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1 Information Retrieval
With the arrival of the digital computer in the second half of the
twentieth century, a vast amount of information has been stored
and made available. The growing of accesible information has
reached an exponential growing rate, and computer scientists have
been worried about the problem of accessing and searching this
information accurately.

The subfield of Computer Science that deals with the representa-
tion, automated storage and retrieval of information items is called
information retrieval (IR) [10], [1], [12]. We denote these items as
documents (unit of retrieval) which might be a paragraph, a section,
a chapter, a web page, an article, or a whole book [1].

The two main views of an IR system are the following. The former,
the indexing subsystem, which takes a set of documents and con-
verts them to a suitable representation (what is called an index),
and the latter (the most important one) retrieval subsystem which
answers queries given from the user, with the subset of documents
more relevant to that query.

Figure 1: Conceptual view of an IR system.

While indexes are built using a set of well known data structures
[2], [14], and all of them store almost the same information, the
characteristical part of an IR system is the way it ranks documents,
given a certain query. This is what is called the model.

The formal notion of an IR system is defined by Baeza [1] as a
quadruple (D, Q, F , R(qi, dj)

)
,

where:

• D is the set of the representations (logical views) of the docu-
ments.

• Q is the set of the representations of the queries.

• F is a framework or model to represent documents, queries and
the relationships among them.

•R is a map (“ranking”)

R : D ×Q → R

that associates a real number R(qi, dj) to each query qi ∈ Q and
document dj ∈ D.

The most popular models in the literature [1] are based on boolean
logic, linear algebra, probability or fuzzy set theory. As it is well
known, there are many mathematical approaches to modeling
these systems. We are interested here in some of them which use
geometry at different levels.

2 The vector space model
The Vector Space Model (VSM) is one of the most successful mod-
els in IR. It was firstly proposed by G. Salton, A. Wong and C. S.
Yang [13] in the 70s, and it is used until nowadays. It represents

each document as an n-tuple of nonnegative real numbers. Each
coordinate corresponds to one of the n different terms present in
the collection. The value of the coordinate describes the impor-
tance of the term in the document, i. e., a very important term in
the document has a higher value of the coordinate than less impor-
tant ones. The value (weight) of the importance of the term i on
the document j (the i-th component of the j-th document vector) is
denoted by wij, and it is often defined as:

wij = tfij idfi =
fij

maxk fkj
log

D

Di
,

where fij is the absolute frequency of the i-th term in the j-th doc-
ument. On the other hand, idfi stands for inverse document fre-
quency of i-th term, as the logarithm of the number of documents
between the number of documents that term appears in, and it
measures the rarity of the term in the collection.

An as interpretation, we can see a general form for the weighting
scheme as following [4]:

wij = local weightij · global weighti · normalizationj

A query is also represented as a vector of Rn, usually having qi = 0
if ti /∈ q and qi = 1 if ti ∈ q. We will write wiq for the weight of the
i-th term on the query q.

Denote by 〈 , 〉 the usual scalar product of Rn. The similarity be-
tween each document dj and a query q is measured as the cosine
of the angle of the two vectors, cos(q̂, dj):

R(q, dj) =
〈q, dj〉
‖q‖‖dj‖

=

∑n
k=1 wkq wkj√∑n

k=1 w2
kq

∑n
k=1 w2

kj

Both, queries and documents, live in the Euclidean metric vector
space Rn. Observe that it hold wiq ≥ 0, q 6= 0 and wij ≥ 0, dj 6= 0.

The ordering of the documents given by the VSM with the similar-
ity function is equivalent to the ordering obtained using the intrinsic
distance d over the unit sphere Sn−1 [3, p. 279] where live the nor-
malized vectors (queries and documents). In fact,

d(q̃, d̃) = arccos R(q, d),

where q̃ = q/‖q‖. Therefore, sorting documents by increasing simi-
larity gives the same result than sorting normalized vectors by de-
creasing distance. More precisely, document and query vectors
live in the part of the sphere with nonnegative coordinates, which
is, topologically equivalent to the (n− 1)-simplex.

A deeper analysis of the VSM and its variants is carried out in [9].

3 Standard quantum logic
Let H be an n(> 2)-dimensional vector metric space, and let P be
the set of all orthogonal projectors of H. Given a subspace E of H,
we denote by pE the orthogonal projector on E. We can define, for
any q, r ∈ P the following operators:

q̄ = 1− q, q ∧ r = p
q(H)∩r(H)

, q ∨ r = p
q(H)+r(H)

This logic, called standard quantum logic, was introduced, in a
more general context of Hilbert spaces, by Birkhoff and Von Neu-
mann [5]. It should be observed that it is not a “classical logic”. In
fact, distributive laws do not hold on P in general (instead, only a
weaker law, “modularity” is satisfied here). Therefore, P is not a
boolean algebra but only a lattice (more precisely an orthomodular
lattice [8]).

4 Probability measures of sub-
spaces

The aim here is to define a probability measure over the set of sub-
spaces of H, using the natural identification of each subspace with
the corresponding orthogonal projector. A probability measure on
subspaces of Rn is a map

µ : {L : L is a subspace of Rn} −→ R,

which satisfies the following properties:

1. µ({0}) = 0.

2. µ(Rn) = 1.

3. If Li and Lj are subspaces of Rn such that Li ∩ Lj = {0}, then
µ(Li + Lj) = µ(Li) + µ(Lj).

It is easily seen that for each positive definite self-adjoint operator
T of Rn, with trace(T) = 1, a probability measure µT can be defined
by setting

µT(L) := trace(T ◦PL),

where PL : Rn → Rn is the orthogonal projection on L.

Conversely, in a much more general setting, it was proved [6] that
every such probability measure is constructed in this way.

In [11], C. J. van Rijsbergen relates the VSM, probability measures
of subspaces and probabilistic IR models [7] as follows.

Given a query q and a document d, denote by Tq̃, q̃ = q/‖q‖, the
operator defined, with respect to the standard basis (e1, . . . , en) of
Rn by

Tq̃(ej) =

n∑

i=1

(q̃i q̃j) ei,

and by Pd(= P
d̃
) the orthogonal projection on the 1-dimensional

subspace spanned by d. Then, using the probability measure µTq̃
,

we have:

µTq̃
( Span({d}) ) = trace(Tq̃ ◦Pd) = 〈d̃, q̃〉2 = cos2( ̂̃d, q̃)

This result links the probability measures of subspaces to the VSM,
and it can be also interpreted as the probability of relevance of the
document d, given the query q.
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