Boolean CSP

Nadia CREIGNOU

LIF, Université de la Méditerranée

Maths CSP 2006

Outline

- Why are Boolean CSP interesting?
 - Preliminaries
 - When does the Galois connection apply to complexity?
- 2 Complexity of Abduction
 - Definition of the problem
 - Known results
 - New tractable cases
 - A complete classification
- Bases for Boolean co-clones
 - Bases and plain bases for Boolean co-clones
 - The infinite part of Post's lattice
 - Preferred representations
 - Algorithmic applications
- Non-exhaustive list of references (only those mentioned in the talk)

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk Preliminaries When does the Galois connection apply to complexity ?

Outline

- Why are Boolean CSP interesting?
 - Preliminaries
 - When does the Galois connection apply to complexity?
- 2 Complexity of Abduction
 - Definition of the problem
 - Known results
 - New tractable cases
 - A complete classification
- Bases for Boolean co-clones
 - Bases and plain bases for Boolean co-clones
 - The infinite part of Post's lattice
 - Preferred representations
 - Algorithmic applications

Non-exhaustive list of references (only those mentioned in the talk)

Preliminaries When does the Galois connection apply to complexity?

Boolean CSP are interesting

- non trivial
- many complete classifications
- Post's lattice

We can learn a lot from them :

- guess when the Galois connection applies
- a better description of Post relational lattice
- there are still some open questions !

S-formulas

Preliminaries When does the Galois connection apply to complexity?

- Let S be a set of Boolean relations.
- $C = R(x_1, \ldots, x_n)$ with $R \in S$ is an S-constraint
- $F = \bigwedge C_i$ where each C_i is an S-constraint is a CNF(S)-formula

SAT(S)

Input : F an S-formula

Question : Is F satisfiable?

expressive power of S

Preliminaries When does the Galois connection apply to complexity?

 $\langle S \rangle$ is the co-clone generated by S, that is the set of all relations R which can be implemented as :

$$R(x_1,\ldots,x_n)\equiv \exists x_{n+1}\ldots \exists x_m F(\vec{x}),$$

where F is an S-formula

Galois correspondence

Preliminaries When does the Galois connection apply to complexity?

- Pol(S) is the set of Boolean functions f that are polymorphisms of (which preserve) every relation in S.
 Pol(S) is a clone.
- Inv(*B*) is the set of relations that are preserved by every function in *B*, it is a co-clone

Pol and Inv form a Galois correspondence between closed sets of relations and closed sets of Boolean functions

 $\langle S \rangle = \operatorname{Inv}(\operatorname{Pol}(S)).$

The expressive power of *S* depends on the (co-)clone generated by *S*

Galois correspondence

- Pol(S) is the set of Boolean functions f that are polymorphisms of (which preserve) every relation in S.
 Pol(S) is a clone.
- Inv(*B*) is the set of relations that are preserved by every function in *B*, it is a co-clone

Pol and Inv form a Galois correspondence between closed sets of relations and closed sets of Boolean functions

 $\langle S \rangle = Inv(Pol(S)).$

The expressive power of S depends on the (co-)clone generated by S

Preliminaries When does the Galois connection apply to complexity?

Preliminaries When does the Galois connection apply to complexity?

Galois correspondence applies to complexity

$$\mathsf{SAT}(S) \equiv^{\mathsf{log}}_{m} \mathsf{SAT}(\langle S \rangle)$$

The complexity of SAT(S) depends on the clone Pol(S).

If S_1 and S_2 are two sets of relations such that S_1 is finite and ${\rm Pol}(S_2)\subseteq {\rm Pol}(S_1)$, then

 $\text{sat}(S_1) \leq \text{sat}(S_2).$

 \Rightarrow In the Boolean case all clones are identified (Post 1941)

Preliminaries When does the Galois connection apply to complexity?

Galois correspondence applies to complexity

$$\mathsf{SAT}(S) \equiv^{\mathsf{log}}_{m} \mathsf{SAT}(\langle S \rangle)$$

The complexity of SAT(S) depends on the clone Pol(S).

If S_1 and S_2 are two sets of relations such that S_1 is finite and ${\rm Pol}(S_2)\subseteq {\rm Pol}(S_1)$, then

 $\operatorname{SAT}(S_1) \leq \operatorname{SAT}(S_2).$

 \Rightarrow In the Boolean case all clones are identified (Post 1941)

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Post's lattice

Preliminaries When does the Galois connection apply to complex

Preliminaries When does the Galois connection apply to complexity?

Decision problem : SAT(S)

SAT(S)

Input: F an S-formula

Question : Is F satisfiable?

