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Structure of the talk

1. Classical preservation theorems

2. Preservation theorems in finite model theory and CSPs

3. Rossman’s Theorem

4. More on preservation theorems in finite model theory



Classical Preservation Theorems



Existential Formulas (1)

The smallest class of formulas that� contains all atomic formulas R(x1; : : : ; xr) and x1 = x2,� contains all negated atomic formulas :R(x1; : : : ; xr) and x1 6= x2,� is closed under conjunction '1 ^ '2,� is closed under disjunction '1 _ '2,� is closed under existential quantification (9x)('(x)),� is closed under universal quantification (8x)('(x)).



Existential Formulas (2)

In the vocabulary of graphs � = fEg:

Example 1 :

There is an induced pentagon.(9x1) � � � (9x5)(E(x1; x2)^E(x2; x3)^� � �^:E(x5; x2)^:E(x5; x3)):

Example 2 :

Either there is an induced pentagon or an induced co-pentagon.9C5 _ 9C5:



Existential Formulas (3)

Easy observation :

if A j= ' and A is an induced substructure of B, then B j= '.

Proof by induction on the structure of '.

Question :

Are existential formulas the only first-order formulas
that are preserved under extensions?



Existential Formulas (4)

Łoś-Tarski Theorem
Let ' be a first-order formula. The following are equivalent:� ' is preserved under extensions,� ' is equivalent to an existential formula.

Proof uses the Compactness Theorem for first-order logic.



Existential Positive Formulas (1)

The smallest class of formulas that� contains all atomic formulas R(x1; : : : ; xr) and x1 = x2,� contains all negated atomic formulas :R(x1; : : : ; xr) and x1 6= x2,� is closed under conjunction '1 ^ '2,� is closed under disjunction '1 _ '2,� is closed under existential quantification (9x)('(x)),� is closed under universal quantification (8x)('(x)).



Existential Positive Formulas (2)

In the vocabulary of graphs � = fEg:

Example 1 :

There is a homomorphic copy of the pentagon.(9x1) � � � (9x5)(E(x1; x2) ^ E(x2; x3) ^ � � � ^ E(x5; x1)):

Example 2 :

Either there is a homomorphic copy of a triangle
or a homomorphic copy of a pentagon.9+C3 _ 9+C5:



Existential Positive Formulas (3)

Easy observation :

if A j= ' and there is a homomorphism A! B, then B j= '.

Proof by induction on the structure of '.

Question :

Are existential positive formulas the only first-order formulas
that are preserved under homomorphisms?



Existential Positive Formulas (4)

Lyndon-Ło ś-Tarski Theorem
Let ' be a first-order formula. The following are equivalent:� ' is preserved under homomorphisms,� ' is equivalent to an existential positive formula.

Proof uses the Compactness Theorem for first-order logic.

(Rossman gave a new proof! Coming soon)



Primitive Positive Formulas (1)

The smallest class of formulas that� contains all atomic formulas R(x1; : : : ; xr) and x1 = x2,� contains all negated atomic formulas :R(x1; : : : ; xr) and x1 6= x2,� is closed under conjunction '1 ^ '2,� is closed under disjunction '1 _ '2,� is closed under existential quantification (9x)('(x)),� is closed under universal quantification (8x)('(x)).



Primitive Positive Formulas (2)

Easy observation :

if A j= ' and there is a homomorphism A! B, then B j= ',
if A j= ' and B j= ', then A�B j= '.

Proof by induction on the structure of '.

Note : Primitive positive formulas (in prenex normal form) are precisely the
conjunctive queries.



Primitive Positive Formulas (3)

Corollary to Lyndon-Ło ś-Tarski
Let ' be a first-order formula. The following are equivalent:� ' is preserved under products and homomorphisms,� ' is equivalent to a primitive positive formula.

Proof : As ' is preserved under homomorphisms, we have' � 9+A1 _ � � � _ 9+Am:
Then A1; : : : ;Am are models of ', so A1 � � � � � Am j= '. Hence,Ai ! A1 � � � � �Am for some i, and Ai ! Aj for every j, soA j= ') A j= 9+Ai ) A j= ':
Hence ' � 9+Ai. 2
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Other Classical Preservation Theorems

Many other similar results are known:� Preserved under surjective hom. : positive formulas (Lyndon).� Preserved under unions of chains : �2 formulas.� Preserved under reduced products : Horn formulas.� ...



