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Boolean CSP are interesting

non trivial

many complete classifications

Post’s lattice

We can learn a lot from them :

guess when the Galois connection applies

a better description of Post relational lattice

there are still some open questions !
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S-formulas

Let S be a set of Boolean relations.

C = R(x1, . . . , xn) with R ∈ S is an S-constraint

F =
∧

Ci where each Ci is an S-constraint is a
CNF(S)-formula

SAT(S)

Input : F an S-formula

Question : Is F satisfiable ?
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expressive power of S

〈S〉 is the co-clone generated by S, that is the set of all
relations R which can be implemented as :

R(x1, . . . , xn) ≡ ∃xn+1 . . .∃xmF (~x),

where F is an S-formula
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Galois correspondence

Pol(S) is the set of Boolean functions f that are
polymorphisms of (which preserve) every relation in S.
Pol(S) is a clone .

Inv(B) is the set of relations that are preserved by every
function in B, it is a co-clone

Pol and Inv form a Galois correspondence between closed sets
of relations and closed sets of Boolean functions

〈S〉 = Inv(Pol(S)).

The expressive power of S depends on the (co-)clone
generated by S
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Galois correspondence applies to complexity

SAT(S) ≡log
m SAT(〈S〉)

The complexity of SAT(S) depends on the clone Pol(S).

If S1 and S2 are two sets of relations such that S1 is finite and
Pol(S2) ⊆ Pol(S1) , then

SAT(S1) ≤ SAT(S2).

⇒ In the Boolean case all clones are identified (Post 1941)
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Post’s lattice
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Decision problem : SAT(S)

SAT(S)

Input : F an S-formula

Question : Is F satisfiable ?

Theorem (Schaefer, 1978)

if S is 0-valid (1-valid), bijunctive, Horn(dual Horn) or affine,
then SAT(S) is in P,

otherwise SAT(S) is NP-complete.
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Decision problem : SAT(S)
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Counting problem : #SAT(S)

#SAT(S)

Input : F an S-formula

Question : How many satisfying assignments for F ?

Theorem

if S is affine, then #SAT(S) is in FP,

otherwise #SAT(S) is #P-complete.
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Counting problem : #SAT(S)
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Enumeration problem

Enumerate SAT(S)

Input : F an S-formula

Question : Enumerate all the satisfying assignments.

Theorem

if S is bijunctive, Horn (dual Horn) or affine, then one can
enumerate all the solutions with polynomial delay

otherwise such an algorithm does not exist unless P=NP.
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Enumeration problem
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Optimization problem : Max-SAT(S)

Max-SAT(S)
Input : F an S-formula

Question Find an assignment that satisfies a maximum
number of S-clauses

Definition

A relation is 2-monotone if it can be expressed as a
DNF-formula either of the form (x1 ∧ . . . ∧ xp) or
(¬y1 ∧ . . . ∧ ¬yq) or (x1 ∧ . . . ∧ xp) ∨ (¬y1 ∧ . . . ∧ ¬yq).

Theorem

if S is 0-valid (1-valid)or 2-monotone, then Max-SAT(S) is
in PO,
otherwise Max-SAT(S) is APX-complete.
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Optimization problem : Max-SAT(S)

No picture !
2-monotone relations do not constitute a co-clone
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Summary

Pb Class. in lattice Does Galois apply ?
SAT(S) yes yes
#SAT(S) yes yes
Enumeration yes no
Max-SAT(S) no no

A. Bulatov, V. Dalmau
H. Schnoor, I. Schnoor
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Open Question 1

Can we identify the computational goals for which the Galois
connection applies ?
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Abduction

L denotes a finite set of Boolean relations

PQ-Abduction(L)

Input : An L-formula ϕ, a set of variables A ⊆ Vars(ϕ) and
a variable q ∈ Vars(ϕ)\A

Question : Is there a set E ⊆ Lits(A) such that ϕ ∧
∧

E is
satisfiable but ϕ ∧

∧
E ∧ ¬q is not ?