Theorem (Schaefer, 1978)

- if S is 0-valid (1-valid), bijunctive, Horn(dual Horn) or affine, then SAT(S) is in P,
- otherwise SAT(S) is NP-complete.

Complexity of Abduction Bases for Boolean co-clones Ion-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Decision problem : SAT(S)

Preliminaries When does the Galois connection apply to complexity?

Counting problem : #SAT(S)

#SAT(S)

Input : F an S-formula

Question : How many satisfying assignments for F?

Theorem

- if S is affine, then #SAT(S) is in FP,
- otherwise #SAT(S) is #P-complete.

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the tall

Preliminaries When does the Galois connection apply to complexity?

Counting problem : #SAT(S)

Enumeration problem

Enumerate SAT(S)

- Input: F an S-formula
- Question : Enumerate all the satisfying assignments.

Theorem

- if S is bijunctive, Horn (dual Horn) or affine, then one can enumerate all the solutions with polynomial delay
- otherwise such an algorithm does not exist unless P=NP.

Preliminaries When does the Galois connection apply to complexity?

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those men<u>tioned in the talk</u>

Preliminaries When does the Galois connection apply to complexity?

Enumeration problem

Preliminaries When does the Galois connection apply to complexity?

Optimization problem : Max-SAT(S)

Max-SAT(S) Input: F an S-formula Question Find an assignment that satisfies a maximum number of S-clauses

Definition

A relation is 2-monotone if it can be expressed as a DNF-formula either of the form $(x_1 \land \ldots \land x_p)$ or $(\neg y_1 \land \ldots \land \neg y_q)$ or $(x_1 \land \ldots \land x_p) \lor (\neg y_1 \land \ldots \land \neg y_q)$.

Theorem

- if S is 0-valid (1-valid)or 2-monotone, then Max-SAT(S) is in PO,
- otherwise Max-SAT(S) is APX-complete.

Preliminaries When does the Galois connection apply to complexity?

Optimization problem : Max-SAT(S)

No picture ! 2-monotone relations do not constitute a co-clone

Preliminaries When does the Galois connection apply to complexity?

Optimization problem : Max-SAT(S)

No picture !

2-monotone relations do not constitute a co-clone

Preliminaries When does the Galois connection apply to complexity?

Optimization problem : Max-SAT(S)

No picture !

2-monotone relations do not constitute a co-clone

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk Preliminaries When does the Galois connection apply to complexity?

Summary

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity ?

Summary

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Summary

Preliminaries When does the Galois connection apply to complexity?

Pb	Class. in lattice	Does Galois apply?
SAT(S)	yes	yes
#SAT(S)	yes	yes
Enumeration	yes	no
Max-SAT(S)	no	no

A. Bulatov, V. Dalmau

H. Schnoor, I. Schnoor

Complexity of Abduction Bases for Boolean co-clones Non-exhaustive list of references (only those mentioned in the talk

Preliminaries When does the Galois connection apply to complexity?

Can we identify the computational goals for which the Galois connection applies ?

 Why are Boolean CSP interesting?
 Definition of the problem

 Complexity of Abduction
 Known results

 Bases for Boolean co-clones
 New tractable cases

 Non-exhaustive list of references (only those mentioned in the talk)
 A complete classification

Outline

- Why are Boolean CSP interesting?
 - Preliminaries
 - When does the Galois connection apply to complexity?
- 2 Complexity of Abduction
 - Definition of the problem
 - Known results
 - New tractable cases
 - A complete classification
- Bases for Boolean co-clones
 - Bases and plain bases for Boolean co-clones
 - The infinite part of Post's lattice
 - Preferred representations
 - Algorithmic applications
- Non-exhaustive list of references (only those mentioned in the talk)

 Why are Boolean CSP interesting ?
 Definition of the problem

 Complexity of Abduction
 Known results

 Bases for Boolean co-clones
 New tractable cases

 Non-exhaustive list of references (only those mentioned in the talk)
 A complete classification

L denotes a finite set of Boolean relations

PQ-Abduction(*L*)

- Input : An *L*-formula φ , a set of variables $A \subseteq Vars(\varphi)$ and a variable $q \in Vars(\varphi) \setminus A$
- Question : Is there a set $E \subseteq Lits(A)$ such that $\varphi \land \bigwedge E$ is satisfiable but $\varphi \land \bigwedge E \land \neg q$ is not?

If one exists, such a set E is called a *solution* of the abduction problem.
Definition of the problem Known results New tractable cases A complete classification

Known hard problems

- General problem (Eiter, Gottlob 1995) If C is the class of all propositional CNF formulas, then PQ-ABDUCTION(C) is Σ_2 P-complete.
- (dual) Horn abduction (Selman, Levesque 1990)
 If C is the class of all propositional Horn formulas, then
 PQ-ABDUCTION(C) is NP-complete. The same holds if C is
 the class of all propositional dual Horn formulas.

