Concurrent and Real Time Systems
Sample solutions to exercises

This document contains the generally available sample solutions to selected exercises from the
book ‘Concurrent and Real Time Systems: the CSP approach’ by Steve Schneider.
Answers to the other questions have restricted access.
Steve Schneider
S.Schneider@rhbnc.ac.uk

May 1999

Chapter 1

Question 1.5%*

Question 1.10%*

Il

PRESS = PRESS(0)
PRESS(n) = press — PRESS(n+1)
| finish!n — STOP

Question 1.13*

TROLLEY = choc — apple = cake — cake — STOP
| cake — apple — cake — STOP
| cake — apple - STOP

| apple — choc — cake — cake — STOP
| cake — choc — cake — STOP
| cake — choc - STOP

| cake — apple - choc — cake — STOP
| cake — choc — STOP
| choc — apple — cake — STOP
| cake — apple — STOP
| cake — apple — choc - STOP
| choc — apple — STOP

Chapter 2

Question 2.3%*

DEADLOCK!

Deadlock can occur whenever one of the girls has the easel, and the other has the box.

Question 2.5%*

DCUSTOMER || SHOP = enter — select — pay — leave - DCUSTOMER || SHOP

The SECURITY component of the SHOP process prevents leave from occurring at the point
DCUSTOMER is first ready for it.

If the external choice of DCUSTOMER is replaced by an internal choice (resulting in DCUSOMER',
say), then the resulting combination may deadlock: the customer might choose to leave without
paying, but is prevented from doing so by the process SHOP.

DCUSTOMER' || SHOP = enter — select —
(STOP N pay — leave - DCUSTOMER' || SHOP)

Question 2.9%*

The following gives a counterexample to the claim that interface parallel (with different interfaces)
is associative.

P, = STOP

P, = STOP

P; = a— STOP
A = {a}

B = ()

Py || (P2 || P3) = STOP
A B

(Pl || PQ) || P3 =a— STOP
A B

In the first case, P; exercises a veto on all events from A. In the second, P; exercises that veto
within the combination with P3, but cannot prevent Ps from performing events in 4 \ B.

Chapter 3
Question 3.2%*

C = hin?e = 0in 7y = Voye! min{z, y} = hoye! max{z,y} - C

If 4 < j then the function f; ; is defined by

fij(hin) = hij

fij(vin) = wiy
fii(howt) = hita;
fii(Wout) = Wiz

and if ¢ = j then the function f; ; is defined by

fij (hin) hi j
fii(in) = wij
fij(hout) = Wig1j4+1
fi,j(vout) = Vij+1
Finally, SORTER is defined as follows:
SORTER = ||’ j,(0)

Question 3.6*

return

—
(onse) (e e e ()
O O=0
O OO0
Chapter 4

Question 4.4%*

traces(P O RUN) = traces(P) U traces(RUN)
= traces(P)U TRACE
= TRACE
= traces(RUN)

Question 4.8%
1. {(),{coin), (coin, change), (coin, change, V'), {coin, ticket), {coin, ticket, v')}

2. { (), (coin), (coin, change), (coin, change, ticket), (coin, change, ticket, V'),
coin, ticket), (coin, ticket, change), (coin, ticket, change, v')}

(

(

3. { (), (coin},{coin, change), {coin, ticket), (coin, coin), {coin, coin, ticket), (coin, coin, change),
(coin, ticket, coin), (coin, change, coin), { coin, coin, ticket, change),
(coin, coin, ticket, change, V'), (coin, coin, change, ticket), { coin, coin, change, ticket, v'),
(coin, ticket, coin, change), (coin, ticket, coin, change, v'), { coin, change, coin, ticket),
(coin, change, coin, ticket, v') }

(

(

(

4. { (), (coin), (coin, change), (coin, change, V'), (coin, ticket), (coin, ticket, V'),
coin, coin), { coin, coin, ticket), { coin, coin, ticket, V'), {coin, change, coin),
coin, change, coin, tzcket) (coin, change, coin, ticket, v')}

Question 4.12%*

traces(P) = {(up)™|n e N}
U{{up)™ ™ (down)™ | n e NAm e NAm< n}
U{{up)™ ™ (down)™ ™ () | n € N}

Question 4.14%*

Yes, F is guarded. traces(N = F(N)) = {a,b}*. There are no other fixed points: guardedness
means that there is a unique fixed point.

