is EXPTIME-complete
[Kolaitis, Panttaja 03]

Constraint Satisfaction and Pebble Games – p.8/27

For fixed k, there is a polynomial-time algorithm that
computes a winning strategy (or determine that none
exists)

Initially place in H all partial homomorphisms with
domain size at most k

(there are O(|A|k|B|k) of them)

Remove all f ∈ H not satisfying condition (2) of winning
strategy until stabilizes

If k is also part of the input then deciding the existence of a
winning strategy for the duplicator is EXPTIME-complete
[Kolaitis, Panttaja 03]

Constraint Satisfaction and Pebble Games – p.8/27

Let k > 0 be fixed.

Observation:
For every structures A and B

Spoiler wins the (∃, k)-pebble game ⇒ A 6→ B

The converse is not necessarily true

Question:
When is the converse true? That is,

under which circumstances deciding who wins the
(∃, k)-pebble game is a sound and complete algorithm for
the homomorphism problem?

Constraint Satisfaction and Pebble Games – p.9/27

Let k > 0 be fixed.

Observation:
For every structures A and B

Spoiler wins the (∃, k)-pebble game ⇒ A 6→ B

The converse is not necessarily true

Question:
When is the converse true? That is,

under which circumstances deciding who wins the
(∃, k)-pebble game is a sound and complete algorithm for
the homomorphism problem?

Constraint Satisfaction and Pebble Games – p.9/27

Let k > 0 be fixed.

Observation:
For every structures A and B

Spoiler wins the (∃, k)-pebble game ⇒ A 6→ B

The converse is not necessarily true

Question:
When is the converse true? That is,

under which circumstances deciding who wins the
(∃, k)-pebble game is a sound and complete algorithm for
the homomorphism problem?

Constraint Satisfaction and Pebble Games – p.9/27

Looking at the left side

(Structural restrictions)

Let A be a structure.

Fact: [D., Kolaitis, Vardi, 02]
If treewidth(core(A))< k then for every structure B

Duplicator wins the (∃, k)-pebble game ⇒ A → B

Fact: [Atserias, Bulatov, D., 06]
If treewidth(core(A))≥ k then there exists a structure B

such that:
Duplicator wins the (∃, k)-pebble game and A 6→ B

Constraint Satisfaction and Pebble Games – p.10/27

Complexity of CSP(C,All)

Let C be a set of structures.

Def: CSP(C,All) is the family of instances A, B such that:
-A ∈ C and
-B is arbitrary

Fact:
core(C) has bounded treewidth ⇒ CSP(C,All)∈PTIME

Note: core(C) = {core(A) : A ∈ C}

Fact: [Grohe 03]
CSP(C,All)∈PTIME ⇒ core(C) has bounded treewidth

(... under some assumptions:

FPT6=W[1], C is RE and of bounded arity)

Constraint Satisfaction and Pebble Games – p.11/27

Complexity of CSP(C,All)

Let C be a set of structures.

Def: CSP(C,All) is the family of instances A, B such that:
-A ∈ C and
-B is arbitrary

Fact:
core(C) has bounded treewidth ⇒ CSP(C,All)∈PTIME

Note: core(C) = {core(A) : A ∈ C}

Fact: [Grohe 03]
CSP(C,All)∈PTIME ⇒ core(C) has bounded treewidth

(... under some assumptions:

FPT6=W[1], C is RE and of bounded arity)

Constraint Satisfaction and Pebble Games – p.11/27

Complexity of CSP(C,All)

Let C be a set of structures.

Def: CSP(C,All) is the family of instances A, B such that:
-A ∈ C and
-B is arbitrary

Fact:
core(C) has bounded treewidth ⇒ CSP(C,All)∈PTIME

Note: core(C) = {core(A) : A ∈ C}

Fact: [Grohe 03]
CSP(C,All)∈PTIME ⇒ core(C) has bounded treewidth

(... under some assumptions:

FPT 6=W[1], C is RE and of bounded arity)
Constraint Satisfaction and Pebble Games – p.11/27

Looking at the right side

(Language, template restrictions)

Def: B has width k if for every A

Duplicator wins the k-pebble game on A and B ⇒ A → B

Fact: [Feder,Vardi 93,98, Kolatis, Vardi 00]
The following are equivalent:

B has width k

¬CSP(B) is definable in k-datalog

B has an obstruction set of treewidth < k

Constraint Satisfaction and Pebble Games – p.12/27

Looking at the right side

(Language, template restrictions)

Def: B has width k if for every A

Duplicator wins the k-pebble game on A and B ⇒ A → B

Fact: [Feder,Vardi 93,98, Kolatis, Vardi 00]
The following are equivalent:

B has width k

¬CSP(B) is definable in k-datalog

B has an obstruction set of treewidth < k

Constraint Satisfaction and Pebble Games – p.12/27

Example: 2-COLORABILITY = CSP(K2)

Datalog Program for non-2-COLORABILITY

OddPath(X,Y) : − E(X,Y)

OddPath(X,Y) : − OddPath(X,Z), E(Z,W), E(W,Y)

Non2Colorable : − OddPath(X,X)

An obstruction set for K2 is O = {C3,C5, . . . }.