Definition of the problem Known results New tractable cases A complete classification

Known hard problems

- General problem (Eiter, Gottlob 1995) If C is the class of all propositional CNF formulas, then PQ-ABDUCTION(C) is Σ_2 P-complete.
- (dual) Horn abduction (Selman, Levesque 1990)
 If C is the class of all propositional Horn formulas, then
 PQ-ABDUCTION(C) is NP-complete. The same holds if C is
 the class of all propositional dual Horn formulas.

Definition of the problem Known results New tractable cases A complete classification

Known tractable problems

- Affine (Zanuttini 2003)
 If *L* is an affine language, then the problem PQ-ABDUCTION(*L*) is in P.
- Bijunctive (Marquis 2000)
 If *L* is a bijunctive language, then the problem
 PQ-ABDUCTION(*L*) is in P.
- Definite Horn (Eiter, Gottlob 1995)
 If *L* is a definite Horn language, then the problem PQ-ABDUCTION(*L*) is in P.

 Why are Boolean CSP interesting?
 Def

 Complexity of Abduction
 Kno

 Bases for Boolean co-clones
 Nev

 Non-exhaustive list of references (only those mentioned in the talk)
 A or

Definition of the problem Known results New tractable cases A complete classification

Tools for easy cases

Definition

A clause $C = \bigvee_{i \in I} \ell_i$ is said to be a *prime implicate* of φ if $\varphi \land \bigwedge \{\neg \ell_i \mid i \in I\}$ is unsatisfiable but for all $i_0 \in I$, the formula $\varphi \land \bigwedge \{\neg \ell_i \mid i \in I, i \neq i_0\}$ is satisfiable.

Lemma

 An abduction problem (φ, A, q) has a solution if and only if there is a prime implicate of φ of the form (ℓ₁ ∨···∨ ℓ_k ∨ q) where for all *i*, ℓ_i is a literal built upon a variable in A.

• a solution is then $E = (\neg \ell_1 \land \ldots \neg \ell_k)$

 \Rightarrow all the prime implicates of a given formula φ in CNF can be generated by repeatedly applying *resolution*.

 Why are Boolean CSP interesting?
 Define the second sec

Definition of the problem Known results New tractable cases A complete classification

Tools for easy cases

Definition

A clause $C = \bigvee_{i \in I} \ell_i$ is said to be a *prime implicate* of φ if $\varphi \land \bigwedge \{\neg \ell_i \mid i \in I\}$ is unsatisfiable but for all $i_0 \in I$, the formula $\varphi \land \bigwedge \{\neg \ell_i \mid i \in I, i \neq i_0\}$ is satisfiable.

Lemma

 An abduction problem (φ, A, q) has a solution if and only if there is a prime implicate of φ of the form (ℓ₁ ∨···∨ ℓ_k ∨ q) where for all *i*, ℓ_i is a literal built upon a variable in A.

• a solution is then $E = (\neg \ell_1 \land \ldots \neg \ell_k)$

 \Rightarrow all the prime implicates of a given formula φ in CNF can be generated by repeatedly applying *resolution*.

 Why are Boolean CSP interesting?
 Define the second sec

Definition of the problem Known results New tractable cases A complete classification

Tools for easy cases

Definition

A clause $C = \bigvee_{i \in I} \ell_i$ is said to be a *prime implicate* of φ if $\varphi \land \bigwedge \{\neg \ell_i \mid i \in I\}$ is unsatisfiable but for all $i_0 \in I$, the formula $\varphi \land \bigwedge \{\neg \ell_i \mid i \in I, i \neq i_0\}$ is satisfiable.

Lemma

- An abduction problem (φ, A, q) has a solution if and only if there is a prime implicate of φ of the form (ℓ₁ ∨···∨ ℓ_k ∨ q) where for all *i*, ℓ_i is a literal built upon a variable in A.
- a solution is then $E = (\neg \ell_1 \land \ldots \neg \ell_k)$

 \Rightarrow all the prime implicates of a given formula φ in CNF can be generated by repeatedly applying *resolution*.