Question 4.18%*

(SPY || MASTER) \ relay = listen?x : T — (SPY || loglz - MASTER) \ relay

where

(SPY || log!z - MASTER) \ relay = listen?y — loglx — (SPY || logly —» MASTER) \ relay
| loglz — listen?y — (SPY || logly — MASTER) \ relay

Thus (SPY || log'y - MASTER) \ relay is a fixed point of the guarded mutual recursive equation
defining the RECORD processes, and hence must be equal (since the fixed point is unique).

Chapter 5

Question 5.2%*

The specification is
tr = trg " (raw) " try ~ {cooked) " tro = wash in try

The combination RAW || COOKED does not meet this specification, since it allows the
{wash}

trace (raw, wash, raw, cooked).

Question 5.7%*

The first two proof rules are sound.
The third proof rule is not sound. The processes P; and P, of Exercise 5.6 provide a coun-
terexample, since P; ||| P2 has (b, a) as a possible trace, and this does not satisfy tr | a < tr | c.

Question 5.9%*

It is necessary to prove that the recursive function
F(Y) = (open — close — Y O locked — STOP)

preserves the specification, and that the specification is satisfiable. These proofs can be carried
out by applying the rules for prefix and for external choice.

1. Prove that F preserves foot(tr) = open = foot(init(tr) # open

2. The specification that close does not appear twice consecutively is not preserved by F' (con-
sider F(close — STOP)). It is necessary to find a stronger specification that is preserved
by F. One that suffices is:

(foot(tr) = close = foot(init(tr) # close) A head(tr) # close

3. This specification is preserved by F.

Chapter 6

Question 6.7%*

DIV & DIV

Question 6.8%*

[a€X]
CHAOS % CHAOS

CHAOS 5 STOP

CHAOS % STOP

Chapter 7

Question 7.3%*
Both P; and P, satisfy X # X. Any refusal X of P; || P, will be made up of a refusal X; of

{a}
Py, and X, of Py, such that X \ {a} = X1 \ {a} N Xz \ {a}, and X N {a} = (X1 U X3) N {a}.
Ifae X; then3b ¢ Xi,b0# aand so b ¢ X. Thus X # X. Similarly if a € X, then X # X.
Finally, if a € Xj and a ¢ X5, then a ¢ X, and so again X # X.

In every case, X # X, and so the process is strongly deadlock-free.
If the interface contains more than one event, then strong deadlock-freedom need not be pre-
served. For example, if Py = a — P; and P, = b — P,, then both processes are strongly

deadlock-free, but P; || P, deadlocks.
{a,b}

Question 7.5%*
The assertion
VY e (SPEC Csr Y = SPEC Csr F(Y))

implies the assertion that SPEC Csr F(SPEC), since SPEC is one possible instantiation of
Y. Thus we have to prove that SPEC Cgr F(SPEC) means that SPEC Cgr F(Y) for any
refinement Y of SPEC.

By monotonicity of F' (made up of CSP operators, which are all monotonic),

SPEC Csr Y = F(SPEC)Cgr F(Y)
= SPEC Cgr F(Y)

by transitivity of refinement.

Question 7.8%
1.

STACK({)) = push?z:T — STACK({z))
STACK ((z) ~s) = poplz - STACK(s)
O (STOP N push?y : T — STACK ((y,z) " s))

2. By resolving the internal choice of the specification in favour of STOP, we obtain

STACK:({)) = push?z: T — STACK ({z))
STACK:({(z)) = poplz — STACK(())

and STACK;({)) is a refinement of STACK ({)), and hence is a stack.