That is, for every A,

A → K2 ⇔ ∀C ∈ O C 6→ A

Constraint Satisfaction and Pebble Games – p.13/27

Example: 2-COLORABILITY = CSP(K2)

Datalog Program for non-2-COLORABILITY

OddPath(X,Y) : − E(X,Y)

OddPath(X,Y) : − OddPath(X,Z), E(Z,W), E(W,Y)

Non2Colorable : − OddPath(X,X)

An obstruction set for K2 is O = {C3,C5, . . . }.

That is, for every A,

A → K2 ⇔ ∀C ∈ O C 6→ A

Constraint Satisfaction and Pebble Games – p.13/27

Example: 2-COLORABILITY = CSP(K2)

Datalog Program for non-2-COLORABILITY

OddPath(X,Y) : − E(X,Y)

OddPath(X,Y) : − OddPath(X,Z), E(Z,W), E(W,Y)

Non2Colorable : − OddPath(X,X)

An obstruction set for K2 is O = {C3,C5, . . . }.

That is, for every A,

A → K2 ⇔ ∀C ∈ O C 6→ A

Constraint Satisfaction and Pebble Games – p.13/27

Question:
Determine, for every k, which structures have width k

Not complete answer.

Indeed, not even fully agreement on whether width is
the right notion

Several alternative parameterizations have been
proposed:

relational width, (j, k)-width,...

Def:
B has bounded width if it has width k for some k

Constraint Satisfaction and Pebble Games – p.14/27

Question:
Determine, for every k, which structures have width k

Not complete answer.

Indeed, not even fully agreement on whether width is
the right notion

Several alternative parameterizations have been
proposed:

relational width, (j, k)-width,...

Def:
B has bounded width if it has width k for some k

Constraint Satisfaction and Pebble Games – p.14/27

Question:
Determine, for every k, which structures have width k

Not complete answer.

Indeed, not even fully agreement on whether width is
the right notion

Several alternative parameterizations have been
proposed:

relational width, (j, k)-width,...

Def:
B has bounded width if it has width k for some k

Constraint Satisfaction and Pebble Games – p.14/27

Question:
Determine, for every k, which structures have width k

Not complete answer.

Indeed, not even fully agreement on whether width is
the right notion

Several alternative parameterizations have been
proposed:

relational width, (j, k)-width,...

Def:
B has bounded width if it has width k for some k

Constraint Satisfaction and Pebble Games – p.14/27

Question:
Determine, for every k, which structures have width k

Not complete answer.

Indeed, not even fully agreement on whether width is
the right notion

Several alternative parameterizations have been
proposed:

relational width, (j, k)-width,...

Def:
B has bounded width if it has width k for some k

Constraint Satisfaction and Pebble Games – p.14/27

Sufficient conditions

Fact: B has bounded width if:

B has a set function [Feder,Vardi 93,98]

B has an extended set function [Chen, D., 04]

B is invariant under a near-unanimity operation
[Feder,Vardi 93,98][Jeavons, Cohen, Cooper 97]

B is invariant under a 2-semilattice [Bulatov 02]

B belong to certain classes of the known partial
classification results [Bulatov 02,03,04]

B has bounded treewidth duality [Hell, Zhu 94][Hell,Zhu
95][Hell, Nes̆etr̆il, Zhu 96]...

...

Constraint Satisfaction and Pebble Games – p.15/27

Necessary conditions

Fact: [Bulatov 04][Larose, Zádori 06]

If B has bounded width then V(A(B)) omits types 1 and 2

Conjecture:

The converse is true

Constraint Satisfaction and Pebble Games – p.16/27

Inside (∃, k)-peble games

Observation: For some structures B with bounded
width, CSP(B) is solvable in NLOGSPACE

Examples: 2-COLORABILITY, 2-SAT, 0/1/all constraints,...

What do these examples have in common?