 Why are Boolean CSP interesting?
 Definition

 Complexity of Abduction
 Known r

 Bases for Boolean co-clones
 New transmitted

 Non-exhaustive list of references (only those mentioned in the talk)
 A complexity

Definition of the problem Known results New tractable cases A complete classification

Implicative Hitting Set-Bounded IHS-B

Definition

A relation is

- *IHS-B* if it can be described by a formula in CNF whose clauses are all of one of the following types : (x_i), or (¬x_{i₁} ∨ x_{i₂}), or (¬x_{i₁} ∨ ··· ∨ ¬x_{i_k})
- *IHS-B*+ if it can be described by a formula in CNF whose clauses are all of one of the following types : (¬x_i), or (¬x_{i1} ∨ x_{i2}), or (x_{i1} ∨ ··· ∨ x_{ik})
- IHS-*B* : any solution for the abduction pb contains 0 or 1 literal.
- IHS-B+ : there are $O(n^k)$ prime implicates

 Why are Boolean CSP interesting?
 Definition

 Complexity of Abduction
 Known r

 Bases for Boolean co-clones
 New trac

 Non-exhaustive list of references (only those mentioned in the talk)
 A complexity

Definition of the problem Known results New tractable cases A complete classification

Implicative Hitting Set-Bounded IHS-B

Definition

A relation is

- *IHS-B* if it can be described by a formula in CNF whose clauses are all of one of the following types : (x_i), or (¬x_{i₁} ∨ x_{i₂}), or (¬x_{i₁} ∨ ··· ∨ ¬x_{i_k})
- *IHS-B*+ if it can be described by a formula in CNF whose clauses are all of one of the following types : (¬x_i), or (¬x_{i1} ∨ x_{i2}), or (x_{i1} ∨ ··· ∨ x_{ik})
- IHS-B- : any solution for the abduction pb contains 0 or 1 literal.
- IHS-B+ : there are $O(n^k)$ prime implicates

 Why are Boolean CSP interesting ?
 Definit

 Complexity of Abduction
 Known

 Bases for Boolean co-clones
 New tr

 Non-exhaustive list of references (only those mentioned in the talk)
 A common

Definition of the problem Known results New tractable cases A complete classification

Implicative Hitting Set-Bounded IHS-B

- If *L* is an IHS-*B* language, then the problem PQ-ABDUCTION(*L*) is in P.
- If *L* is an IHS-*B*+ language, then the problem PQ-ABDUCTION(*L*) is in P.

 \Rightarrow the polynomial complexity obtained here strongly relies on the fact that *L* is finite.

 Why are Boolean CSP interesting ?
 Definiti

 Complexity of Abduction
 Known

 Bases for Boolean co-clones
 New tra

 Non-exhaustive list of references (only those mentioned in the talk)
 A complexity

Definition of the problem Known results New tractable cases A complete classification

Implicative Hitting Set-Bounded IHS-B

- If *L* is an IHS-*B* language, then the problem PQ-ABDUCTION(*L*) is in P.
- If *L* is an IHS-*B*+ language, then the problem PQ-ABDUCTION(*L*) is in P.

 \Rightarrow the polynomial complexity obtained here strongly relies on the fact that *L* is finite.

 Why are Boolean CSP interesting ?
 D

 Complexity of Abduction
 K

 Bases for Boolean co-clones
 N

 on-exhaustive list of references (only those mentioned in the talk)
 A

Definition of the problem Known results New tractable cases A complete classification

Tools for hardness results

Lemma

If L can be implemented by L', i.e., every relation in L can be expressed as a conjunctive query over L', then $PQ-ABDUCTION(L) \leq PQ-ABDUCTION(L')$

 \Rightarrow Hardness results are obtained as Schaefer's original ones

 Why are Boolean CSP interesting ?
 D

 Complexity of Abduction
 K

 Bases for Boolean co-clones
 N

 on-exhaustive list of references (only those mentioned in the talk)
 A

Definition of the problem Known results New tractable cases A complete classification

Tools for hardness results

Lemma

If L can be implemented by L', i.e., every relation in L can be expressed as a conjunctive query over L', then $PQ-ABDUCTION(L) \leq PQ-ABDUCTION(L')$

 \Rightarrow Hardness results are obtained as Schaefer's original ones

 Why are Boolean CSP interesting?
 Definition

 Complexity of Abduction
 Known res

 Bases for Boolean co-clones
 New tracta

 Non-exhaustive list of references (only those mentioned in the talk)
 A complete

Definition of the problem Known results New tractable cases A complete classification

Main theorem

Let L be a finite constraint language. [Creignou, Zanuttini, 2005]

- if L is bijunctive, affine, definite Horn, IHS-B+ or IHS-B-, the problem PQ-ABDUCTION(L) is polynomial,
- otherwise, if *L* is Horn or dual Horn, the problem PQ-ABDUCTION(*L*) is NP-complete,
- in all other cases, the problem PQ-ABDUCTION(L) is Σ_2 P-complete.

Each of these conditions can be checked in polynomial time given a language written in extension.

