< Interaction ¢

Up to now we have described simple processes in iso-
lation. Although we have often assumed that our
processes might be placed in some environment and
expected to interact with it — for example, there
should be a customer who will use the ticket machine
— this environment has not been made explicit.

We will now see how to take two (or more) processes
and force them to interact with each other. Interac-
tion between two processes means that they simul-
taneously perform events; an event thus becomes a
joint activity in which two (or more) processes may
participate.

When placing processes in parallel so that they can
interact, it is important to specify which events they
are supposed to be interacting on, or sharing. This is
where alphabets (interfaces) come into play.

If the interfaces of processes P and () are A and B
respectively, then the process

P llp @

is a parallel combination of P and Q.

o

J

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 16)

After the event coin, VM becomes
choc — STOP | toffee - STOP
and CUST becomes
choc — STOP.

Synchronisation is still required for all events, and
therefore only choc can happen. The choice between
choc and toffee in VM is resolved in favour of choc.

After the event choc, both processes become STOP,
so the system becomes STOP ||, STOP, which
cannot do anything else.

We can draw a transition diagram for VM ||, CUST.
VM 4|4 CUST

coin

choc

STOP ,|, STOP

-

~

(choc — STOP | toffee — STOP) 4|4 choc — STOP

/

(Concurrent and Real Time Systems: Concurrency

@Gay/Schneider 18)

4 N

In this combination, P can only perform events in A,
@) can only perform events in B, and any events in
the intersection of A and B require synchronisation
between P and Q).

The interface of P should contain at least all the
events used in the definition of P, and similarly for
the interface of Q.

Example: Consider processes representing a vending
machine, and a customer:

VM = coin — (choc — STOP | toffee — STOP)
CUST = coin — choc — STOP

a(VM) = a(CUST) = {coin, choc, toffee} = A.

The process VM ||, CUST models the interaction
of the customer with the machine. How does it be-
have? Any event done by VM ,||, CUST must be
an event which is done simultaneously by both VM
and CUST.

At the first step, both VM and CUST can do the
event coin. We therefore expect VM ,|| , CUST to
do coin. Subsequently, VM and CUST enter new
states which continue to interact.

(Concurrent and Real Time Systems: Concurrency @©Gay/Schneider 17)

In this example, both VM and CUST continued to
the end of their potential behaviour. This may not
happen in general: if we change the definition to

CUST = coin — STOP
then after the event coin we get
(choc — STOP | toffee — STOP) 4||, STOP

and nothing further can happen. Although one of
the processes could do either choc or toffee, both of
these events require synchronisation with the other
process; but because STOP cannot do anything, syn-
chronisation is not possible.

Example: Recall the definition of STUDENT:

STUDENT = yearl — (pass - YEAR2
| fail - STUDENT)
YEAR2 = year2 — (pass — YEAR3
| fail - YEAR2)
YEAR3 = year3 — (pass — graduate
— STOP
| fail — YEAR3)

We will now explicitly state that the alphabet is

a(STUDENT) = {yearl, year2, year3,
pass, fail, graduate}

which we will abbreviate to S.

- /

@©Gay/Schneider 19)

(Concurrent and Real Time Systems: Concurrency

Suppose that the student has a generous parent, who
buys a present every time the student passes the ex-
ams.

PARENT = pass — present - PARENT
Again we explicitly define the alphabet:
a(PARENT) = {pass, present} = P.

Notice that the event pass now has two different in-
terpretations. For the student it means passing the
exams, but for the parent it means seeing the student
pass the exams.

We can now consider the parallel combination of the
student and the parent:

STUDENT ||, PARENT.

Synchronisation is required for the event pass, which
is the only event in both alphabets. The other events
can happen independently.

The behaviour of this system will be explored in Prac-
tical Sheet 2.

J

(cConcurr

ent and Real Time Systems: Concurrency @©Gay/Schneider 20)

-

\
<& More Synchronisation <

Some parallel combinations require some events to be
synchronised between more than two processes.

Example: If a student completes the degree pro-
gramme without failing at all, then the college awards
a prize.
COLLEGE = fail — STOP | pass — C1
C1 = fail — STOP | pass — C2
C2 = fail - STOP | pass —
prize — STOP

a(COLLEGE) = {pass, fail, prize} = C

Now we can consider combinations of STUDENT
with any or all of PARENT, TUTOR and COLLEGE.
If we combine everything:

((STUDENT |, PARENT) g |y TUTOR)
supurlle COLLEGE

then pass must be synchronised between STUDENT,
PARENT and COLLEGE, and so on.

/

(Concurr

ent and Real Time Concurrenc; y @Gay/Schneider 22)

<& More Processes ¢

Any number of processes can be put in parallel, by
using the || operator repeatedly.

Example: Suppose the student has a tutor who is
annoyed by failure.