Preservation Theorems in
Finite Model Theory and CSP



Compactness Theorem Fails on Finite Models

Compactness Theorem
Let � be a collection of first-order formulas. If every finite subset of � has
a model, then � has a model.

Failure on the finite:� 'n = (9x1) � � � (9xn)(Vi6=j xi 6= xj).� � = f'n : n � 1g.

Every finite subset has a finite model, but all models of � are infinite.



But do Preservation Theorems Fail?

Most fail, indeed:� Tait (1959!): Preservation under extensions fails.� Ajtai-Gurevich (1987): Preservation under surjective hom. fails.� ...� Preservation under homomorphisms: does it hold?

Remained open for many years... solved in 2005 (holds) by Rossman.



While Waiting for Ben ...

Let us restrict attention to classes of the form:CSP(H) = fA : A 6! Hg:
Note : :CSP(H) is automatically closed under homomorphisms:

If A 6! H and A! B, then B 6! H.

Question :

Suppose :CSP(H) is first-order definable.
Is it definable by an existential-positive formula?



Preservation Theorem for CSPs

Theorem (A. 2005)
Yes.� Much weaker result than Rossman’s.� But proof much simpler as well.� Proof uses a key result in graph-theoretic approach to CSP.� Proof builds on well-known previous work.� ...



Overview of Proof

Fix H and suppose ' is a first-order formula that defines :CSP(H).
Ingredients:� Random preimage lemma.� Scattered sets on large-girth structures.� Density lemma.� Putting it all together.



Definitions

Definitions : Let A be a finite structure:� A is a minimal model of ' if A j= ' and no proper substructure B � A

is a model of '.� Gaifman graph G(A) of A: vertices are elements of A, edges are pairs
of elements that appear together in some tuple of A.� A d-scattered set is a set of elements that are pairwise at distance > d

in the Gaifman graph.



Ingredient 1 : Random Preimage Lemma

Interesting history:

[Erdös 1959] There exist graphs of arbitrary large girth and arbitrary large
chromatic number.

[Nešetřil-Rödl 1979] Sparse Incomparability Lemma: for every non-bipartite
graph G ! H there is an incomparable G0 6$ G with G0 ! H and large
girth.

[Feder-Vardi 1993-1998] Same proof technique as in Sparse Incomparabil-
ity Lemma but slightly different statement and for arbitrary structures. We
call it the Random Preimage Lemma.



Random Preimage Lemma

Random Preimage Lemma (Feder-Vardi 1993-1998)
For every g and k and for every finite structure A, there exists a finite
structure A0 such that:� (preimage) A0 ! A,� (equivalence)A0 ! H iff A! H, whenever jHj � k,� (large girth) the girth of A0 as a hypergraph is at least g.



Why is the Random Preimage Lemma true?

1. Replace every point of A by a big independent set (a potato).
2. Throw random edges between independent sets that are edges in A.
3. Remove one edge from every short cycle to force large girth.
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Pigeonhole Argument

Every homomorphism to a small H, jHj � k, must be constant on a large
portion of every independent set.

Hence, A0 ! H implies A! H.A! H implies A0 ! A! H.



Ingredient 2 : Scattered Sets

Lemma : Let d, m and g be integers. For every large finite structure A of
girth at least g, there exists a such thatAna contains a d-scattered of sizem.� Case of small degree is easy.� Case of large degree:
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Ingredient 3: Density Lemma

Density Lemma (Ajtai-Gurevich 1988)
Let ' be preserved under homomorphisms on finite models. There exist d

and m such that if A is a minimal model of ', then A has no d-scattered
set of size m. Moreover, neither does A n a for every a 2 A.

Proof depends on Gaifman’s Locality Theorem.



Ingredient 4 : Putting it all together

Suppose :CSP(H) definable by '. We prove ' has finitely many minimal
models A1; : : : ;Am. This is enough because then' � 9+A1 _ � � � _ 9+Am:
We bound the size of minimal models.

Suppose A is a very large minimal model.



Using Ingredient 1A large minimal model, in particularA 6! H+ (Ingredient 1: random preimage)

there is a large minimal model A00 � A0 ! A of large girth



Using Ingredient 2A00 has large girth+ (Ingredient 2: scattered sets)

there is an a 2 A00 such that A00 n a has a large scattered set



Using Ingredient 3

there is an a 2 A00 such that A00 n a has a large scattered set+ (Ingredient 3: density lemma)A00 is not a minimal model. Contradiction. 2



Rossman’s Theorem



Finite Homomorphism Preservation Theorem

Theorem (Rossman 2005)
Let ' be a first-order formula. The following are equivalent:� ' is preserved under homomorphisms on finite structures,� ' is equivalent to an existential positive formula on finite structures.