Non trivial at this stage

Definition of the problem Known results New tractable cases A complete classification

Complexity of abduction

 Why are Boolean CSP interesting?
 Definition

 Complexity of Abduction
 Known res

 Bases for Boolean co-clones
 New tracta

 Non-exhaustive list of references (only those mentioned in the talk)
 A complete

Definition of the problem Known results New tractable cases A complete classification

Global tractability versus tractability

Definition

A constraint language S is called *globally tractable* for a problem A, if A(S) is tractable, and it is called *tractable* if for every finite $L \subseteq S$, A(L) is tractable

⇒ These two notions

- coincide for most of the computational problems
- do not coincide for the abduction problem (for IHS-*B*+ languages)

 Why are Boolean CSP interesting ?
 Definition of Known res

 Complexity of Abduction
 Known res

 Bases for Boolean co-clones
 New tracta

 Non-exhaustive list of references (only those mentioned in the talk)
 A complete

Definition of the problem Known results New tractable cases A complete classification

Global tractability versus tractability

Definition

A constraint language S is called *globally tractable* for a problem A, if A(S) is tractable, and it is called *tractable* if for every finite $L \subseteq S$, A(L) is tractable

⇒ These two notions

- coincide for most of the computational problems
- do not coincide for the abduction problem (for IHS-*B*+ languages)

 Why are Boolean CSP interesting ?
 Definiti

 Complexity of Abduction
 Known

 Bases for Boolean co-clones
 New tra

 Non-exhaustive list of references (only those mentioned in the talk)
 A complexity

Definition of the problem Known results New tractable cases A complete classification

Open Question 2

Can we identify/recognize the computational goals for which the notions of tractability and global tractability coincide?
 Why are Boolean CSP interesting?
 Defin

 Complexity of Abduction
 Know

 Bases for Boolean co-clones
 New

 Non-exhaustive list of references (only those mentioned in the talk)
 A co

Definition of the problem Known results New tractable cases A complete classification

Open Question 3

(basic) Propositional circumscription

Input : φ an S-formula and c a clause

Question : Is c satisfied in every minimal model of φ ?

Conjecture (Kirousis, Kolaitis) : a trichotomy P, coNP-complete or Π_2^P -complete holds

 Why are Boolean CSP interesting?
 Bases and plain bases for Boolean co-clones

 Complexity of Abduction
 The infinite part of Post's lattice

 Bases for Boolean co-clones
 Preferred representations

 t of references (only those mentioned in the talk)
 Algorithmic applications

Outline

- Why are Boolean CSP interesting?
 - Preliminaries
 - When does the Galois connection apply to complexity?
- 2 Complexity of Abduction
 - Definition of the problem
 - Known results
 - New tractable cases
 - A complete classification
- Bases for Boolean co-clones
 - Bases and plain bases for Boolean co-clones
 - The infinite part of Post's lattice
 - Preferred representations
 - Algorithmic applications

Non-exhaustive list of references (only those mentioned in the talk)

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Bases and plain bases

Given a co-clone *ICI*, a set of relations $B \subseteq ICI$ is called

• a *basis* for *ICI* if for every $R \in ICI$

$$R(x_1,\ldots,x_n)\equiv \exists \{y_1,\ldots,y_m\}\mathcal{C}(\vec{x},\vec{y})$$

where C is some conjunction of constraints using only relations in B.

• a *plain basis* for *ICI* if for every $R \in ICI$

$$R(x_1,\ldots,x_n)\equiv \mathcal{C}(\vec{x})$$

where C is some conjunction of constraints using only relations in B, and the scope of every constraint in C is a sequence of distinct variables.

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Bases and plain bases

Given a co-clone *ICI*, a set of relations $B \subseteq ICI$ is called

• a *basis* for *ICI* if for every $R \in ICI$

$$R(x_1,\ldots,x_n)\equiv \exists \{y_1,\ldots,y_m\}\mathcal{C}(\vec{x},\vec{y})$$

where \mathcal{C} is some conjunction of constraints using only relations in B.

• a *plain basis* for *ICI* if for every $R \in ICI$

$$R(x_1,\ldots,x_n)\equiv \mathcal{C}(\vec{x})$$

where C is some conjunction of constraints using only relations in B, and the scope of every constraint in C is a sequence of distinct variables.

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Bases and plain bases

Given a co-clone *ICI*, a set of relations $B \subseteq ICI$ is called

• a *basis* for *ICI* if for every $R \in ICI$

$$R(x_1,\ldots,x_n)\equiv \exists \{y_1,\ldots,y_m\}\mathcal{C}(\vec{x},\vec{y})$$

where C is some conjunction of constraints using only relations in B.

• a *plain basis* for *ICI* if for every $R \in ICI$

$$R(x_1,\ldots,x_n)\equiv \mathcal{C}(\vec{x})$$

where C is some conjunction of constraints using only relations in *B*, and the scope of every constraint in C is a sequence of distinct variables.

