Collapsibility

- Will present new technique for deriving tractability results, collapsibility
- Technique reconciles & reveals common structure among tractable classes just given
- Technique allows us to show for certain Γ that

 $QCSP_c(\Gamma)$ reduces to $CSP_c(\Gamma)$

- ...via a single, uniform reduction
- Reduction conceptually simple
- We then use technique along w/ CSP_c(Γ) tractability results to obtain QCSP_c(Γ) tractability results

Game View

Can view instance of QCSP as a game!

Universal player

sets 4-variables tries to fallsify

Yy, \(\frac{1}{2}\times, \) \(\frac{1}\times, \) \(\frac{1}{2}\times, \) \(\frac{1}{2}\times, \) \(\frac{1}{2}\t

- Existential player wins if, after all variables set, all constraints in C scatisfied

- Formula twe iff existential player can always win

Adversaries

Consider QCSP instance

$$\phi = \forall y_1 \exists x_1 \dots \forall y_n \exists x_n \mathcal{C}$$

- Define versions of the game where universal player restricted
- Adversary is a tuple (A_1, \ldots, A_n) where $A_i \subseteq D$
- Universal player must set y_i to value in A_i
- Original game corresponds to adversary (D, ..., D) ("largest" adversary)

Strategies

Have QCSP instance

$$\phi = \forall y_1 \exists x_1 \dots \forall y_n \exists x_n \mathcal{C}$$

- An adversary is a tuple (A_1, \ldots, A_n) where $A_i \subseteq D$
- Consider maps $au: \{y_1, \ldots, y_n\} o D$ with $au(y_i) \in A_i$
- A strategy is a sequence of mappings

$$\sigma = \{\sigma_i : D^i \to D\}_{i \in [n]}$$

- Let (σ, τ) denote the map from $\{y_1, x_1, \dots, y_n, x_n\} \to D$ that results when variables set according to σ and τ
- Say that adversary (A_1, \ldots, A_n) is winnable if exists strategy σ such that for all such τ , the assignment (σ, τ) satisfies \mathcal{C}

Collapsibility

We want to show (for certain Γ)

 $QCSP_c(\Gamma)$ reduces to $CSP_c(\Gamma)$

- How to do this:
 - Define simple adversaries
 Winnability can be formulated as CSP_c(Γ)
 - Show that simple adversaries winnable

 \Leftrightarrow

largest adversary (D, ..., D) winnable (i.e., if formula true)

- Then, formula true ⇔ some instance of CSP_c(Γ) true
- If largest adversary winnable, simple adversaries winnable
- Want to show if simple adversaries winnable, then largest winnable
- Idea: give general theorem for inferring the winnability of adversary from simpler adversaries
 - Will use induction to go from winnability of simpler adversaries → winnability of largest adversary

Composing adversaries

• Let $f: D^2 \to D$ be polymorphism of the QCSP formula

$$\phi = \forall y_1 \exists x_1 \dots \forall y_n \exists x_n \mathcal{C}$$

Theorem: If adversaries

$$(A'_1,\ldots,A'_n)$$

$$(A_1'',\ldots,A_n'')$$

winnable, then adversary

$$(f(A'_1, A''_1), \ldots, f(A'_n, A''_n))$$

also winnable

- Here, f(A,B) denotes $\{f(a,b): a \in A, b \in B\}$
- Theorem holds for higher rank polymorphisms

Proof idea...

- Have formula $\phi = \forall y_1 \exists x_1 \dots \forall y_n \exists x_n C$, f a polymorphism of C
- For an elt. $a \in f(A_i', A_i'')$, let $a' \in A_i'$, $a'' \in A_i''$ denote elements such that a = f(a', a'')
- Proof idea: use strategies σ' , σ'' for

$$(A'_1,\ldots,A'_n),(A''_1,\ldots,A''_n)$$

to construct strategy for

$$(f(A'_1, A''_1), \ldots, f(A'_n, A''_n))$$

- At the end of the day, know that assignments produced by σ',σ'' satisfy $\mathcal C$
- But, assignment of σ is f applied to those assignments!

Collapsibility, deployed

- Want to apply this theorem to show winnability of complex adversaries from simpler ones
- ullet Say polymorphism $f:D^2 \to D$ has a unit element u

$$f(u,d) = f(d,u) = d$$

• Take all adversaries where one coordinate equal to D, rest $\{u\}$

$$(D, \{u\}, \{u\}, \{u\}, \dots, \{u\})$$

$$(\{u\}, D, \{u\}, \{u\}, \dots, \{u\})$$

$$({u}, {u}, D, {u}, ..., {u})$$

Compose first two with f:

$$(D, D, \{u\}, \{u\}, \dots, \{u\})$$

• Then compose this one with third one:

$$(D,D,D,\{u\},\ldots,\{u\})$$

Continue iteratively to get

$$(D,\ldots,D)$$

Collapsibility, deployed

• If have polymorphism $f: D^2 \to D$ with unit element

$$f(u,d) = f(d,u) = d$$

then

- simple adversaries ↔ largest adversary, and
- $QCSP_c(\Gamma)$ reduces to $CSP_c(\Gamma)$
- Holds when we have ∧ or ∨ as polymorphism!

$$d \wedge 1 = 1 \wedge d = d$$

$$d \lor 0 = 0 \lor d = d$$

Collapsibility, deployed

- Can extend this argument to higher-rank polymorphisms
- Say have polymorphism $f:D^3\to D$ and element $a\in D$ st

$$f({a}, D, D) = D$$
$$f(D, {a}, D) = D$$
$$f(D, D, {a}) = D$$

- Similar argument holds, to give reduction $QCSP_c(\Gamma) \leq CSP_c(\Gamma)$
- Applies to maj, with a=0 or a=1 f(a,d,d)=f(d,a,d)=f(d,d,a)=d
- Applies to $f(x,y,z)=x\oplus y\oplus z$ f(a,a,d)=f(a,d,a)=f(d,a,a)=d
- Applies to all 2-elt. tractable cases