All of them have an obstruction set of bounded pathwidth

Example: 2-COLORABILITY = CSP(K2)
For every graph G

G → K2 iff for every odd cicle C, C 6→ G

Constraint Satisfaction and Pebble Games – p.17/27

Let A and B be structures.

Recall that the following are equivalent

Duplicator wins the (∃, k)-pebble game on A and B

For every T with treewidth(T)< k

T → A ⇒ T → B

We want to define the right game so that the following are
equivalent

Duplicator wins the ? game on A and B

For every C with pathwidth(C)< k

C → A ⇒ C → B

Constraint Satisfaction and Pebble Games – p.18/27

Let A and B be structures.

Recall that the following are equivalent

Duplicator wins the (∃, k)-pebble game on A and B

For every T with treewidth(T)< k

T → A ⇒ T → B

We want to define the right game so that the following are
equivalent

Duplicator wins the ? game on A and B

For every C with pathwidth(C)< k

C → A ⇒ C → B

Constraint Satisfaction and Pebble Games – p.18/27

k-Pebble-Relation Game

Intuition: At each round of the game Duplicator does not
need to commit.

In the (∃, k)-pebble game a configuration defines a
partial homomorphism f .

Spoiler decides the domain of f

Duplicator decides the actual mapping f

In the k-pebble relation game, a configuration defines a
set of partial homomorphisms with identical domain

Spoiler decides the domain
Duplicator defines the mappings

Restriction: Duplicator can only extend existing
mappings.

Constraint Satisfaction and Pebble Games – p.19/27

k-Pebble-Relation Game

Intuition: At each round of the game Duplicator does not
need to commit.

In the (∃, k)-pebble game a configuration defines a
partial homomorphism f .

Spoiler decides the domain of f

Duplicator decides the actual mapping f

In the k-pebble relation game, a configuration defines a
set of partial homomorphisms with identical domain

Spoiler decides the domain
Duplicator defines the mappings

Restriction: Duplicator can only extend existing
mappings.

Constraint Satisfaction and Pebble Games – p.19/27

Fact:
The following are equivalent:

Duplicator wins the k-pebble-relation game on A and B

For every C with pathwidth(C)< k,

C → A ⇒ C → B

Constraint Satisfaction and Pebble Games – p.20/27

Definition:
An structure B has k-pathwidth duality if for every A

Duplicator wins the k-PR game on A and B ⇒ A → B

Fact: [D. 05]
Let B be an structure. The following are equivalent

B has k-pathwidth duality

B has an obstruction set of patwidth < k

¬CSP (B) is definable in linear k-datalog.

Definition:
An structure B has k-pathwidth duality if for every A

Duplicator wins the k-PR game on A and B ⇒ A → B

Fact: [D. 05]
Let B be an structure. The following are equivalent

B has k-pathwidth duality

B has an obstruction set of patwidth < k

¬CSP (B) is definable in linear k-datalog.

Consequence:
B has bounded pathwidth ⇒ CSP(B)∈ NL

Open Question: Is the converse also true?

Constraint Satisfaction and Pebble Games – p.21/27

Definition: A datalog program is linear if it has at most one
IDB in the body each rule

Example: Datalog Program for non-2-COLORABILITY
OddPath(X,Y) : − E(X,Y)

OddPath(X,Y) : − OddPath(X,Z), E(Z,W), E(W,Y)

Non2Colorable : − OddPath(X,X)

Definition:
An structure B has k-pathwidth duality if for every A

Duplicator wins the k-PR game on A and B ⇒ A → B

Fact: [D. 05]
Let B be an structure. The following are equivalent

B has k-pathwidth duality

B has an obstruction set of patwidth < k

¬CSP (B) is definable in linear k-datalog.

Consequence:
B has bounded pathwidth ⇒ CSP(B)∈ NL

Open Question: Is the converse also true?

Constraint Satisfaction and Pebble Games – p.21/27

Definition:
An structure B has k-pathwidth duality if for every A

Duplicator wins the k-PR game on A and B ⇒ A → B

Fact: [D. 05]
Let B be an structure. The following are equivalent

B has k-pathwidth duality

B has an obstruction set of patwidth < k

¬CSP (B) is definable in linear k-datalog.

Consequence:
B has bounded pathwidth ⇒ CSP(B)∈ NL

Open Question: Is the converse also true?

Constraint Satisfaction and Pebble Games – p.21/27

Definition:
An structure B has k-pathwidth duality if for every A

Duplicator wins the k-PR game on A and B ⇒ A → B

Fact: [D. 05]
Let B be an structure. The following are equivalent

B has k-pathwidth duality

B has an obstruction set of patwidth < k

¬CSP (B) is definable in linear k-datalog.