Non-exhaustive list of references (only those mentioned in the talk)

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Bases and plain bases differ

In the definition of plain basis :

- there is no existential variables
- no replication of variables in the scope of each constraint.

Non-exhaustive list of references (only those mentioned in the talk)

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Bases and plain bases differ

In the definition of plain basis :

- there is no existential variables
- no replication of variables in the scope of each constraint.

Non-exhaustive list of references (only those mentioned in the talk)

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Bases and plain bases

co-clone	(plain) basis	property
IS_{00}^n	$\{(\neg x), (\neg x \lor y)\} \cup \{(x_1 \lor \ldots \lor x_k) \mid k \le n\}$	$IHSB+^n$
/S ₀₀	$\{(\neg x), (\neg x \lor y)\} \cup \{(x_1 \lor \ldots \lor x_k) \mid k \in \mathbb{N}\}$	IHSB+
IS_{10}^n	$\{(\mathbf{x}), (\neg \mathbf{x} \lor \mathbf{y})\} \cup \{(\neg \mathbf{x}_1 \lor \ldots \lor \neg \mathbf{x}_k) \mid k \le n\}$	$IHSB^n$
/S ₁₀	$\{(\mathbf{x}), (\neg \mathbf{x} \lor \mathbf{y})\} \cup \{(\neg \mathbf{x}_1 \lor \ldots \lor \neg \mathbf{x}_k) \mid k \in \mathbb{N}\}$	IHSB-

Boehler, Reith, Schnoor, Vollmer, 2005. Bases of minimal order Creignou, Kolaitis, Zanuttini, 2005. Plain bases minimal w.r.t inclusion

⇒ There is no finite constraint language *L* such that $Pol(L) = S_{10}$ or S_{00} .

Non-exhaustive list of references (only those mentioned in the talk)

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Bases and plain bases

co-clone	(plain) basis	property
IS_{00}^n	$\{(\neg x), (\neg x \lor y)\} \cup \{(x_1 \lor \ldots \lor x_k) \mid k \le n\}$	$IHSB+^n$
/S ₀₀	$\{(\neg x), (\neg x \lor y)\} \cup \{(x_1 \lor \ldots \lor x_k) \mid k \in \mathbb{N}\}$	IHSB+
IS_{10}^n	$\{(\mathbf{x}), (\neg \mathbf{x} \lor \mathbf{y})\} \cup \{(\neg \mathbf{x}_1 \lor \ldots \lor \neg \mathbf{x}_k) \mid k \le n\}$	$IHSB^n$
/S ₁₀	$\{(\mathbf{x}), (\neg \mathbf{x} \lor \mathbf{y})\} \cup \{(\neg \mathbf{x}_1 \lor \ldots \lor \neg \mathbf{x}_k) \mid k \in \mathbb{N}\}$	IHSB-

Boehler, Reith, Schnoor, Vollmer, 2005. Bases of minimal order Creignou, Kolaitis, Zanuttini, 2005. Plain bases minimal w.r.t inclusion

⇒ There is no finite constraint language *L* such that $Pol(L) = S_{10}$ or S_{00} .

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Non-exhaustive list of references (only those mentioned in the talk)

When basis and plain basis differ

ICI	basis	plain basis
IE	$(\bar{x} \lor \bar{y} \lor z)$	$ \{(\bar{x}_1 \lor \ldots \lor \bar{x}_k \lor y) \mid k \ge 1\}$
IE_0	$\{(\bar{x} \vee \bar{y} \vee z), (\bar{x})\}$	$ \{N_k \mid k \ge 0\} \cup \{(\bar{x}_1 \lor \ldots \lor \bar{x}_k \lor y) \mid k \ge 1\}$
IE_1	$\{(\bar{x} \lor \bar{y} \lor z), (x)\}$	$\{(\bar{x}_1 \lor \ldots \lor \bar{x}_k \lor y) \mid k \ge 0\}$
IE ₂	$\{(\bar{x} \lor \bar{y} \lor z), (x), (\bar{x})\}$	$ \{N_k \mid k \ge 0\} \cup \{(\bar{x}_1 \lor \ldots \lor \bar{x}_k \lor y) \mid k \ge 0\}$

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Non-exhaustive list of references (only those mentioned in the talk)

Advantages / Disadvantages

- infinite plain bases are necessary for co-clones $IL_{(c)}$, $IV_{(c)}$, $IE_{(c)}$, $IN_{(c)}$ and $II_{(c)}$, while they have finite (classical) bases
- for each co-clone there is a canonical plain basis

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice **Preferred representations** Algorithmic applications