TUTOR = fail — shout — TUTOR

a(TUTOR) = {fail, shout} = T

We can add the tutor to the system consisting of the
student and the parent.

(STUDENT ||, PARENT) g |, TUTOR

As before, pass must be synchronised between STUDEN']
and PARENT. Also, fail (which is the only event

in both SUP and T) must be synchronised between
STUDENT ||p PARENT and TUTOR.

We know that fail events come from STUDENT

not PARENT, so in effect this means that pass
must be synchronised between STUDENT and PARENT]
and fail must be synchronised between STUDENT

and TUTOR.

n

_/

(concurr

ent and Real Time Systems: Concurrency @©Gay/Schneider 21)

S

~
Consider the processes PASS (“passenger”) and

TICKETS, both with alphabet
A = {ashford, staines, feltham, ticket, pound}
defined by

PASS = ashford — pound —
(ticket — PASS
| pound — ticket — PASS)
| feltham — pound — ticket — STOP

TICKETS = staines — pound —

ticket — TICKETS

O ashford — pound — pound —
ticket — TICKETS

A What is the behaviour of TICKETS ,|| ; PASS?

Draw a transition diagram.

Given a transition diagram, it is possible to define
a process, without using the parallel operator, which
has the same transition diagram.

A Do this for TICKETS ||, PASS.

J

(Concurr

ent and Real Time Systems: Concurrency @©Gay/Schneider 23)

<& Student and Parent ¢

The student and the parent, in parallel, behave more
or less as we expected. The only slight surprise is
that after the student has passed an exam, present
and the next year can happen in either order. The
transition diagram contains two squares, which are
characteristic of a pair of events which must both
happen but in either order.

If processes P and () are completely independent
(there are no events which are in both alphabets)
then the number of states of P ,||5 @ is the prod-
uct of the number of states of P and the number
of states of (). However, if the processes must syn-
chronise on some events, this is no longer true. For
example, STUDENT has 8 states and PARENT
has 2 states, but their parallel combination has only
14 states. Because pass cannot happen until after
yearl, PARENT cannot get into its second state
while STUDENT is still in its first state.

Any process can be rewritten in a form which does
not involve ||. Try it for STUDENT ||, PARENT
— it becomes fairly complex. Roughly speaking, if P
has m states and @ has n states, then P |5 Q has
m X n states (although synchronisation might reduce
the number).

(Concurrent and Real Time Systems: Concurrency @©Gay/Schneider 24)

< Operational Semantics <

The semantics of a programming language is a defini-
tion of what expressions in the language (either com-
plete programs or program fragments) mean. One
style of semantics is operational — the meaning of
program expressions is defined by describing how they
should be executed. An operational semantics can be
thought of as an idealised implementation, or as in-
structions to an implementor.

In CSP, we are interested in the events which a pro-
cess may perform, and we have informally introduced
the operators by describing when processes can do
certain events. We will now introduce the idea of
labelled transitions as the basis of the operational se-
mantics of CSP. Labelled transitions allow us to de-
fine CSP operators more formally; they contain the
same information as transition diagrams, but in a
more manageable form.

A labelled transition has the form
P--Q
where P and () are processes and e is an event. It

captures the idea that P can change state to () by
doing the event e.

- %

@Gay/Schneider 26)

(Concurrent and Real Time Systems: Concurrency

o

If we define a process R which has the same transition
diagram as P ,||z @ but does not use ||, then the
syntactic “size” of R will be m x n. However, the
syntactic size of P ,||5 @ is only m + n. Defining a
system as a parallel combination of several processes
is very compact, and is closer to the way we think
about it.

< Prizes ©

Recall the parallel combination of STUDENT, PARENT]
and COLLEGE. If the student passes every year,
then the system works as we intended and eventu-

ally COLLEGE does prize. However, if fail hap-
pens, then COLLEGE becomes STOP and cannot

do anything else afterwards. This causes a problem
because pass and fail must still be synchronised, and
therefore STUDENT can no longer either pass or fail

— the whole system stops.

We need to change the definition of COLLEGE so
that after fail it can still do pass or fail — but never
do prize.

A Write down the new definition of COLLEGE.

_/

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 25)

/

S

~

Example: The execution of the process
coin. — choc — STOP

can be described by the labelled transitions:

(coin — choc — STOP) (choc — STOP)
(choc — STOP) . STOP

When defining CSP operators, we will use labelled
transitions to precisely describe the possible behaviour
of the processes being defined. We use inference rules
of the form

hypothesis 1...hypothesis n [side condition]
conclusion

coin

In such a rule, the hypotheses are usually labelled
transitions of certain processes; the conclusion is a la-
belled transition of a process being defined by means
of a new operator. Some rules have a side condition,
which is an extra condition necessary for the rule to
be applicable. We will often refer to these rules as
transition rules.