Consequence:
B has bounded pathwidth ⇒ CSP(B)∈ NL

Open Question: Is the converse also true?

Constraint Satisfaction and Pebble Games – p.21/27

Question:
Which structures have bounded pathwidth duality?

Fact: An structure B has bounded pathwidth duality if

B is a poset invariant under a near-unanimity operation
[Krokhin, Larose 03]

B is invariant under a majority operation [D., Krokhin,
06]

Open question: Is it true that every B invariant under a
near-unanimity operation has bounded pathwidth duality.

Remark: There are structures with bounded pathwidth
duality not invariant under a near-unanimity operation
[Krokhin, Larose 03]

Constraint Satisfaction and Pebble Games – p.22/27

Question:
Which structures have bounded pathwidth duality?

Fact: An structure B has bounded pathwidth duality if

B is a poset invariant under a near-unanimity operation
[Krokhin, Larose 03]

B is invariant under a majority operation [D., Krokhin,
06]

Open question: Is it true that every B invariant under a
near-unanimity operation has bounded pathwidth duality.

Remark: There are structures with bounded pathwidth
duality not invariant under a near-unanimity operation
[Krokhin, Larose 03]

Constraint Satisfaction and Pebble Games – p.22/27

Beyond (∃, k)-pebble games

Motivation: Structural restrictions with unbounded arity

Many results on structural restrictions e.g. [Gyssens,
Jeavons, Cohen ’94], [Gottlob, Leone, Scarcello ’00,
’01, ’03], [Cohen, Jeavons, Gyssens ’05]

Note: Unbounded arity ⇒ unbounded treewidth

Bounded hypertree width [Gottlob, Leone, Scarcello,
journal paper ’03] subsumes every other decompostion
method.

Recently [Grohe, Marx 06, next talk] have found a new
structural restriction incomparable with hypertree width

Can games see anything meaningful on this?

Constraint Satisfaction and Pebble Games – p.23/27

Beyond (∃, k)-pebble games

Motivation: Structural restrictions with unbounded arity

Many results on structural restrictions e.g. [Gyssens,
Jeavons, Cohen ’94], [Gottlob, Leone, Scarcello ’00,
’01, ’03], [Cohen, Jeavons, Gyssens ’05]

Note: Unbounded arity ⇒ unbounded treewidth

Bounded hypertree width [Gottlob, Leone, Scarcello,
journal paper ’03] subsumes every other decompostion
method.

Recently [Grohe, Marx 06, next talk] have found a new
structural restriction incomparable with hypertree width

Can games see anything meaningful on this?

Constraint Satisfaction and Pebble Games – p.23/27

k-cover game

[Chen, D. 05]
Def: A k-cover of A is a union var(t1) ∪ · · · ∪ var(tk) of the
variables of k tuples t1, . . . , tk of A

The k-cover game is defined as the (∃, k)-pebble game with
some differences:

The players have an infinite supply of pebbles

Spoiler can place a new pebble only if the elements
pebbled (after placing it) are entirely contained in a
k-union.

Note: Duplicator wins the k-cover game ⇒ Duplicator wins
the (∃, k)-pebble game

Constraint Satisfaction and Pebble Games – p.24/27

Fact:
The following are equivalent:

Duplicator wins the k-cover game on A and B

For every T with generalized hypertree width ≤ k,

T → A ⇒ T → B

Consequence:
Let A with ghw(core(A))≤ k. Then the following are
equivalent

Duplicator wins the k-cover game on A and B

A → B

Constraint Satisfaction and Pebble Games – p.25/27

Again on the left side

Fact:
For fixed k, there is a polynomial-time algorithm that
computes a winning strategy for the Duplicator (or
determine that none exists).

Consequence:
CSP(C,All) is solvable in polynomial time if core(C) has
bounded generalized hypertree width.

Constraint Satisfaction and Pebble Games – p.26/27

Other applications of games on CSP and related problems

Quantified CSP [Chen, D. 05]

CSP with infinite templates [Bodirsky, D. 06]

Resolution width [Atserias, D. 03]

Constraint Satisfaction and Pebble Games – p.27/27

	
	
	Existential k-pebble game
	Example
	
	
	
	
	Looking at the left side
	Complexity of CSP(${cal C}$,All)
	Looking at the right side
	
	
	Sufficient conditions
	Necessary conditions
	Inside $(exists ,k)$-peble
games
	
	k-Pebble-Relation Game
	
	
	
	Beyond $(exists ,k)$-pebble
games
	k-cover game
	
	Again on the left side
	