Non-exhaustive list of references (only those mentioned in the tall

Minimal plain bases

Proposition

Every co-clone has a unique plain basis which is minimal with respect to inclusion.

one can identify a preferred representation of a relation in a co-clone with respect to this minimal plain basis

 Why are Boolean CSP interesting?
 Base

 Complexity of Abduction
 The ir

 Bases for Boolean co-clones
 Prefa

 Non-exhaustive list of references (only those mentioned in the talk)
 Algorithm

Minimal plain bases

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice **Preferred representations** Algorithmic applications

Proposition

Every co-clone has a unique plain basis which is minimal with respect to inclusion.

one can identify a preferred representation of a relation in a co-clone with respect to this minimal plain basis

Non-exhaustive list of references (only those mentioned in the talk)

Preferred representation

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Definition (preferred representation)

Let *ICI* be a co-clone and let *R* be a relation in *ICI*. Then a conjunction of constraints φ is called a *preferred representation* for *R* with respect to *ICI* if φ represents *R* and every constraint in φ is built upon a relation out of the (unique) minimal plain basis of *ICI*.

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice **Preferred representations** Algorithmic applications

Non-exhaustive list of references (only those mentioned in the talk)

Preferred representation and prime CNF

Proposition

Given a relation *R* of arity *n* and containing *m* vectors and a co-clone *ICI* to which *R* belongs, a preferred representation of *R* with respect to *ICI* can be found in time $O(m^2n^2)$.

Proof : Compute a prime CNF φ representing *R*. φ contains O(mn) clauses and can be computed in time $O(m^2n^2)$ (Zanuttini, Hébrard 2002).

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice **Preferred representations** Algorithmic applications

Non-exhaustive list of references (only those mentioned in the talk)

Preferred representation and prime CNF

Proposition

Given a relation *R* of arity *n* and containing *m* vectors and a co-clone *ICI* to which *R* belongs, a preferred representation of *R* with respect to *ICI* can be found in time $O(m^2n^2)$.

Proof : Compute a prime CNF φ representing *R*. φ contains O(mn) clauses and can be computed in time $O(m^2n^2)$ (Zanuttini, Hébrard 2002).

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Computing the minimal co-clone

Proposition

Given a relation *R* of arity *n* and containing *m* vectors, the minimal co-clone containing *R* can be found in time $O(m^2n^2)$.

Proof : Compute a prime CNF representing *R* and use the list of plain bases.

Bases and plain bases for Boolean co-clones The infinite part of Post's lattice Preferred representations Algorithmic applications

Computing the minimal co-clone

Proposition

Given a relation *R* of arity *n* and containing *m* vectors, the minimal co-clone containing *R* can be found in time $O(m^2n^2)$.

Proof : Compute a prime CNF representing *R* and use the list of plain bases.

 Why are Boolean CSP interesting?
 Bases and plain

 Complexity of Abduction
 The infinite par

 Bases for Boolean co-clones
 Preferred repre

 Non-exhaustive list of references (only those mentioned in the talk)
 Algorithmic app

The infinite part of Post's lattice Preferred representations Algorithmic applications

Input : Given a finite set of relations S and a relation R

Question : is *R* expressible by a conjunctive query over *S* (i.e., whether *R* is in the minimal co-clone containing every relation in *S*)?

Proposition

The expressibility problem can be solved in polynomial time.

Proof : Compute $C_S(C_R)$ the minimal co-clone containing all the relations in *S* (resp. *R*). the relation *R* is expressible by *S* if and only if $C_R \subseteq C_S$.
Why are Boolean CSP interesting?
 Bases and plain bases for

 Complexity of Abduction
 The infinite part of Posta

 Bases for Boolean co-clones
 Preferred representation

 Non-exhaustive list of references (only those mentioned in the talk)
 Algorithmic applications

Input : Given a finite set of relations S and a relation R

Question : is *R* expressible by a conjunctive query over *S* (i.e., whether *R* is in the minimal co-clone containing every relation in *S*)?

Proposition

The expressibility problem can be solved in polynomial time.

Proof : Compute $C_S(C_R)$ the minimal co-clone containing all the relations in *S* (resp. *R*). the relation *R* is expressible by *S* if and only if $C_R \subseteq C_S$.

 Why are Boolean CSP interesting?
 Bases and plain bases for Boolean co-clones

 Complexity of Abduction
 The infinite part of Post's lattice

 Bases for Boolean co-clones
 Preferred representations

 Non-exhaustive list of references (only those mentioned in the talk)
 Algorithmic applications

Open question 4

INVERSE SATISFIABILITY

Input : Given a finite set of relations S and a relation R

Question : is *R* expressible by a CNF(S)-formula? (with no existential variables, i.e., no projection)

A dichotomy theorem was obtained by Kavvadias and Sideri for the complexity of problem with constants. Does a dichotomy hold without the constants? Are the Schaefer cases still tractable?