3. By resolving the internal choice against STOP for singleton sequences, and in favour of
STOP for sequences of length 2, the following refinement of STACK is obtained:

STACK>(()) = push?z: T — STACK ({z))
STACK>({z)) = poplx — STACK(())
O push?y : T — STACK ({y, z))
STACK>({y,z)) = pop'z - STACK ({z))

Thus STACK>(()) describes a stack, since it is a refinement of STACK (()).

Chapter 8

Question 8.5%*

1.
2. Yes: Po=(a— b— STOP)N (b = a — STOP)
3.

4. Define AS = a — AS and BS = b — BS. Then

Pi=a— STOPOb— STOP

P, above has P || P #ppr P

P, = AS|||(STOP b — STOP)
P, = BS|||(STOP M a— STOP)

P; and P, are both nondeterministic, but their interleaved combination is deterministic.
No, if P is nondeterministic then so too is P ||| P.

The deterministic process P = a - a — b — STOP has P ||| P nondeterministic: after
the trace (a, a), the b might be performed or refused.

Question 8.6%*

1.

Any divergence must at some point have given out more chocolates than received coins:
Sp(tr) = 3tr’ < tr.tr' | choc > tr' | coin

Sp(tr) = Jtrg, try.tr = trog ~ {in,in,in) ~ try
Sp(tr) =3I n > 235.in.nintr

This is a specification on the infinite behaviour—that in the limit there should be at least
two outputs for every three inputs. This may be expressed as follows:

Sr(uw) =3IN.Vir < u.(#tr > N = (tr | out/tr | in) > ;

S1(u) = tr [{a} # ()

Assuming all requests are unique (so any request can appear at most once in the trace),
the requirement can be expressed as follows:

S1(u) = (reg.iinu) = (req.i, service.i) < u

. For every execution to eventually terminate, the process must be deadlock-free and have no

infinite traces. This is a condition upon the failures and the infinite traces of the process:
Sp(tr,X) = VvV do(tr)=X £%"
Si(u) = false

ST here states that no infinite trace is possible—that the process should not have any infinite
traces.

Chapter 9

Question 9.5%*

CON1 = in.kate —» out - CON1
| in.eleanor — out - CON1

Question 9.6*

CON2 = (in.kate — (out = RUNgxo > RUNgko)) Ago CON2
| in.eleanor — out - CON2
| out - CON2
Chapter 10

Question 10.2%*

27" . . .
N =n:N"= N has zeno executions but no spin executions.

Question 10.3*

c—1
If N(i) = a = N(i+1), then N(0) has no infinitely fast executions—all infinite executions take
infinitely long to unwind. However, the N () are not ¢-guarded for any ¢.

Chapter 11

Question 11.1%*
1. Yes

2. Yes
No. This is a single timed event.
No. It does not have the correct structure, since it is not half-open at time 7.

Yes

A

No. This is a set of timed events, but it does not have the structure of a refusal set.

10

Question 11.2%*

1. No: a is not refused over the interval [0,3)

2. Yes: a is refused over the interval [3, 6)

No: b is not refused over the entire interval [3,6) (though it is refused for part of it)
Yes: both a and b are refused over [3,5)

Yes: a is refused after time 7 for ever

No: b is not refused after time 7

N o w

Yes: the empty refusal (no refusal observed) is consistent with any execution.

Question 11.9%*

1. Yes, this is a valid refinement. Any behaviour of (a 48 TOP) 5 STOP is either a behaviour
of STOP (if the trace is empty), or a behaviour of a — STOP (if the trace contains a—since
the a cannot be refused before it occurs).

2. No, this is not a valid refinement. The failure ({((1, a)),[0,1) x {a} is possible for the right
hand side, but not for the left.

Question 11.13%*

The refusal of b followed by the performance of ¢ can no longer be detected by the resulting test
(STOP M b — SUCCESS) O (¢ — STOP O a — SUCCESS)

In fact, the resulting test cannot distinguish between @; and -, since it has lost the ability to
do refusal testing.