If one exists, such a set E is called a solution of the abduction
problem.
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Known hard problems

General problem (Eiter, Gottlob 1995)
If C is the class of all propositional CNF formulas, then
PQ-ABDUCTION(C) is Σ2P-complete.

(dual) Horn abduction (Selman, Levesque 1990)
If C is the class of all propositional Horn formulas, then
PQ-ABDUCTION(C) is NP-complete. The same holds if C is
the class of all propositional dual Horn formulas.
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Known tractable problems

Affine (Zanuttini 2003)
If L is an affine language, then the problem
PQ-ABDUCTION(L) is in P.

Bijunctive (Marquis 2000)
If L is a bijunctive language, then the problem
PQ-ABDUCTION(L) is in P.

Definite Horn (Eiter, Gottlob 1995)
If L is a definite Horn language, then the problem
PQ-ABDUCTION(L) is in P.
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Tools for easy cases

Definition

A clause C =
∨

i∈I `i is said to be a prime implicate of ϕ if
ϕ ∧

∧
{¬`i | i ∈ I} is unsatisfiable but for all i0 ∈ I, the formula

ϕ ∧
∧
{¬`i | i ∈ I, i 6= i0} is satisfiable.

Lemma

An abduction problem (ϕ, A, q) has a solution if and only if
there is a prime implicate of ϕ of the form (`1 ∨ · · · ∨ `k ∨ q)
where for all i , `i is a literal built upon a variable in A.

a solution is then E = (¬`1 ∧ . . .¬`k )

⇒ all the prime implicates of a given formula ϕ in CNF can be
generated by repeatedly applying resolution.



Why are Boolean CSP interesting ?
Complexity of Abduction

Bases for Boolean co-clones
Non-exhaustive list of references (only those mentioned in the talk)

Definition of the problem
Known results
New tractable cases
A complete classification

Tools for easy cases

Definition

A clause C =
∨

i∈I `i is said to be a prime implicate of ϕ if
ϕ ∧

∧
{¬`i | i ∈ I} is unsatisfiable but for all i0 ∈ I, the formula

ϕ ∧
∧
{¬`i | i ∈ I, i 6= i0} is satisfiable.

Lemma

An abduction problem (ϕ, A, q) has a solution if and only if
there is a prime implicate of ϕ of the form (`1 ∨ · · · ∨ `k ∨ q)
where for all i , `i is a literal built upon a variable in A.

a solution is then E = (¬`1 ∧ . . .¬`k )

⇒ all the prime implicates of a given formula ϕ in CNF can be
generated by repeatedly applying resolution.



Why are Boolean CSP interesting ?
Complexity of Abduction

Bases for Boolean co-clones
Non-exhaustive list of references (only those mentioned in the talk)

Definition of the problem
Known results
New tractable cases
A complete classification

Tools for easy cases

Definition

A clause C =
∨

i∈I `i is said to be a prime implicate of ϕ if
ϕ ∧

∧
{¬`i | i ∈ I} is unsatisfiable but for all i0 ∈ I, the formula

ϕ ∧
∧
{¬`i | i ∈ I, i 6= i0} is satisfiable.

Lemma

An abduction problem (ϕ, A, q) has a solution if and only if
there is a prime implicate of ϕ of the form (`1 ∨ · · · ∨ `k ∨ q)
where for all i , `i is a literal built upon a variable in A.

a solution is then E = (¬`1 ∧ . . .¬`k )

⇒ all the prime implicates of a given formula ϕ in CNF can be
generated by repeatedly applying resolution.