 Why are Boolean CSP interesting?
 Bases and plain bases for Boolean co-clones

 Complexity of Abduction
 The infinite part of Post's lattice

 Bases for Boolean co-clones
 Preferred representations

 Non-exhaustive list of references (only those mentioned in the talk)
 Algorithmic applications

Open question 4

INVERSE SATISFIABILITY

Input: Given a finite set of relations S and a relation R

Question : is *R* expressible by a CNF(S)-formula? (with no existential variables, i.e., no projection)

A dichotomy theorem was obtained by Kavvadias and Sideri for the complexity of problem with constants. Does a dichotomy hold without the constants? Are the Schaefer cases still tractable?
 Why are Boolean CSP interesting?
 Bases and plain bases for Boolean co-clones

 Complexity of Abduction
 The infinite part of Post's lattice

 Bases for Boolean co-clones
 Preferred representations

 st of references (only those mentioned in the talk)
 Algorithmic applications

- There is still something to learn from the Boolean case
 - from complexity to the lattice of (co)-clones
 - from the lattice to complexity
- There remains some open questions

Why are Boolean CSP interesting? Complexity of Abduction Bases for Boolean co-clones

Non-exhaustive list of references (only those mentioned in the talk)

Outline

- Why are Boolean CSP interesting?
 - Preliminaries
 - When does the Galois connection apply to complexity?
- 2 Complexity of Abduction
 - Definition of the problem
 - Known results
 - New tractable cases
 - A complete classification
- Bases for Boolean co-clones
 - Bases and plain bases for Boolean co-clones
 - The infinite part of Post's lattice
 - Preferred representations
 - Algorithmic applications

Non-exhaustive list of references (only those mentioned in the talk)

Böhler, E., Creignou, N., Reith, S. and Vollmer, H. Playing with Boolean Blocks, Part II : Post's Lattice with Applications to Complexity Theory. *ACM-SIGACT News* 35(1), Complexity Theory Column 43,

pages 22-35, 2004.

Böhler, E., Reith S., Schnoor, H. and Vollmer, H. . Bases for Boolean co-clones. Information Processing Letters, 96 : 59–66, 2005.

Bulatov, A. and Dalmau, V.

Towards a dichotomy theorem for the counting constraints satisfaction problem.

In Proc. FOC'2003, pages 562-. 2003.

Creignou, N.

> A dichotomy theorem for maximum generalized satisfiability. *Journal of Computer and System Sciences*, 51(3) :511-522, 1995.

- Creignou, N. and Hermann, M.
 Complexity of generalized satisfiability counting problems. Information and Computation, 125(1) :1-12, 1996.
- Creignou, N. and Hébrard, J.-J.

On generating all satisfying truth assignments of a generalized CNF-formula.

Theoretical Informatics and Applications 31(6) : 499-511, 1997.

Creignou, N., Khanna, S. and Sudan, M. Complexity classifications of Boolean constraint satisfaction problems.

SIAM Monographs on discrete mathematics and applications, 2001.

- Creignou, N., Kolaitis, P. and Zanuttini, B. Preferred representations of Boolean relations. Electronic Colloquium on Computational Complexity (ECCC), Report TR05-119, 2005.
- Creignou, N. and Zanuttini, B. A complete classification of the complexity of propositional abduction.

To appear in SIAM Journal on computing, 2006.

Eiter, T. and Gottlob, G.

The complexity of logic-based abduction. *Journal of the ACM*, 42(1) :3–42, 1995.

Jeavons, P., Cohen, D. and Gyssens, M.

Closure properties of constraints. *Journal of the ACM*, 44 :527–548, 1997.

D. Kavvadias and M. Sideri.
 The inverse satisfiability problem.
 SIAM Journal on Computing, 28(1) :152–163, 1998.

Kirousis, L. and Kolaitis, Ph.
 A dichotomy in the complexity of propositional circumscription.

Theory of Computing Systems, 37(6) :695–716, 2004.

Nordh, G. and Zanuttini, B. Propositional abduction is almost always hard. In Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI'05), pages 534–539. IJCAI ,2005.

The two-valued iterative systems of mathematical logic. *Annals of Mathematical Studies*, 5 :1–122, 1941.

Schaefer, T.

The complexity of satisfiability problems. In *Proc. 10th STOC, San Diego (CA, USA)*, pages 216–226. Association for Computing Machinery, 1978.

Schnoor, H. and Schnoor, I. Enumerating all Solutions for Constraint Satisfaction Problems. Submitted for publication, 2006.