Proof (cook) plan:� Ingredient 1: Existential positive types.� Ingredient 2: Existential positive saturation.� Ingredient 3: Finitization and back and forth argument.



Ingredient 1 : Existential positive types

Definitions : Let A be a structure, let a be a k-tuple, let n be an integer.� the quantifier rank of a formula is the nesting-depth of quantifers.� fon: collection of all first-order formulas of quantifier rank � n.� ppn: collection of all primitive positive formulas of quantifier rank � n.� fon(A; a): collection of all ' 2 fon such that A j= '(a).� ppn(A; a): collection of all ' 2 ppn such that A j= '(a).� we write A �fon B if fon(A) � fon(B).� we write A �ppn B if ppn(A) � ppn(B).



Main Property of Types

Fact : Let C be a class of structures. The following are equivalent:� C is preserved under �ppn ,� C is definable by a finite disjunction of formulas in ppn.

Fact : Let C be a class of structures. The following are equivalent:� C is preserved under �fon ,� C is definable by a finite disjunction of formulas in fon.

Proofs: Follows easily from

the number of formulas of quantifier rank � n,
up to logical equivalence, is finite.



Goal

Given ' 2 fon preserved under homomorphisms, we want to find n0 so
that for every A and B with A �ppn0 B, there exist A� and B� so that

A �ppn0 B# "A� �fon B�



Ingredient 2 : Existential Positive Saturation

Definition : Let A be a structure and let n and k be integers. We say thatA is existential-positively n-saturated if for every k � n we have(8a 2 Ak�1)(8a 2 A)(8T;ppn�k(A; a) � T � ppn�k(A; aa))(9b 2 A)(ppn�k(A; ab) = T):
Main Property : If A and B are existential-positively n-saturated, thenA �ppn B) A �fon B:
Proof : By induction on n� k prove, for every a 2 Ak and b 2 Bk:ppn�k(A; a) = ppn�k(B;b)) fon�k(A; a) = fon�k(B;b):



But can we saturate structures anyway?

Theorem : Yes. But oops, they become infinite!

Proof by iterated ear-construction:
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But can we saturate structures anyway?

Theorem : Yes. But oops, they become infinite!

Proof by iterated ear-construction:



Ingredient 3 : Finitization and back and forth

Theorem : For every n, there exists n0 � n such that if A and B are finite
structures with A �ppn0 B, then there exist finite A� and B� such thatA �ppn0 B# "A� �fon B�
Note : A� and B� are sufficiently saturated.



More preservation theorems in finite model theory



Restricted Classes of Finite Structures

Let T be the class of finite oriented forests. Suppose ' is a first-order
formula that is preserved under homomorphisms on T .

Is ' equivalent, on T , to an existential-positive formula?

Note : Doesn’t seem to follow from Rossman’s result.

But the answer is yes. Why? : every large forest has a large scattered set
after removing (at most) one point, so it cannot be a minimal model of ' by
the Density Lemma. 2



Restricted Classes of Finite Structures

Let Tk be the class of finite structures whose Gaifman graphs have treewidth
at most k.

Theorem (A., Dawar and Kolaitis 2004)
The homomorphism preservation property holds on Tk.

More generally.

Theorem (A., Dawar and Kolaitis 2004)
The homomorphism preservation property holds on any class of finite struc-
tures whose Gaifman graphs exclude some minor and is closed under sub-
structures and disjoint unions.



Preservation under Extensions?

Theorem (A., Dawar and Grohe 2005)
The extension preservation property holds on the following classes:� graphs of bounded degree,� acyclic structures,� Tk for every k � 1,

Remarkably, it fails for the class of planar graphs.



Counterexample on Planar Graphs

there are at least two different white points such that
either some point is not connected to both,

or every black point has exactly two black neighbors.



Conclusions



Conclusions

Homomorphisms are flexible enough to carry over model-theoretic con-
structions, and in the context of CSPs, the finite model theory is even eas-
ier.

Open Question 1 :� Can we finitize Rossman’s saturation using randomness?

Open Question 2 :� Does LFP \HOM = Datalog?� Does LFP \ co-CSP = Datalog?

It is known that:� Datalog(:; 6=) \HOM = Datalog (Feder-Vardi 2003)