The rule for prefixing is
(a - P)—2-P

There are no hypotheses, which means that we al-

ways know that (a — P)—"— P. This is true for all
processes P, and all events a.

J

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 27)

-

There is no transition rule for STOP. This means
that it is never possible to deduce a transition for
STOP, which is exactly what we want.

To define choice (from a finite number of alterna-
tives) we use one rule for each possible initial event.
For example, the process a — P | b — @ is defined
by the following pair of rules.

a—=P|b—>Q"-P

e PlboQ "-Q

For menu choice we use this rule:

[a € A]
z:A— P(z)—"~P(a)

The side condition ¢ € A indicates that the rule
only applies to events in the specified set A of initial
possibilities.

Notation: the use of z in the process z : A — P(x)
suggests a general, as yet undetermined event. The
use of a for the event labelling the transition repre-
sents a particular event. This usage follows the com-
mon mathematical convention of using letters close
to the end of the alphabet as variables, and letters
close to the beginning of the alphabet as constants.

o

J

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 28)

/

<& Transitions for Concurrency <

Here are the transition rules for the concurrency op-
erator.

a

P
Pz @

P [a €A, a ¢ B]
Pyl @

a

a

Q
P yllp @

Q la€B,ad Al
Plp @

a

i P’ Q ¢ [a € AN B
PA”B Q"P’A”B Q/

<& Examples ¢

Example: Processes VM and CUST with
a(VM) = {coin, choc, beep} = A
a(CUST) = {coin, choc, eat} = B
VM = coin — beep — choc — VM
CUST = coin — choc — eat — CUST.

In

VM {coin,choc,beep}”{coin,choc,eat} cusT

the events beep and eat happen independently, but
coin and choc require synchronisation.

-

~

/

(Concurrent and Real Time Concurrency

@Gay/Schneider 30)

o

When a named process is defined, we should be able
to replace the name by its definition wherever it is
used. The transition rule for named processes states
that any transition of the right hand side of a defini-
tion is also a transition of the defined process.

P—P 1y _ p|
N-“.pP
Example: If we define
DOOR = open — close - DOOR

then because we have

open

(open — close — DOOR) (close - DOOR)

we also have
DOOR " (close — DOOR).
Then

(close — DOOR) - DOOR
This is all the information we need about the be-

haviour of DOOR.

Note: the operational semantics of CSP appears in
“Concurrent and Real Time Systems: the CSP Ap-
proach” and Roscoe’s “Theory and Practice of Con-
currency” but not in Hoare's “Communicating Se-
quential Processes”.

_/

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 29)

/

S

N
VM ||, CUST

coin

beep — choc — VM ,||5 choc — eat - CUST
beep

choc - VM ,||p choc — eat — CUST
choc

VM 4|l eat = CUST

eat

VM ||, CUST

J

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 31)

o

If we change CUST so that

a(CUST) = {coin, choc, shout} = A
CUST = coin — shout — choc — CUST

then

VM || CUST
beep — choc — VM ||z shout — choc —
CUST

and now beep and shout, neither of which requires
synchronisation, could happen in either order. Here
is the complete transition diagram.

coin

comn

bemout
shok %p

#

choc

v

J

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 32)

/

-

Because of the way synchronisation is needed for events
in both alphabets, it is possible to control or restrict
the behaviour of a process by adding another process
in parallel.

Example: Recall that with the most recent defini-

tions of VM and CUST, VM | CUST can do

beep and shout in either order. If we define another

process CONTROL with

a(CONTROL) = {beep, shout} = C
CONTROL = beep — shout — CONTROL

then

(VM 4|z CUST) 4,5ll¢ CONTROL

behaves like the process P defined by
P = coin — beep — shout — choc — P.
This also illustrates the need to be careful about al-
phabets: if
a(CONTROL) = {beep, shout, coin, choc} = D
and CONTROL has the same definition, then
(VM ||z CUST) 4,pllp CONTROL = STOP

because CONTROL cannot do a coin event.

/

(Concurrent and Real Time Concurrenc; y

@Gay/Schneider 34)

Example: To describe the movement of a counter
on the board

O

we can define two processes:

a(LR) = {left, right}

a(UD) = {up, down}
LR = left — right — LR | right — left — LR
UD = up — down — UD

and then

LR {left,m'ght}”{up,down} UD

describes the whole system.
An alternative way of describing this system is to de-
fine a collection of processes R, , representing the
behaviour when the counter starts from coordinate
position (z, y):

Ro’o = mght — Rl,O | up — RO,l

RO,I = mght — Rl,l | down — Ro’o

and then

RLO =LR {left,right}”{up,down} UD.

o

~

_/

(Concurrent and Real Time Systems: Concurrency

@©Gay/Schneider 33)