Why are Boolean CSP interesting ?
Complexity of Abduction

Bases for Boolean co-clones
Non-exhaustive list of references (only those mentioned in the talk)

Definition of the problem
Known results
New tractable cases
A complete classification

Implicative Hitting Set-Bounded IHS-B

Definition
A relation is

IHS-B− if it can be described by a formula in CNF whose
clauses are all of one of the following types : (xi), or
(¬xi1 ∨ xi2), or (¬xi1 ∨ · · · ∨ ¬xik )

IHS-B+ if it can be described by a formula in CNF whose
clauses are all of one of the following types : (¬xi), or
(¬xi1 ∨ xi2), or (xi1 ∨ · · · ∨ xik )

IHS-B− : any solution for the abduction pb contains 0 or 1
literal.

IHS-B+ : there are O(nk ) prime implicates
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Implicative Hitting Set-Bounded IHS-B

If L is an IHS-B− language, then the problem
PQ-ABDUCTION(L) is in P.

If L is an IHS-B+ language, then the problem
PQ-ABDUCTION(L) is in P.

⇒ the polynomial complexity obtained here strongly relies on
the fact that L is finite.
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Tools for hardness results

Lemma

If L can be implemented by L′, i.e., every relation in L can be
expressed as a conjunctive query over L′, then
PQ-ABDUCTION(L) ≤ PQ-ABDUCTION(L′)

⇒ Hardness results are obtained as Schaefer’s original ones
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Main theorem

Let L be a finite constraint language. [Creignou, Zanuttini, 2005]

if L is bijunctive, affine, definite Horn, IHS-B+ or IHS-B−,
the problem PQ-ABDUCTION(L) is polynomial,

otherwise, if L is Horn or dual Horn, the problem
PQ-ABDUCTION(L) is NP-complete,

in all other cases, the problem PQ-ABDUCTION(L) is
Σ2P-complete.

Each of these conditions can be checked in polynomial time
given a language written in extension.
Non trivial at this stage
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Global tractability versus tractability

Definition

A constraint language S is called globally tractable for a
problem A, if A(S) is tractable, and it is called tractable if for
every finite L ⊆ S, A(L) is tractable

⇒ These two notions

coincide for most of the computational problems

do not coincide for the abduction problem (for IHS-B+
languages)
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Open Question 2

Can we identify/recognize the computational goals for which
the notions of tractability and global tractability coincide ?
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Open Question 3

(basic) Propositional circumscription

Input : ϕ an S-formula and c a clause

Question : Is c satisfied in every minimal model of ϕ ?

Conjecture (Kirousis, Kolaitis) :
a trichotomy P, coNP-complete or ΠP

2-complete holds
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Bases and plain bases

Given a co-clone ICl , a set of relations B ⊆ ICl is called

a basis for ICl if for every R ∈ ICl

R(x1, . . . , xn) ≡ ∃{y1, . . . , ym}C(~x , ~y)

where C is some conjunction of constraints using only
relations in B.

a plain basis for ICl if for every R ∈ ICl

R(x1, . . . , xn) ≡ C(~x)

where C is some conjunction of constraints using only
relations in B, and the scope of every constraint in C is a
sequence of distinct variables.
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Bases and plain bases differ

In the definition of plain basis :

there is no existential variables

no replication of variables in the scope of each constraint.
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Bases and plain bases

co-clone (plain) basis property
ISn

00 {(¬x), (¬x ∨ y)} ∪ {(x1 ∨ . . . ∨ xk ) | k ≤ n} IHSB+n

IS00 {(¬x), (¬x ∨ y)} ∪ {(x1 ∨ . . . ∨ xk ) | k ∈ N} IHSB+
ISn

10 {(x), (¬x ∨ y)} ∪ {(¬x1 ∨ . . . ∨ ¬xk ) | k ≤ n} IHSB−n

IS10 {(x), (¬x ∨ y)} ∪ {(¬x1 ∨ . . . ∨ ¬xk ) | k ∈ N} IHSB−

Boehler, Reith, Schnoor, Vollmer, 2005. Bases of minimal order
Creignou, Kolaitis, Zanuttini, 2005. Plain bases minimal w.r.t
inclusion