Chapter 12
Question 12.2%*
shower at t = eat live from ¢ + 10 until {eat}

It is straightforward to show that
leave — SKIP sat no shower

So the rule for prefix yields that

eat > leave — SKIP sat eat live from 0 until {eat}

A no shower

11

so a further application of the rule for prefix yields that

shower 23 eat > leave — SKIP sat s #)=
shower at begin(s) A eat live from begin(s) + 10 until {eat}
A no shower[tail(s)/s]

which implies
shower =3 eat > leave — SKIP sat shower at t = eat live from ¢ + 10 until {eat}

A final application of the rule for prefix, with some judicious simplification, yields again that
wake -3 shower 33 eat > leave — SKIP sat shower at t = eat live from ¢ + 10 until {eat}

as required.

Question 12.6*
Vest{t}{X<1

The process TSWITCH does meet this specification. This can be established by a recursion
induction.

Chapter 13

Question 13.4%*

a—b—>STOP |||¢c— STOP =7 c¢—a—b— STOP

la— (b—c— STOP
| c = b— STOP)

Cr a—(b—>STOPOc¢— STOP)
rCrr a3 (b— STOP O ¢ - STOP)

The processes are not related by a failures timewise refinement. For example, the timed process
can refuse ¢ for ever after a trace with e and b, whereas the untimed process cannot.

12

Appendix A

Question A.3*

U(PRINT = mid?y = printly — PRINT) =

= PRINTO
PRINTO = mid?y — tock - PRINT1(y)
O tock - PRINTO
PRINT1(y) = printly - PRINTO

O tock — PRINT1(y)

Question A.4%*
With PRINTO as given in the previous question, and SPOOLO as follows:

SPOOL0 = in?zx — tock — tock — tock — SPOOL1(x)
O tock — SPOOLO
SPOOL1(z) = midlz — SPOOLO

O tock — SPOOL1

we have to reduce

U(PRINTER) = (SPOOILD Idl . PRINTO) \tock mid.T
= in?r — tocf;:—.> tock — tock — (SPOOL1(x) u ; PRINTO) \tock mid.T
O tock — (SPOOLO '|d| ’ PRINTO) \tock mz;“T
(SPOOLI1(zx) |J ., PRINTO) \toex, mid. T = (SPOOLO |d| ., PRINT1(z)) \tock mid.T
(SPOOLO |d| _ PRINT1(2)) \took mid-T =
out!z TZ &SPOOL() u ., PRINTO) \toct, mid.T
O tock — (SPOOLOTm 'Uq ’ PRINT1(z)) \tock mid.T
Oin?y — outls — :fnozcl.c — tock — tock = (SPOOL1(z) || PRINTO) \;ocx mid.T
O tock = outlz — tock — tock — (SPOOIL(x) || PRINTO) \yex mid.T
O tock — outls — tock — (SPOOLL(z) || PRINTO) \soep mid.T

mid. T
O tock — (SPOOL1(z) || PRINT1(y)) \toct mid.T
id. T

mid.

13

(SPOOL1(z) || PRINT1(y)) \tock mid.T =
mid. T

tock — (SPOOLL(z) || PRINTL(y)) \took mid.T
mid. T

O outly — (SPOOL1(z) || PRINTO) \tock mid.T
mid. T

This has given U(PRINTER) as the fixed point of a function (on a family of processes) which
does not contain parallelism or hiding:
U(PRINTER) = PR0O0
= in?x — tock — tock — tock — PRO1(z)
O tock — PROO
PRO1(z) = out!z - PROO
O tock — PRO1(x)

O in?y —» out!lzs — tock — tock — tock — PR01(x)
O tock — out!lz — tock — tock — PRO1(z)
O tock — out!z — tock — PRO1(xz)
O tock — PR11(z,y)

PR11(z,y) = tock — PR11(z,y)
O out!'y — PR10(z)

Appendix B

Question B.1*

-- Exercise B.1
datatype Status = on | off

channel coat: Status
channel store, retrieve, enter, eat

ATT = coat.off -> store -> ATT
[retrieve -> coat.on -> ATT

CUST = enter -> coat.off -> eat -> coat.on -> CUST

MEALS = ATT [|{l|coat|}|] CUST

14