⇒ There is no finite constraint language L such that
Pol(L) = S10 or S00.
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When basis and plain basis differ

ICl basis plain basis
IE (x̄ ∨ ȳ ∨ z) {(x̄1 ∨ . . . ∨ x̄k ∨ y) | k ≥ 1}
IE0 {(x̄ ∨ ȳ ∨ z), (x̄)} {Nk | k ≥ 0} ∪ {(x̄1 ∨ . . . ∨ x̄k ∨ y) | k ≥ 1}
IE1 {(x̄ ∨ ȳ ∨ z), (x)} {(x̄1 ∨ . . . ∨ x̄k ∨ y) | k ≥ 0}
IE2 {(x̄ ∨ ȳ ∨ z), (x), (x̄)} {Nk | k ≥ 0} ∪ {(x̄1 ∨ . . . ∨ x̄k ∨ y) | k ≥ 0}
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Advantages / Disadvantages

infinite plain bases are necessary for co-clones IL(c), IV(c),
IE(c), IN(c) and II(c), while they have finite (classical) bases

for each co-clone there is a canonical plain basis
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Minimal plain bases

Proposition

Every co-clone has a unique plain basis which is minimal with
respect to inclusion.

one can identify a preferred representation of a relation in a
co-clone with respect to this minimal plain basis



Why are Boolean CSP interesting ?
Complexity of Abduction

Bases for Boolean co-clones
Non-exhaustive list of references (only those mentioned in the talk)

Bases and plain bases for Boolean co-clones
The infinite part of Post’s lattice
Preferred representations
Algorithmic applications

Minimal plain bases

Proposition

Every co-clone has a unique plain basis which is minimal with
respect to inclusion.

one can identify a preferred representation of a relation in a
co-clone with respect to this minimal plain basis



Why are Boolean CSP interesting ?
Complexity of Abduction

Bases for Boolean co-clones
Non-exhaustive list of references (only those mentioned in the talk)

Bases and plain bases for Boolean co-clones
The infinite part of Post’s lattice
Preferred representations
Algorithmic applications

Preferred representation

Definition (preferred representation)

Let ICl be a co-clone and let R be a relation in ICl . Then a
conjunction of constraints ϕ is called a preferred representation
for R with respect to ICl if ϕ represents R and every constraint
in ϕ is built upon a relation out of the (unique) minimal plain
basis of ICl .
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Preferred representation and prime CNF

Proposition

Given a relation R of arity n and containing m vectors and a
co-clone ICl to which R belongs, a preferred representation of
R with respect to ICl can be found in time O(m2n2).

Proof : Compute a prime CNF ϕ representing R.
ϕ contains O(mn) clauses and can be computed in time
O(m2n2) (Zanuttini, Hébrard 2002).
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Computing the minimal co-clone

Proposition

Given a relation R of arity n and containing m vectors, the
minimal co-clone containing R can be found in time O(m2n2).

Proof : Compute a prime CNF representing R and use the list
of plain bases.
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Expressibility

Input : Given a finite set of relations S and a relation R

Question : is R expressible by a conjunctive query over S
(i.e., whether R is in the minimal co-clone
containing every relation in S) ?

Proposition

The expressibility problem can be solved in polynomial time.

Proof : Compute CS (CR) the minimal co-clone containing all
the relations in S (resp. R). the relation R is expressible by S if
and only if CR ⊆ CS.
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Open question 4

INVERSE SATISFIABILITY

Input : Given a finite set of relations S and a relation R

Question : is R expressible by a CNF(S)-formula ? (with no
existential variables, i.e., no projection)

A dichotomy theorem was obtained by Kavvadias and Sideri for
the complexity of problem with constants. Does a dichotomy
hold without the constants ? Are the Schaefer cases still
tractable ?
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Conclusion

There is still something to learn from the Boolean case
from complexity to the lattice of (co)-clones
from the lattice to complexity

There remains some open questions
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